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Abstract
Purpose of review Heating, ventilation, and air-conditioning
(HVAC) system control and building demand management
play important roles in building energy efficiency and sustain-
ability, and thus motivate numerous studies in recent decades.
In this article, we provide a review of the developments in
both HVAC control and demand management in recent
5 years, helping readers to understand the new significant
trends and achievements in these both areas.
Recent findings We collected and analyzed a number of rep-
resentative publications and found that the developments of
HVAC system control have two significant trends: to improve
the robustness of control and to improve the efficiency of
system level real-time optimization; while demand manage-
ment emphasizes the coordinated control in building-group-
level other than single-building-level.
Summary The improvement of the robustness of the HVAC
systems control can guarantee the control performance under
uncertainties; the improvement of the efficiency of the system
level real-time optimization can significantly enhance the
building energy efficiency, while the coordinated demand
management can optimize the aggregated load profile for bet-
ter serving the actual needs of a grid. Because buildings are
integrating more and more advanced systems with complex
dynamics, continuous efforts are needed to deal with the

challenges in both HVAC system control and demand
management.

Keywords Building energy efficiency . Demand
management . Uncertainty . HVAC . Real-time optimization .

Coordinated control

Introduction

Buildings consume over 40% of end-use energy worldwide
[1]. How to improve the building energy efficiency has gained
much attention as the reduction of building energy use can
effectively contribute to the environment sustainability.
There are many ways to improve building energy efficiency,
such as to improve the building design and to select more
energy-efficient devices at the design stage. For existing sys-
tems, numerous studies have shown that building energy effi-
ciency can be improved through enhancing the performance
of HVAC system control [2] and demand management [3].

HVAC system is the most complex system in a building,
representing the largest energy user among the building sys-
tems in many countries. The control of HVAC systems is
implemented to maintain the environmental variables inside
buildings, such as temperature, humidity, air movement, and
fresh air percentage at the desirable level [1, 4]. HVAC
system control has been developed for many years whether
in the process control level or in the system optimization
level [5, 6]. In the recent 5 years (2011–2016), HVAC sys-
tem control still experienced fast development. One signifi-
cant trend, as we observed, is how to improve the control
robustness in both the process control level and the system
optimization level. This gains wide attention because the
uncertainties in the operation of HVAC systems are widely
existent and have been found to affect the performance of
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HVAC system control substantially [7]. Another significant
trend is the system level real-time optimization. This optimi-
zation presents a large-scale mathematic programming chal-
lenge because multiple decision variables for many control
loops must be considered and a large number of nonlinear
models, such as those for cooling towers, chillers, pumps,
and fans, must be used to describe complex interactions
between the controls of different components and subsys-
tems, and predict overall energy use. In the review of
HVAC system control, we will focus on these two trends.
Several representative papers in each category will be intro-
duced in order to illustrate the basic principles in these
developments.

Demand management refers to the changes in electric
usage by buildings from their normal use patterns in re-
sponse to the changes in the price of electricity over time,
or to incentive payments or when system reliability is
jeopardized [8]. It becomes important because the power
supply and the demand in a grid should be balanced.
Real-time imbalance can cause grid instability or even
total grid failure. To maintain the grid power balance,
great efforts need to be made from the supply side.
Nowadays, the supply side management becomes increas-
ingly costly and technically more difficult as more and
more renewable energy systems are integrated. Hence,
the demand management, i.e., efforts from the demand
side, is widely accepted as a better alternative. Among
different users at the demand side, building plays a sig-
nificant role in maintaining grid power balance since it
represents a large energy user [9••]. Most of the demand
management in residential buildings can be formatted as
an optimal scheduling problem [10, 11]. In contrast, the
demand management in commercial buildings involves
more complex strategies and draws more attentions. The
recent developments in the commercial building demand
management can be grouped into two categories. First, the
demand management is performed on individual-building-
level which merely considers economic benefit of single

building. Such demand management is denoted as “single
building demand management” in this study. Second, the
demand management is performed in a coordinated way
which optimizes the aggregated load profile of building
group for better serving actual needs of grid. Such de-
mand management is denoted as “building group demand
management” in this study. Once again, several represen-
tative papers in each category will be introduced in order
to illustrate the basic principles in these developments.

In the rest of the paper, we will briefly introduce the
building services systems firstly and then the develop-
ments in both HVAC systems control and demand man-
agement in recent five systems will be illustrated. Our
personal views on the future development will also be
given. The final part is the concluding remarks.

Brief Introduction of Building Services Systems

Buildings are equippedwith many services systems in order to
provide the functions of comfort, health, and safety for occu-
pants. The major services systems in commercial buildings are
shown in Fig. 1, including basic services systems, such as
lighting/transportation system, fire protection system, security
system and HVAC system, and advanced systems, such as
power management system, renewable energy system, ther-
mal storage system, and load management system. Building
automation system (BAS) provides a platform to integrate all
these systems and realize the functions of monitoring, control,
optimization, and management [12]. Among these services
systems, HVAC systems are used to guarantee occupants a
thermal comfortable and healthy indoor environment. Since
HVAC systems consume generally the major percentage of
energy in a building, it needs to collaborate with other services
systems, such as demand management system, renewable en-
ergy system, and thermal storage system, to enhance building
energy efficiency and sustainability [1].

Fig. 1 Themain services systems
in a modern commercial building
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Recent Developments in HVAC System Control

Robustness-Enhanced Control

Robustness-enhanced control has been developed to im-
prove the performance of HVAC control under uncertain-
ty. Uncertainty arises from incomplete information about
the state of the system, making it impossible to exactly
describe or predict the state [13]. In the current HVAC
literature, uncertainties are classified into three categories
[7]: model-inherent uncertainty caused by inaccurate or
incomplete data in the analytic model and/or lack of a
reasonable regression (such as model topology, model res-
olution, and realism), process-inherent uncertainty caused
by randomness and bias during control process (such as
sensor bias and unknown characteristics of controllers),
and scenario-forecast uncertainty due to unpredictable dis-
crepancy in forecasting the driving forces located outside
the system (such as weather forecast and building opera-
tion forecast). Robustness-enhanced control has been de-
veloped to deal with these uncertainties in both the pro-
cess control level and the system optimization level.

In the process control, uncertainties affect the control per-
formance by deteriorating the control stability, enlarging
tracking errors and prolonging transient response [14]. In the
process control design, uncertainties are always described
using a uncertainty set, i.e., variables or parameters that are
associated with uncertainty are limited into a range specified
by known lower and upper bound, as shown in Eq. (1) [15]:

θ∈ θ; θ
� �

ð1Þ

If possible, a simple figure how some of uncertainties are
included in control and how it helps to improve the control
should be given if possible.

where θ is a concerned uncertain variable, θ and θ are its
possible minimum and maximum value. The control design
takes the associated uncertainty directly or indirectly but with
the same objective to guarantee the predefined control objec-
tives to be fulfilled when the concerned variables vary inside
its uncertainty set. For example, Huang et al. [16•] studied the
robust control of air-handling units that can be described by a
first order plus time delay (FOPTD) model, where the process
gain, time constant, and time delay were specified using un-
certainty sets as shown in Eq. (1) and then the generalized
eigenvalue minimization was adopted to calculate a feedback
control law. Huang and Jordan [17] developed a model-based
robust control for VAV terminal units to control the zone tem-
perature. The zone temperature process was described by a
bilinear model, where the cooling load of the zone is assumed
to be inside an uncertainty set as shown in Eq. (a) as well, and
a bilinear feedback controller was designed to deal with the

input-output bi-linearity. Moradi et al. [18] proposed a PID-
Fuzzy control of air-handling units in the presence of uncer-
tainty, where all the AHU thermo-fluid parameters were as-
sumed to be uncertain and the uncertainties were specified
using uncertainty sets in the form of Eq. (1).

Robustness-enhanced control has been applied to the sys-
tem optimization level as well, which aims to find the optimal
decision variables for HVAC systems under uncertainty.
Similar to the robust process control, the uncertainties in the
system optimization level can be described using uncertainty
sets, but other forms of stochastic distribution were also
adopted. In the work of Liao et al. [19, 20], the uncertainties
in chiller optimal sequencing control were studied, including
operational uncertainty, control uncertainty, measurement un-
certainty, and the uncertainties in setting thresholds. These
uncertainties were described using whether normal distribu-
tions or uncertainty sets. Uncertainty analysis was carried out
to understand how those uncertainties affect the sequencing
operation regarding to energy use and unmet hours of the
cooling supply [19]. Robust analysis was performed to inves-
tigate the sensitivity of chiller sequencing control to those
uncertainties [20]. In the work of Oldewurtel et al. [21], the
uncertainties in the weather and internal gains prediction were
considered in their model-based predictive control (MPC)
scheme, and those prediction uncertainties were modeled
using a normal distribution. Stochastic MPC was developed
to deal with the indoor environment control problem and their
studies showed that the stochastic MPC was able to directly
account for the uncertainty of the weather forecast in its con-
trol decisions and resulted in much smaller diurnal tempera-
ture variations compared with the traditional MPC. Zhang
et al. [22] studied a similar problem using a similar description
for the uncertainty in the weather forecast but additively con-
sidered the errors made when linearizing the nonlinear system
dynamics and bounded them using an uncertainty set in the
form of Eq. (1). Schirrer et al. [23] proposed a nonlinear mod-
ular MPC for the HVAC system of a low-energy office build-
ing, which took account of both model and prediction
uncertainties.

System Level Real-Time Optimization

HVAC system is a large-scale system and it contains many
local control loops. The set-points or control settings (such as
on/off schedule) of many control loops have a significant in-
fluence on the energy performance [1]. Optimal control is
therefore utilized to seek energy-efficient control settings or
set-points (titled as decision variables thereafter) for local con-
trol loops without sacrificing indoor thermal comfort [24]. It is
always carried out by taking account of interactions between
HVAC components and the thermal characteristics of build-
ings according to the present or predicted load condition [1].
In current literature, real-time optimization can be grouped
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into prediction-based optimal control (normally referred as
model predictive control) and non-prediction-based optimal
control.

The prediction-based optimal control (or MPC) has gained
popularity for HVAC system control [25, 26], and its effec-
tiveness has been demonstrated through both numerical sim-
ulation and experiments in a number of recent papers [27•, 28,
29]. The prediction-based optimal control optimizes the deci-
sion variables using the system dynamic models (such as auto-
regressive moving-average model [27•], resistance-
capacitance (RC) model [21], or neural network model [28])
according to weather and internal gain predictions. In Bengea
et al. [27•], the prediction-based optimal control was applied
to a variable air volume (VAV) HVAC system in a building in
the Midwestern US to control to generate optimal set-points
for the building HVAC subsystems in real time by searching
for the most energy-efficient control input sequences subject
to system constraints (thermal comfort, component perfor-
mance) and disturbances (weather, internal loads). Through
simulation studies, they showed that the prediction-based op-
timal control was able to reduce energy usage while maintain-
ing constraints on space temperatures. In Ferreira et al. 2012
[28], the prediction-based optimal control was applied to a
building to reduce the energy use, where a neural network
was used to describe the system dynamics. The work of
Oldewurtel et al. [21], Zhang et al. [22], and Schirrer et al.
[23] also belongs to this category, but all of them used an RC
model to describe the system dynamics.

The non-prediction-based optimization, different from the
prediction-based optimization, is to find the optimal decision
variables only according to current operational conditions. In
this category, system models are also needed to describe the
system dynamics and the relationship between the decision
variables and the concerned criteria, based on which the opti-
mal decision variables are searched. Adopting a gray-box
power model of HVAC systems, Sun et al. [30] developed a
multiplexed real-time optimization scheme for complexed
HVAC system, where the decision variables were optimized
sequentially with one variable at one time but with a faster
optimization frequency. Using a similar gray-box power mod-
el of HVAC systems, Wang et al. compared the advantages
and disadvantages of event-based model-based optimization
and time-driven model-based optimization in their work [31],
and developed an event-based optimization strategy for chiller
plants [32•].

Recent Developments in Demand Management

Single Building Demand Management

Load shedding and load shifting are two main means used for
single building demand management. The load shedding

control reduces the peak electric load in a building via turning
off non-essential electrical load [33••]. Different approaches
including priority-based load shedding [34] and statistics-
based load shedding [35] have been developed and adopted
in practice. Compared with the load shedding control, the load
shifting is more commonly used for peak demand manage-
ment. The load shifting aims at taking advantages of electric-
ity rate difference via shifting on-peak load to off-peak hour.
Since HVAC systems in commercial buildings consume the
major percentage of energy, many studies focus on the load
shifting control of HVAC systems [36, 37•]. The development
of a load shifting control strategy consists of three essential
parts including load prediction, cooling charging, and
discharging controls [37•]. Since a certain amount of cooling
loss is inevitable in both charging and discharging processes,
peak demand reduction through load shifting control is mostly
realized at the cost of energy increase.

Different charging and discharging controls have been de-
veloped as different thermal energy storage facilities are used.
Four facilities have been widely used and they are building
thermal mass-BTM [38–41], thermal energy storage system-
TES [42••, 43–45], combined use of BTM and TES [46, 47],
and phase change material (PCM) [48, 49, 50••, 51, 52]. No
matter whatever facilities used, the trade-off between peak
demand reduction and the associated energy increase need to
be well considered. Otherwise, the economic benefits from
building demand management can be partially or completely
compromised by the energy cost increase [36].

One major limitation of the above single building demand
management is that theymerely focus on economic benefits of
individual buildings and they are conducted in an uncoordi-
nated way. With such uncoordinated control, the resulting
aggregated load profile cannot be optimized for the actual
needs of grid. Being aware of such limitation, both the grid
and building researchers have raised an important question on
how to coordinate the demandmanagement of a group of end-
users to better serve the actual needs of a grid in terms of
power balance [9••, 42••, 53].

Building Group Demand Management

Conventional demand management is performed in an un-
coordinated way which merely focuses on single-
building-level economic benefits. To this end, its
building-group-level performance, which is the real con-
cern to grid, may not be optimized. In order to evaluate
performance of conventional demand management at
building-group-level, Shen et al. used operation data of
real buildings to perform the simulation study under com-
mon electricity pricings [54]. The evaluation results
disclosed several limitations of conventional demand
management due to lack of coordination. Under time of
use pricing, conventional demand management was found
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unable to effectively and efficiently reduce peak demand
at building-group-level. Under dynamic pricing, conven-
tional demand management can cause a new undesirable
peak demand at building-group-level which could be
much larger than the original one and imposed heavier
stress on grid.

In order to overcome these limitations, a few studies
have been carried out on coordinated demand manage-
ment in a group of commercial buildings. A study was
conducted to develop a coordinated demand management
method based on Genetic Algorithm [55•]. Under the time
of use pricing, the proposed control aimed to minimize
the overall peak demand of a group of buildings by coor-
dinating storage system charging and discharging control
of individual buildings via GA. The case study results
demonstrated the improved performance of the proposed
coordinated demand management in terms of building
group level peak demand limiting and the associated extra
energy consumption. Similarly, using particle swarm op-
timization, a coordinated operation framework was pro-
posed to determine the optimal operation strategies of a
building cluster [56]. The operation framework utilized
multi-objective optimizations to determine the operation
strategies: building temperature set-points, energy storage
charging, and discharging schedules, etc. The case study
results showed that the developed building cluster collab-
orative operation framework was able to reduce the ener-
gy cost by 12.1–58.3% under different electricity pricing
plans and thermal comfort requirements.

Meanwhile, considering the joint operation of multiple
smart buildings could be more advantageous than the in-
dependent operation of each individual one, a multi-party
energy management model for a building cluster based on
game theory was proposed [57]. In the study, all partici-
pating smart buildings were viewed as players in the game
and the energy management framework for achieving op-
timal operations of smart building cluster was introduced.
The study proved the existence of Nash equilibrium in the
game model and the process for solving the Nash equilib-
rium strategy was modeled as a multi-objective optimiza-
tion problem. Via a practical example, the effectiveness of
the model is verified. In addition, with the development
and extensive use of building automation systems, infor-
mation and communication technologies and grid energy
management system, a bidirectional communication be-
tween buildings and a grid can be established and used
for interacting and optimizing the power supply and the
demand. Considering the potential bidirectional commu-
nication between buildings and grid, Xue et al. presented
an interactive building power demand management strat-
egy for the interaction of commercial buildings with a
smart grid and facilitating the grid optimization [58].
The case study results showed that the power imbalance

could be significantly reduced when the effective interac-
tion between the power supply and the demand was
established.

Discussions and Conclusions

This study provides a review of the recent developments
in HVAC system control and demand management. In the
recent 5 years, many studies on HVAC system control
were found to emphasize the control reliability and ro-
bustness because the importance of uncertainty, such as
in the weather prediction or the internal gain prediction,
has been recognized. The robustness and reliability of the
HVAC systems control, whether in the process control
loop or the system real-time optimization level, remain a
challenge because uncertainties are widely existent in
building operation and they are difficult to be quantified
due to the lack of data and the variations of building
design, which needs more efforts in the future. On the
system level, real-time optimization, except for uncertain-
ty that needs further studies, continuous efforts are neces-
sary for improving the computational efficiency. This is
because more and more advanced systems (such as renew-
able energy system and thermal storage system) are inte-
grated into buildings and their dynamic behaviors are
complex. The system level real-time optimization will be
a super complex programming problem with a large num-
ber of decision variables. This might seriously limit its
application in practice if the computational efficiency can-
not be solved.

Conventional demand management takes a single
building/system as study object and they merely focus
on maximizing their own economic benefits through load
profile alterations. The load profiles of individual build-
ings are altered in an uncoordinated way and the resulting
aggregated load profile (i.e., the sum of individual load
profiles), which is the actual concern of a grid, is
overlooked and cannot be optimized. In contrast, through
coordinated control, the overall peak demand of the ag-
gregated load profile can be more effectively and effi-
ciently reduced in a desired way of a grid. Grid and build-
ing researchers started to realize the limitations of the
conventional demand management, and studies have been
carried out to develop coordinated demand management
for a group of buildings. The study results have shown
that the coordinated demand management is able to opti-
mize the aggregated load profile for better serving the
actual needs of a grid. In future studies, more efforts need
to be made on how properly coordinating a number of
buildings since the complexity of coordinated control
may increase exponentially with the building number.
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