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Abstract
Purpose of Review The paper focuses on the progress related tomodels and approaches for an optimal design andmanagement of
biomass supply chains. A literature review has been conducted, and previous review papers have been used as bases. Do most of
the current models adopt the same decision level, mathematical methodology and type of objective of those identified by previous
reviews? Are there any innovative approaches to revitalise the considered research topic?
Recent Findings Most of the works published in 2017 and in early 2018 reflect the past literature reviews; regrettably, few
relevant advances have been achieved in the recent period to face up the major gaps. Innovative works apply Life Cycle
Assessment, Multi-Criteria Analysis, CyberGIS or Agent-Based approaches to biomass supply chain optimisation.
Summary Future research should address, for instance, sustainability of biomass supply chains through a more comprehensive
approach including economic, environmental, social and policy-related issues, integration of the decision levels to meet the needs
of different stakeholders.

Keywords Biomass . Supply chain . Design .Management . Optimisation . Simulation

Introduction

The development of biomass supply chains is increasing over
time, to meet the requirements of the climate policy targets
and the national policies to resource-efficient and post fossil-
carbon societies. Thus, new and more performing models and
approaches have been developed to an optimised design and
management of biomass supply chains, which most important
objective is to maximise the related economic profits and the
sustainability of investments. A valid point of view to deal
with an idea of sustainable biomass supply chain made of a
set of dependent variables, which concern not only economic
and financial issues (as it is usually considered), can be found
in [1••]. The authors have suggested the use of the MCDM
(Multi-Criteria Decision-Making) approach and a mathe

matical model to calculate the optimisation criteria (environ-
mental, energetic and economic objectives), to better address
the complexity of biomass supply chains.

With regard to biomass types and the purpose of the supply
chain, the largest number of papers has focused on lignocel-
lulosic biomass for biofuels production, followed by the same
kind of biomass for hydrocarbon biofuels production [2], but
due to the large variety of biomass, its different availability,
yield and seasonality, a generic model applicable to the gen-
erality of cases, cannot be produced. Furthermore, different
types (e.g. forest biomass for energy, biomass for bio-based
materials and chemicals), sizes and spatial dimension of bio-
mass supply chains drive the optimisation approach. With
specific reference to the type of supply chain, in [3], it has
been provided a review of scientific publications from 2012 to
2015, focused on forest biomass supply chain optimisation for
a biorefinery. The authors have found that a huge number of
the considered papers in this specific sub-topic of biomass
supply chains have a final product referred to biomass for
bioenergy, instead of biomass to materials and chemicals or
both, which are considered by a few works. Thus, the authors
have gathered that interest in diversified biorefinery portfolios
is recent, and future research should address the forest bio-
mass optimisation for high value bio-based products.
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Moreover, the modelling of supply chains should take into
account, through a preliminary assessment of the biomass
market, the potential circular economy including supply
chains of biomass residues or biomass wastes. A clear and
synthesised framework of the scope and decisions for biomass
supply chain management has been provided by [4•]. In this
paper, the integrated biomass supply chain problem is defined
by four main parts: biomass harvesting and management, the
integrated biorefinery, the product distribution and biomass
logistics. Each of them contains a number of decision prob-
lems (e.g. transportation mode, transportation scheduling,
routing problem...) to be addressed via various approaches.

This paper provides an analysis of the scientific literature of
the last 5 years, to assess the degree of evolution of the devel-
oped models with respect to the antecedent state-of-the-art, as
well as to identify the most innovative approaches and possi-
ble directions for future research.

Approach

Fifty-two papers published between 2013 and 2017 and two
works published at the beginning of 2018 have been analysed
(the highest number of papers has been found in 2016). In
addition to this, ten extensive review papers have been con-
sidered from 2014 to 2017, which have been used to make
some comparisons and evaluations.

Basically, papers have been classified in accordance with
[5], in which a number of works, published between 1997 and
2012, have been reviewed. Three levels have been recognised:

1. Mathematical methodology
2. Decision level
3. Objective/s to be optimised

With respect to the mathematical methodology applied,
three categories have been considered:

(1) Mathematical programming
(2) Heuristic approach
(3) Multi-Criteria Decision Analysis

Three main decision levels have been used:

i. Operational
ii. Strategic
iii. Tactical

Also, the combinations of the above-mentioned decision
levels have been included.

The categories of objectives to bemaximised orminimised,
suggested by [5], are: economic, energetic, social and

environmental. In this review, also time and distance have
been considered.

Operational Level

At the operational decision level, Bochtis et al. [6] have de-
veloped a problem of scheduling sequential biomass handling
operations, by minimising the total completion time of all
tasks in all fields. In the same year, this new mathematical
problem has been improved by Orfanou et al. [3], to provide
a more complete approach of scheduling sequential tasks in
biomass harvesting and handling operations, by including an
estimation of the machinery variable cost. This study is based
on the “greedy” heuristic algorithm and the “Tabu search”
meta-heuristic algorithm. It appears that, although the authors
have continued the work of [6], their major effort has focused
not on bridging the previously identified gaps, but on
expanding the complexity in terms of available number of
machines per task type and on incorporating an economic
objective.

Another heuristic approach has been developed by Caffrey
et al. [7] that have proposed a logistic model to minimise the
overall costs of system operations in a multi-crop and multi-
harvest system; a heuristic approach has been used to identify
the potential location of biorefinery facilities. A hybrid ap-
proach, based on both genetic and local search methods (heu-
ristic and meta-heuristic algorithms), has been developed to
optimise minimum cost routes for a fleet of agricultural vehi-
cles from different production locations to a common storage
location [8]. In this work, the minimisation of the travelled
distance has been addressed through the application of the
VRP (Vehicle Routing Problem). Indeed, this variable affects
the total cost of biomass harvesting and collection, but the
model needs some improvement, such as corrections to sub-
optimal patterns, in order to obtain more realistic savings. To
be applied in a real case, it can be useful to adopt a program-
mable navigation-aided system.

The mathematical programming has been applied to deal
with logistic operations and biomass transportation, by focus-
ing on biomass feedstock supply systems, including long-
distance intermodal transport modes [9], assess task times
and costs of activities and operations performed by different
machinery configurations [10], or solving scheduling prob-
lems by using a MIP (mixed integer programming) model
minimising the fleet dimension and the idle time [11]. Some
authors have implemented their models in a GIS environment
and applied a spatial approach to support efficient operational
work plans ([9, 12]). For large-scale instances, which occur in
real-world cases, also, heuristic algorithms should be imple-
mented to improve the proposed models and to support an
extension to more complex operational configurations.

A statistically based approach has been developed by
Igathinathane et al. [13] to simulate bale collection logistics
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and to assess the effects of different parameters (such as the
number of stacks) on distances, to increase the infield logistics
performance of the biomass supply chain at an operational
level. The coding for simulation, data analysis and visualisa-
tion of results has been realised by using the “R” software.

At the operational level, a review paper has been provided
in 2017 [14]. Future research related to this specific decision
level should take into account (but not limited to) the sugges-
tions provided by the authors (e.g. the inclusion of environ-
mental impacts in the objective functions or the incorporation
of uncertainties in truck routing and scheduling models; the
integration of chipping operation decisions in transportation
models).

Strategic Level

As reported in Table 2, the most part of the considered scien-
tific publications focuses on proposing new models and ap-
proaches to support strategic decision-making in the biomass
sector (55.8%).

The discrete-event approach has been used to model inter-
actions and relationships between the parts of a supply chain
(wood pellet production [15]), or to identify the business pro-
cesses and the stakeholders involved [16], allowing the man-
agerial and organisational people to make appropriate deci-
sions (e.g. by considering work load and time consumption
per activity); the discrete-rate approach has been applied to
wood pellet distribution. In Sahoo and Mani [17], a discrete-
event simulation platform developed in a GIS environment
has been proposed, aiming at a sustainable biomass supply
chain, to minimise costs. Possible improvements could in-
clude other types of objectives (environmental, energetic,
etc.). As an evolution of the traditional discrete-event,
object-oriented and dynamic micro-simulation approaches,
the agent-based simulation approach shows a variety of ad-
vantages, and it can be a powerful tool to face up to complex
interactions in a biomass supply chain. An example of appli-
cation to this field is provided by the work of Holmgren and
Ramstedt [18•], which have extended two already existing
models (TAPAS, TAPAS-Z), with the aim of enabling sto-
chastic variation of the locations of senders and receivers of
freight in a timber supply chain. This new model is an agent-
based freight transport analysis tool of simulation for
decision-making related to transport chains of timber wood.
The main aim is to assess the potential consequences of a
change from a time-based to a distance-based Swedish direc-
tive for heavy freight trucks, with respect to an increase of
costs.

Also MIP/MILP (Mixed Integer Programming/Mixed
Integer Linear Programming) models have been developed
to support strategic decisions. A model has been proposed to
provide an optimal spatial arrangement of terminals of plants,
by including spatial (via GIS), technological (chipping

machines) and physical issues (woody biomass volume)
[19]. Another work [20] has included location, technology
and capacity planning of different pathways related to biomass
used for energy production, by focusing on the trade-off as-
sumption of economies of scale and technological capacity
ranges.

MILP and RDEA (Recursive Data Envelopment Analysis)
algorithms have been developed [21] to provide a multi-
objective programming model which maximises efficiency
and minimises overall costs, to the optimal design of a bio-
mass supply chain network, by integrating the assessment and
the maximisation of the efficiency of facilities, during the
supply chain planning. A MILP approach has been taken into
account also to design hub-and-spoke supply chain networks
(for biomass co-firing) by minimising demand-related costs
[22]; minimise logistic costs and the environmental impacts
of wood logistics [23]; and provide the optimised supply chain
configurations ([24, 25]) (in [25], it has been realised by de-
veloping a multi-objective model and a two-tier approach). In
other cases, a linear programming approach has been used to
generate a dynamic multiple objective model to support col-
laborative decisions tomanage railway traffic for wood supply
[26].

In Paulo et al. [27] and in d’Amore and Bezzo [28], two
models based on MILP for strategic design and planning of
bioenergy supply chains have been developed: The main ob-
jective is economic, but in [28] a multi-objective problem is
considered (economic and environmental). As an evolution of
these approaches, multiple products and technologies should
be taken into account, and uncertainties should be assessed,
with respect to biomass feedstock, technological level, costs
and demand.

Another multi-objective model has been developed by Lim
and Lam [29•], with the aim of including both economic and
environmental objectives for an efficient use of biomass. In
this model, biomass characteristics (elemental composition—
e.g. carbon content, nitrogen content…) are considered in a
life cycle perspective, to identify potential underutilised bio-
mass and its efficient use in a biomass supply chain. Further
improvements may consist in introducing other constraints
and factors, enhancing the process performance by consider-
ing its relationship with biomass characterisation with respect
to specific technologies.

Already proposed MILP models can be a valid starting
point to create more efficient and complete models aimed at
the optimisation of biomass supply chain: as an example, Hu
et al. [30] have used a MILP model focused on the
minimisation of the ethanol production costs, to propose a
CyberGIS approach for the optimisation under uncertainties
(assessed through a Monte Carlo analysis). About the use of a
CyberGIS to support strategic decisions, another example is
found in Lin et al. [31•] that have provided a MILP aimed at
quantifying and optimising a biomass supply chain system
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under different crop types, geospatial areas and transportation
modes. This kind of platform can be very useful when a high
computational performance of complex problems is required,
like in real-world cases.

A stochastic quantile-based scenario analysis model has
been proposed by Zamar et al. [32] to optimise biomass sup-
ply chains competing for the same biomass feedstock under
stochastic demand and supply: This model has provided the
most performing results compared to those generated by the
Scenario Analysis and the Chance Constraint approaches.

In addition, hybrid optimisation methods have been pro-
posed to be applied to biomass supply chain design and man-
agement. Rentizelas et al. [33] used the hybrid optimisation
model developed in [34], to assess two energy supply chain
options: pellet and CHP (combined heat and power). The hy-
brid model is made of the stochastic “genetic” algorithm (used
at the first step of the study) and of an exact quasi-Newton
method (applied at the second step), the “Sequential Quadratic
Programming”, to obtain a very fast convergence of the opti-
mum solution. The main issue is related to the fact that this
method does not guarantee the identification of the global
optimum solution.

Empirical formulas and simulations for strategic decision-
making of optimal biorefinery size and location have been
developed by Golecha and Gan [35]. More specifically, the
authors have considered that the transport radius influences
the variations of biomass yield density and road network.
Then, they have proposed an economic index (the Weighted
Average Transport Cost per Unit Biomass), which can be used
to scaling up biorefineries.

An environmental approach has been applied by [36••], to
the optimal location of olive husk management centres. The
Life Cycle Assessment methodology ([37, 38]) has been used
to assess different scenarios and identify the best solutions. A
mathematical parametric model and non-linear programming
have been considered for the transportation problem, with the
aim of minimising the energy needs for transportation of this
type of biomass waste from the production points and for the
distribution of the pellet.

The heuristic approach has been used by some authors to
optimise biomass supply chain design, by addressing logistic
costs and benefits (minimised fixed costs of harvesting ma-
chines and capital investment in fixed inventory facilities) (in
[39], a “Tabu search” algorithm has been applied), but some
improvements should be realised to extend too simplified con-
ditions (e.g. partial cost accounting), and study possible inter-
actions between crop types affecting crop yield.

At a strategic decision level, also, Multi-Criteria Decision-
making models, implemented in a GIS environment, have
been proposed. Martinkus et al. [40] have provided a GIS
framework to combine social asset indicators into a unique
measure and integrate it with biogeophysical assets for
biorefinery site selection decision-making at a county level.

GIS has been used to develop a Multi-Criteria Analysis to
identify a set of appropriate locations for the generation of
energy from biomass [41, 42•]. In [42•], a fuzzy logic ap-
proach has been considered, taking into account economic,
environmental and social complexities, by minimising trans-
port distances and costs. An economic assessment of different
wood transport scenarios has been proposed by [43], which
combines a network analysis with a raster-based GIS, by tak-
ing into account a number of factors, to identify the potential
profits related to an upgrade of the forest road network, to an
increased efficiency of transport and a reduction of fibre
losses. Another Multi-Criteria Decision model based on GIS
has been proposed by Guilhermino et al. [44], aimed at
selecting the most adequate locations for power plants, by
considering economic/financial issues of investment and lo-
gistics of forest biomass residues. Criteria of preference are
availability of forest biomass, power grid and transport infra-
structures and risk of forest fires.

GIS is a powerful system to meet many scopes in biomass
supply chain research. One of the most interesting applica-
tions is related to the implementation of spatial models for
biomass estimation, transport and location-allocation ap-
proaches to develop optimised supply chains. Martinkus
et al. [45•] have compared two spatial methods of estimation
of biomass volume and costs of delivered forest residues to a
biorefinery. One is a past-predictive model [46], making use
of Thiessen polygons to estimate residue volume assigned to
each loading node. The second one is a future-predictive bio-
economic model [47], consisting in a computer-based deci-
sion support system developed in a GIS environment to esti-
mate costs of supplying wood fuel to power plants. The results
show that both methods may be applied at a national level. A
site selection analysis including a number of biorefinery oper-
ational costs varying geospatially may produce a reduction in
financial risk.

Tactical Level

The tactical decision level concerns medium-term decisions
(6 months to 1 year), which depend on the defined strategic
level. It can be related, for instance, to production planning
[48], logistics planning (truck configuration) [49], allocation
of biomass products from production sites to terminals/power
plants [50] and planning of a power plant under tactical con-
ditions [51], but it is not limited to those cases (e.g. inventory
planning or fleet management).

LP models have been developed to manage production
planning for biomass supply and storage [48], to explore the
influence of moisture content and its optimisation for efficient
logistic planning [49–51]. In Marques et al. [50], the authors
assert that further studies should be carried out to solve larger
instances related to real conditions, and that, as a next step of
their research, they will provide a generalised lot sizing and
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scheduling problem [52]. However, they suggest also the use
of other heuristic methods to solve this kind of problems.

Strategic and Operational Levels/Tactical
and Operational Levels

Few papers have focused on more than one decision level.
Only two of the considered publications have proposed
models to support both strategic and operational decisions,
by using a MILP approach. In Zhang and Hu [53], an annual
model for long-term strategic planning has been developed for
the feasibility of biofuel production (operational level), and a
second model has been developed at a strategic level for a
detailed operational planning on feedstock and biofuel alloca-
tion. These models can be enhanced by extending the types of
biomass, of pre-treatment technologies and of final products,
to be more flexible with respect to a variety of cases.

Another MILP model has been proposed to optimise a
multi-commodity and multi-time period biomass co-firing
supply chain network design [54]. This is the uniqueness of
the analysed papers which addresses both tactical and opera-
tional levels. The authors have used the outcomes of previous
studies (e.g. [22, 55, 56]), to include seasonality. This is a two-
stage model, based on stochastic programming, which solu-
tion is obtained by using a hybrid decomposition algorithm
combining the sample average approximation with an en-
hanced progressive hedging algorithm, to minimise planning
and operational costs at the same time.

Strategic and Tactical Levels

As regards to strategic and tactical decision levels, all the
scientific works addressing these types of decisions have ap-
plied the mathematical programming approach (MIP and
MILP models). Transportation modes ([57–60]) and multi-
modal transport modelling or inventory monitoring are often
combined with biomass allocation [58], biomass feedstock
seasonality [57], number, capacity and location of facilities
[59, 61]. In another study, a facility location planning problem
is developed to take into consideration the changes occurred in
the characteristics of a biomass product due to handling oper-
ations [62].

Results and Discussion

The papers have been classified in accordance with the de-
fined criteria, as reported in Table 1. Percentage distributions
of publications per type of criterion are reported in Table 2.

As reported in Fig. 1, most of the scientific papers address
strategic decision issues related to biomass supply chains,
mainly using mathematical programming (MILP and MIP

are the most commonly used approaches) and fixing a single
objective.

With respect to the objectives of the considered studies, the
highest number of them covers economic/financial issues.
Only one paper has fixed social objectives [40]. It has to be
considered that, after 2014, the analysed publications do not
take into account social objectives into their models, but the
authors assert that this is a possible improvement and expan-
sion of some of their works. Thus, it appears that the scientific
community is less involved in such aspects than in minimising
costs/maximising profits of biomass-related supply chains,
maybe to meet the requests of new and more efficient tools
to maximise profits of the investors.

Two categories of objectives which are getting an increas-
ing attention cover the environmental and the efficiency/
energy subjects. With respect to the former, it is often related
to the CO2/greenhouse gas emissions, instead of the overall
environmental impacts. Few studies include the Life Cycle
Assessment approach; other tools have not been considered
(e.g. Ecological Footprint and Water Footprint).

The efficiency or energy issues have been taken into ac-
count in some papers, because of their relevant impact on
performance levels associated with the machinery and equip-
ment used in different parts of the supply chain, as well as
because of the maximisation of the energy production, which
have a great influence on costs. Distance and time
minimisation have their major importance in those papers that
develop scheduling models and focus on tactical or operation-
al decisions.

Table 2 Scientific publications focus on proposing new models and
approaches to support strategic decision-making in the biomass sector
(55.8%)

Decision level %

Strategic 55.8

Tactical 7.7

Operational 17.3

Strategic+operational 5.8

Tactical+operational 1.9

Strategic+tactical 11.5

Mathematical optimisation/simulation methodology %

Mathematical programming 78.8

Heuristic approach 7.7

Multi-Criteria Decision Analysis 13.5

Types of objective %

Economic/financial objective 57.9

Distance 3.9

Time 9.2

Efficiency/volume/energetic objective 13,2

Social objective 1,3

Environmental objective 14,5
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By comparing the results of this literature review and those
of previous extensive review papers, it can be stated that (i) the
strategic decision level is still the most frequently considered,
as well as the mathematical programming to deal with design
and management of biomass supply chains [5] and (ii) eco-
nomic objectives (also if associated with other types of objec-
tives) continue to cover the most part of the reviewed papers,
if they are compared to the results of [64].

Conclusions

With regard to the results of the review carried out by [65], the
most of the future challenges and gaps in the scientific litera-
ture identified in 2014 are still to be filled or tackled.

From the analysis of the most recent literature, some efforts
have been made by the scientific community to fill the gaps
identified by [66], but few relevant improvements have been
achieved after that. Indeed, the highest number of publications
covers the strategic decision level, applies a mathematical
programming approach and mainly focuses on a single objec-
tive. The economic objective is still the most considered.

Technological issues are not very well defined and imple-
mented into the considered decision models, by including also
dynamic multi-criteria and constraints. Moreover, a huge part
of the analysed papers are case-based. Even if a unique and
comprehensive model cannot cover the whole of biomass sup-
ply chains and cannot meet all purposes, a more generic/
general framework should be developed, to provide more
widely applicable tools for a variety of cases.

Social issues are yet to be considered as an important ob-
jective and, in some cases, only a point of view is taken into
account (e.g. [16]), but a potential conflict should be consid-
ered as a type of constraint to the development of sustainable
biomass supply chains.

From the environmental point of view, a very limited num-
ber of current models and approaches take into account all the
environmental matrices and related impacts or damages on
people and ecosystems, or apply standardised methodologies
like the Life Cycle Assessment [36••]. None of the papers has
applied the Water Footprint concept [67] or fixed the main
objective of designing sustainable supply chains. This has
been identified as a suggestion for future research, and it is
supported also by the review carried out by [68]. In that paper,
the authors have stated that a common framework and a set of
environmental, economic and social sustainability metrics and
indicators are needed in order to make comparisons and anal-
yses across all the dimensions.

A holistic approach to technological, social, environmental
and economic aspects of the biomass supply chain design and
management will be the greatest challenge for the future re-
search, because of its high complexity level and cost, and it is
time-consuming.

This paper embraces the position of [4•] about the sus-
tainable supply chain implementation: The strengths,
weaknesses, opportunities and threats (SWOT) of the suc-
cessful cases should be assessed, to provide points of
reference to guide the effective and sustainable supply
chain design, implementation and management. Fur
thermore, newly proposed theoretical models should be
tested by using real-world cases, to define their perfor-
mances by putting them into practice.

Moreover, about policy and regulations, there is still a lack
of scientific literature and some efforts should be made to fill
this gap. As asserted by [69], it is true that the kind of supply
chain and the considered constraints strongly depend on na-
tional and local policies; it can be a reason of the absence of
ubiquitous models of biomass supply chains in the current
literature, and it is a limit to the development of such models
and approaches.
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