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Abstract
Purpose of Review In this paper, we study the literature on cyber-physical security of electrical power systems. The paper is
intended to address the security strengths and weaknesses of the electrical power systems against malicious attacks.
Recent Findings The concept of holistic resilience cycle (HRC) is introduced to improve cyber-physical security of electrical
power systems. HRC is a systematic view to the security of the power systems, characterized by its four stages as closely
interconnected and explicable only by reference to the whole. HRC includes four stages of prevention and planning, detection,
mitigation and response, and system recovery.
Summary Power systems are evolving from traditional settings towards more autonomous and smart grids. Cyber-physical
security is critical for the safe and secure operations of the power systems. To achieve a higher security level for power systems,
the research community should follow a systematic approach and consider all stages of the holistic resilience cycle in addressing
security problems of the power systems.
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Introduction

Safe and secure operation of the electrical power systems is a
critical challenge and ranks as the highest priority of the stake-
holders of the electricity markets. Besides inevitable

malfunctions of the power grid components, deliberate disrup-
tions caused bymalicious attacks put the security of the power
systems at high risk. Integration of the intelligent devices into
the power grid operations has made the power grid increas-
ingly reliant on the information and communication technol-
ogies. The integrated cyber-physical nature of the modern
power systems has created a large and complex infrastructure
that necessitates advanced cyber and physical security mech-
anisms. In this paper, we introduce the concept of the holistic
resiliency cycle (HRC) that emphasizes the necessity of con-
sidering the power systems security problem holistically.

HRC is a systematic view to the security of the power
systems, characterized by its four stages as closely intercon-
nected and explicable only by reference to the whole. HRC
includes four stages: (i) prevention and planning, (ii) detec-
tion, (iii) mitigation and response, and (iv) system recovery.
We review the literature on cyber-physical security of the
power systems and analyze them based on the HRC stages.
The goal of the paper is to study the weaknesses and strengths
of the power systems literature from the HRC perspective and
enlighten the future research directions that enhance the cyber-
physical security of power systems.
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The rest of the paper is organized as follows. Section II
investigates the physical security of power systems.
Section III addresses the cyber security of power systems
and evaluates the power systems resiliency against such at-
tacks. Section IV reports our conclusions.

Physical Security of Power Systems

A report fromWall Street Journal revealed that 274 deliberate
attacks to the power grid components occurred in 2011–2014
[1]. Physical attacks on power systems components not only
disrupt the power supply to customers but also cause substan-
tial economic burdens for the other stakeholders of the power
sector such as utility companies, transmission system opera-
tors, and distribution system operators [2]. As a case in point,
17 large-scale power transformers were damaged in a recent
attack to a substation in California on April 16, 2013, which
also cost 27 days of repair time [2]. Damages to the critical
power grid components may cause cascading outages and
even blackouts [3]. Different protection mechanisms have
been discussed to enhance the physical security of power
grids. Intrusion detection devices, access controls, lighting,
fencing, cameras, sensors, and buffer zone security are sug-
gested as protection mechanisms with lower reliability and
moderate cost investments [2]. A communication mechanism
can be devised to alarm guards/police to accelerate the re-
sponse time to intrusions and reduce the potential attack dam-
ages. More reliable protection mechanisms such as
undergrounding or double circuiting of transmission lines re-
quire much higher investment costs [2]. Hence, protection of
all grid components against physical attacks is impractical and
economically un- justifiable.

Power grid resilience against physical attacks has attracted
the interests of the research community as well. Salmeron
et al. [4] proposed a bilevel mathematical model to identify
the most disruptive attack scenario given that the attackers
have resource limitations. Similarly, Donde et al. [5, 6] devel-
oped screening algorithms to identify contingencies that cause
severe damage to the power grid. These proposed models
identify the critical components for protection such that the
damage caused by the most disruptive attack would reduce if
the protection plan is implemented. The authors in [7–9] de-
veloped a variety of trilevel optimization models within the
defender-attacker-defender framework for power network de-
fense considering different scenarios and contingencies. These
models devise the best resiliency plan when the attacker plots
his attack with the perfect knowledge of the protected compo-
nents. Multilevel optimization problems are complicated to
solve. Salmeron et al. [10] applied decomposition methods
to effectively solve such large-scale protection optimization
models. Furthermore, a variety of game theory models, such
as static games, leader-follower games, zero-sum Markov

games, are proposed in [11–17] to tackle the defender-
attacker problems for enhanced power systems physical
security.

From the HRC perspective, the existing research on phys-
ical security of power systems has focused on the prevention
and planning stage while taking into account mitigation of
damages and response to potential attacks. The common
shortcoming in these studies is the assumption that the
protected components will be completely secure and no longer
at risk, which limits the application of these models in the real
world. Future research needs to address this issue and provide
a more reliable solution. Furthermore, the widespread struc-
ture of the power grids makes the detection of a physical attack
prior to its occurrence next to impossible unless protected with
sensors, cameras, or guards. Last but not the least, the recov-
ery stage of HRC on physical attacks has been barely studied
in the literature. On a similar topic, power system recovery
after natural disasters has been well studied that could be used
as a benchmark for studying the power system recovery after
physical attacks.

Cyber Security of Power Systems

Smart grid advancements have made cyber security a critical
challenge for power systems operators. Data availability, data
integrity, and data confidentiality are the main elements of
cyber resiliency. Cyber attackers target these elements to ma-
nipulate the data being communicated for control and opera-
tions of the power systems in order to tamper with the grid,
interrupt the safe operations of the power grid, gain financial
advantage, or even damage the power grid physical structure.
Many researchers, computer scientists in particular, have in-
vestigated prevention methods that keep cyber intruders away
from the network devices and databases. Suo et al. [18•]
reviewed and analyzed the state-of-the-art on cyber attack
prevention technologies including encryption mechanisms,
communication security, protecting sensor data, and crypto-
graphic algorithms. To evaluate the state of cyber security of
power systems from the HRC point of view, we further inves-
tigate methods and mechanisms proposed in the power sys-
tems literature for detection, response and mitigation, and re-
covery. In the next section, cyber attacks on power systems are
studied and classified into two clusters: direct attacks and in-
direct attacks. Direct attacks target power systems databases
and components whereas indirect attacks take advantage of
the mutual dependency of power systems and Internet of
things (IoT).

Direct Cyber Attacks to Power Systems

Direct cyber attacks are classified into four groups based on
their functions as discussed below.
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Data Intrusion Attacks

Data intrusion attacks are the most common group of cyber
attacks threatening the security of power systems. Control
mechanisms detect bad data caused by routine malfunctions
of power systems devices such as imperfect measurements
obtained from faulty sensors. However, a cyber attacker could
gain access to power systems databases and shrewdly tamper
with data such that the control center mechanisms cannot de-
tect the anomaly. In general, there are three major types of data
intrusion attacks, false data injection (FDI) attacks, load redis-
tribution attacks (LRA), and denial of service attacks (DoS).

In FDI attacks, introduced by Liu et al. [19], the attacker
gains access to the current power systems configurations and
manipulates the stored data and measurements in order to lead
power systems operators toward making wrong and potential-
ly harmful decisions. Mousavian et al. [3] showed how FDI
attacks to the optimal power flow (OPF) module could cause
overloaded transmission lines and result in power outages and
physical damages. The authors used artificial neural networks
to develop a detection algorithm against FDI attacks on OPF
module [3]. The authors in [20] analyzed FDI attacks on the
state estimation module and provided a new detection algo-
rithm using the state variable distribution. Similarly, Li et al.
[21] studied the injection of malicious data to the monitoring
meters of the state estimation and developed a sequential de-
tection method using the generalized likelihood ratio.
Furthermore, Moslemi et al. [22] utilized the near chordal
sparsity of the power grid to obtain the associated maximum
likelihood function and detect FDI attacks on the state estima-
tion. Liu et al. [23] combined features of the network traffic
flow of information and power systems physical laws to create
a detection model called abnormal traffic-indexed state esti-
mation for a higher detection rate of FDI attacks to the state
estimation.

Khalid et al. [24] studied FDI attacks on transmission sys-
tems and proposed a multisensor track-level fusion based pre-
diction model to improve the resiliency of the transmission
systems against such attacks. Phasor measurement units
(PMU) can measure synchronized phasors of bus voltages
and currents of transmission lines in real time for better ob-
servability of the power grid [25]. A PMU takes about 30 to
120measurements per second and sends its measurements to a
phasor data concentrator (PDC) through a wireless communi-
cation network [26, 27]. PMUs, supposedly the trusted sen-
sors of obtaining measurements for better resiliency and ob-
servability of the transmission systems, have been the target of
the FDI attacks as well [28–30]. The authors in [30] presented
a detection method using the majority voting algorithm in
order to identify the compromised PMUwhich sends anomaly
measurements. Waghmare et al. [31] proposed a two-stage
detection method against FDI attacks to PMUs, which applies
principal component analysis to reduce the high-dimensional

datasets and use the support vector machine (SVM) method.
SVM has also been used to detect FDI attacks to SCADA
control system [32]. Similarly, He et al. [33] used deep learn-
ing methods and historical measurements data to detect FDI
attacks on SCADA in real time.

A new class of FDI has been introduced in [34] as stealthy
false data injection (SFDI) attacks. SFDI manipulates the
gross errors from the measurement matrices such that the at-
tack is undetectable by current detection schemes of the state
estimation. Ashok et al. [35] has developed a detection algo-
rithm against SFDI attacks on state estimation, which utilizes
synchrophasor measurements, load forecasts, and generation
schedules. Mohammadpourfard et al. [36] assumed that
injecting false data into the system causes a deviation on the
probability distribution of the state vector and proposed an
unsupervised method for detecting SFDI on state estimation.
Yang et al. [37] proposed a method to detect SFDI attacks on
PMUs, in which neighborhood of sensors would detect the
attack by constantly checking the state of the nodes and send-
ing the rightness signals to the neighboring nodes. This meth-
od detects FDI in a smaller neighborhood of nodes, instead of
the entire system, which gives the system operators the advan-
tage of less computational complexity and faster detection.
Mousavian et al. [38•] took one step further and developed a
risk mitigation response to SFDI attacks to PMUs. They de-
veloped a mixed integer linear programming model that
avoids or optimally slows down the propagation of cyber at-
tacks while keeping the power systems observable. A similar
study has been conducted for responding to SFDI attacks in
the electric vehicles power stations network [39, 40]. Lin et al.
[41] extended the response model to PMU networks,
discussed in [38•] and proposed a self-healing strategy for
PMU networks. Load redistribution attacks, introduced in
[42], is a special case of the SFDI attacks in which the attacker
manipulates the loads data collected for state estimation such
that the sum of the errors calculated by the state estimation
remains minimal [42]. There are two approaches for the ad-
versary to commit LRA, immediate and delayed attacking
goals. The immediate attacking goal is to maximize the power
systems operations cost immediately after the attack whereas
the delayed attacking goal is to gradually overload the power
lines, while the attack remains undetected and redistributes the
load to maximize the operations cost at a certain time after the
attack [42]. Yuan et al. [42, 43] developed detection models
against LRAs. A related research revealed that an attacker do
not need to obtain complete information about the network to
execute LRA and remain undetected [44]. A game-theoretic
approach is proposed and developed to present an optimal
defense strategy against LRAs [45]. Furthermore, the authors
in [46] quantified the influence of LRAs by modeling these
intrusions as a semi-Markov model.

Denial of service attacks are a class of data intrusion at-
tacks, in which the adversary inserts artificial loads to the
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service source such that the normal trend of service will be no
longer accessible to legitimate requests. The first DoS attack is
committed in 1997 by Khan C. Smith during a DEF CON
hacking conference, which disrupted access to the internet
for more than an hour in the Las Vegas Strip. Distributed
denial of service (DDoS) attack is an advanced version of
DoS. The DDoS attack is initiated from multiple
adversaries/nodes simultaneously such that shutting down
one adversary does not stop the attack and further differenti-
ating the legitimate and artificial service requests is next to
impossible.

Wang et al. [47] developed a novel method for preventing
DoS attacks. This method, called Honeypot Game Model,
introduces honeypots in the automated metering infrastructure
(AMI) as decoys to gather information about attack and pre-
vent it. Accordingly, an optimal defense strategy will be im-
plemented by analyzing the interaction between the attacker
and the defender using the Bayesian-Nash equilibria. Diovu
et al. [48] proposed a method for preventing and also mitigat-
ing the impacts of DDoS. This method uses a firewall which is
leveraged by the cloud computing technology and reduces the
data computation and data storing burden of the automated
metering infrastructure.

Lu et al. [49] proposed a detection algorithm against DDoS
attacks. In this detection method, a pair of probes are being
sent from the service source to the service request node. Then,
the Fourier-to-Time reconstruction algorithm is executed to
verify the legitimacy of the service request based on the gap
between the probes. Varalakshmi and Selvi [50] proposed a
defense mechanism using an information divergence scheme
to detect and discard the adversary’s artificial requests.
Srikanthra and Kundur [51] showed that DoS attacks have
the potential to disrupt the overall grid even if they are perpe-
trated on just a subset of cyber communication nodes. They
proposed a collaborative reputation-based topology configu-
ration to enable other nodes to converge quickly for maintain-
ing the dynamic stability, while a subset of nodes is under
attack. Liu et al. [52] designed a response mechanism to such
attacks. They designed a communication subsystem capa-
ble of self-healing, when jammed under attack, to mitigate
the impacts of the DoS attacks. This subsystem is designed
via an intelligent local switching controller. The purpose of
this subsystem is to collect sufficient readings from smart
meters by local controllers to estimate the state of the sys-
tem. Furthermore, Clela et al. [53] proposed a defense
scheme based on a rule-based feedback control for mitigat-
ing the impacts of DoS attacks on islanded microgrids. Liu
et al. [52] developed a communication subsystem with the
enhanced self-healing ability to respond to cyber attacks,
while keeping the system operating with the minimum im-
pact on its service level. Similarly, authors in [51] pro-
posed a relatively similar method for responding to
DDoS attacks imposed on a subset of nodes in the system,

in which the remaining nodes maintain their dynamic sta-
bility and keep the system away from the total failure.

Non-Technical Loss Fraud

Non-technical loss (NTL) fraud, also known as theft attacks, is
intended to manipulate the attacker’s consumption data. Theft
attacks are less likely to be detected due to its supposedly
small impacts comparing to the entire operations of the power
grid. However, the financial burden of theft attacks is signif-
icantly high. The annual cost of theft attacks is close to 6
billion dollars in the USA [54] and 25 billion dollars world-
wide [55].

Pasdar and Mirzakuchaki [56] proposed a detection algo-
rithm in 2007 that sends test signals at high frequency to
consumers and calculates the impedance of the related con-
nections. A similar approach along with the real-time tracking
of consumers at all times was introduced in [57, 58]. The
authors in [59] investigated the theft attack on AMI and pro-
posed a detection method called AMI intrusion detector sys-
tem (AMIDS). AMIDS tracks both cyber and physical con-
sumption data and meter audit logs to identify the electricity
fraud. The authors in [60] proposed a two- stage detection
method that clusters high risk consumers and then monitors
their consumption profile. Villar-Rodriguez et al. [61] utilized
the time series analysis and probabilistic data mining to detect
theft attacks. Due to the large scale of the problem, machine
learning is extensively used to develop detection algorithms,
which monitor the usage profile of the consumers and identify
the electricity consumption fraud based on anomalies in the
usage patterns [62–67].

Time Delay Attacks

Time delay attack, introduced in 2014 by Sargolzaei et al.
[68], interferes with the control signal. Receiving the control
signal at the right time is of great importance and crucial for
controlling the system. A time delay attack simply creates a
delay for the control signal to reach the control center. Hence,
the control center uses the measurement data of a period ago to
control the current performance of the system, which could
make the system unstable and prone to damaging attacks.
Sargolzaei et al. [69] proposed a prevention method for time
delay attacks on load frequency control. Furthermore,
Shafique and Iqbal [70] developed a controller for load fre-
quency control based on linear matrix inequalities and utiliz-
ing the Lyapnov-Krasovskii functional-based delay-
dependent stability criteria. Sargolzaei et al. [71] developed
a detection algorithm against time delay attacks in mobile ad
hoc networks. The time delay attacks are relatively new and
research in this area is still evolving.
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Replay Attacks

Replay attacks, also known as Sybil attacks, take advantage of
a false identity in the network. Two nodes of the communica-
tion network send each other specific signals to verify their
identities. Replay attacker remains hidden in the communica-
tion network and eavesdrops on the communication channel
until the identifying signal is exchanged. The replay attacker
takes advantage of the obtained identifier signal from one
node to pretend it is a trusted node in the network. This situ-
ation is like someone steals a social security number and uses
it to mislead credit card companies for issuing a credit card. To
the best of our knowledge, this type of attacks mostly has
targeted the vehicular networks, sensor networks, and social
networks. Due to the interdependence of the smart grid, elec-
tric transportation systems, and wireless sensor networks
(WSN), we study the Sybil attacks as well.

In 2006, Piro et al. [72] analyzed replay attacks on ad hoc
networks and suggested that mobility in the system can be
used to enhance the system security rather than being the point
of vulnerability. They showed that Sybil attack can be detected
even with a single node by having the system nodes passively
monitor the traffic. Later in 2008, Lv et al. [73], developed
another detection method against Sybil attacks, in which the
signal strength sensed by multiple sensors and their distance
are utilized for detection. They showed that a Sybil attack
happened when two different identities appear to have nearly
the same position. Rabieh et al. [74] took another approach for
detection of Sybil attacks in vehicular ad hoc network
(VANET). In this approach, the attacker’s vehicle, known as
Sybil vehicle, claims to have multiple identities. The attacker
may use these fake identities for various reasons such as fak-
ing the traffic flow. The Sybil attack will be detected since the
Sybil vehicle has fake locations and cannot respond to the
challenge signal sent by the detection algorithm to the claimed
location. Sharma et al. [75] proposed an alternative method for
VANETs security against Sybil Attacks and used a generation
of dynamic certificates to change the identifying signals dy-
namically assuming that the adversary does not know the pro-
tocol of changing the certificates. Sarigiannidis et al. [76] pro-
posed a rule-based detection system, known as RADS, to
monitor and detect Sybil attacks on large-scale WSNs. This
approach is based on the ultra-wideband ranging-based detec-
tion algorithm. RADS operates in a distributed manner and
does not require sharing information between the nodes,
which decreases the computational burden and expedites the
detection process. More detection algorithms against Sybil
attacks have been proposed in literature [77–80].

Indirect Cyber Attacks to Power Systems

The Internet of things is a system of interrelated computing
devices, mechanical and digital machines, objects, animals, or

people that are provided with unique identifiers and the ability
to transfer data over a network without requiring human-to-
human or human-to-computer interactions. The IoT has pro-
vided cyber attackers with the opportunity to tamper with the
power grid throughout the internet. The IoT attacks on pow-
er systems follow two approaches, load altering attacks
throughout the direct load control (DLC) programs and
targeting the data centers and computational loads
[81••]. In load altering attacks, the attacker takes advan-
tage of the dependency of demand side management pro-
grams on the internet and compromises the command sig-
nals to take over the operation of the residential and in-
dustrial load, which are supposed to be controlled by DLC
programs. Alternatively, the attacker may hack to a nu-
merous vulnerable consumers’ devices, such as injecting
false electricity prices, in order to influence their load
behavior [82]. The false command signal or the injected
price signal would increase (or decrease) the individual
loads of the consumers and abruptly changes the aggre-
gated load [81••]. Aside from the potential financial gains
for the attacker and loss for the consumers, the abrupt
changes of load may cause severe damages such as circuit
overflow, voltage problems, tripping the transmission
lines, damages to consumers’ equipment, or even shutting
down the power grid temporarily. Amini et al. [83, 84]
proposed a dynamic load altering attack, in which the
attacker is not only interested in the sudden spike of the
aggregated load but also controls the timing of the spike.
The main goal of the dynamic load altering attack is for
the attacker to monitor the effect of the attack and
shrewdly adjust the outcomes of the attack for achieving
the maximum damage to the power grid and its opera-
tions. The authors developed a detection algorithm against
dynamic load altering attacks [85].

Alternatively, the attacker may target only a very selected
group of consumers and yet cause spikes on the aggregated
load. The consumption of electricity at the IT sector such as
Google and Microsoft data centers is growing rapidly. It is
expected that the IT sector demand for electricity increases
from 2 to 5% of the total consumption in the USA over the
next decade [86]. As a case in point, Microsoft’s data center in
Quincy, WA, consumes 48 MW, which is the equivalent of
40,000 residential loads [81••]. The notion of cloud comput-
ing and selling computation power as utility expedited the
growth of the ITsector and therefore their power consumption
[87]. The computational load of a data center could change
quickly and directly increase its power consumption. This
elasticity of data centers’ loads and their direct dependency
to the computational loads make data centers an attractive
target for power systems attackers. Attackers may use the
internet to increase the computational loads of data centers
by requesting bogus computational tasks and therefore in-
crease the load of the power grid abruptly.
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Discussion and Conclusions

From the HRC perspective, the existing research on phys-
ical security of power systems has focused on the preven-
tion and planning stage, while taking into account mitiga-
tion of damages and responses to potential attacks. The
common shortcoming in this area is the assumption that
the protected components will be completely secure and
no longer at risk, which limits the application of these
models in the real world. Future research needs to address
this issue and provide a more reliable solution. The recov-
ery stage of HRC on physical attacks has been barely
studied in the literature. On a similar topic, power system
recovery after natural disasters has been well studied that
could be used as a benchmark for studying the power
system recovery after physical attacks.

Our HRC analysis highlights a few concerns on the
cyber security of power systems, which should be tackled
by researchers in the future. First, the bulk of research on
cyber security relates to the prevention mechanisms,
outlined in [18•], and developing detection algorithms
against the variety of cyber attacks discussed. The other
two stages of the HRC perspective, response and recov-
ery, have been barely studied in the literature. The
Response and recovery are two major steps after cyber
attack detection to mitigate risks and damages and restore
the system to its normal operations. The fact that power
systems are evolving to smart and autonomous grids puts
more emphasis on the importance of the response and
recovery for the safe and secure operations of the future
power systems. Secondly, the research on cyber security
of power systems has followed a micro-level approach
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that caused a gap and disconnections among the stages of
the holistic resilience cycle. As a case in point, most of
the proposed detection mechanisms are developed against
a certain type of attack for a certain module under certain
assumptions. This shortcoming limits the application of
these models in the real world and could create more
vulnerabilities in the system. It is critical to study cyber
problems of power systems systematically, i.e., from the
prevention to the recovery, in order to address the prob-
lem entirely and refrain cyber attackers from system vul-
nerability opportunities. Figure 1 summarizes our conclu-
sions schematically.
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