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Abstract
Past studies have indicated significant uncertainties in determining the safety factor 
of slope using a deterministic approach. To reduce these uncertainties and enhance 
the stability of slopes, this study utilized machine learning (ML) techniques. The 
primary goal was to develop an efficient ML model to predict the factor of safety 
(FOS) of slope in c-φ soil. Three ML models were evolved: artificial neural network 
(ANN), Gaussian process regression (GPR) and hybrid ANN model, which com-
bines with the meta-heuristic optimization technique namely particle swarm opti-
mization (PSO) to make ANN-PSO. Five input parameters, i.e. unit weight of soil, 
cohesion, angle of shear resistance, slope angle and slope height, are used to com-
pute FOS. The efficacy of the ML models is evaluated using a range of performance 
indicators, such as coefficient of determination (R2), variance account factor, Legate 
and McCabe’s index, a-10 index, root mean square error (RMSE), RMSE-observa-
tions standard deviation ratio, mean absolute error and median absolute deviance in 
both the training (TR) and testing (TS) stages. Among all the models, ANN-PSO 
performed better due to its higher value of R2 (TR = 0.932, TS = 0.833 and Over-
all = 0.920) and lowest value of RMSE (TR = 0.060, TS = 0.073 and Overall = 0.063) 
followed by GPR and ANN. The reliability index is calculated using the first-order 
second moment method for all the models and compared with the observed value. 
Further tools used to evaluate the model’s performance are rank analysis, reliabil-
ity index, regression curve, William’s plot, error matrix and confusion matrix. The 
overall performance of ANN-PSO is superior to the other two ML models while 
predicting FOS. The influence of each input parameter on the output is also com-
puted using sensitivity analysis.

Keywords ANN · GPR · PSO · Machine learning · Slope stability · William’s plot · 
Confusion matrix

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s40515-024-00446-y&domain=pdf


 Transportation Infrastructure Geotechnology

Abbreviations
Symbol  Nomenclature
ML  Machine learning
FOSM  First-order second moment method
MCS  Monte Carlo simulation
FOS  Factor of safety
MDRM  Multiplicative dimensional reduction method
c  Cohesion
φ  Angle of shear resistance
γ  Unit weight of soil
β  Reliability index
Pf  Probability of failure
PEM  Point estimate method
MPEM  Modified point estimate method
RFEM  Random finite element method
RFM  Random finite method
H  Slope height
α  Slope angle
u  Pore pressure
c’ˈ  Effective cohesion
LEM  Limit equilibrium method
ANN  Artificial neural network
ANFIS  Adaptive neuro fuzzy inference system
PSO  Particle swarm optimization
NS  Nash Sutcliffe efficiency
LMI  Legate and McCabe’s index of agreement
U95  Expended uncertainty
RMSE  Root mean square error
VAF  Variance account factor
R2  Coefficient of determination
Adj.  R2  Adjusted coefficient of determination
PI  Performance index
BF  Bias factor
RSR  Root mean standard deviation ratio
NMBE  Normalized mean bias error
MAPE  Mean absolute percentage error
RPD  Relative percentage difference
WI  Willmott’s index of agreement
MBE  Mean bias error
MAE  Mean absolute error
GPI  Global performance indicator
GPR  Gaussian process regression
SVR  Support vector regression
DT  Decision trees
LSTM  Long-short term memory
DNN  Deep neural network
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KNN  K-nearest neighbour
ru  Pore pressure ratio
SVM  Support vector machine
MARS  Multivariate adaptive regression spline
GRNN  Generalized regression neural network
Su  Undrain strain parameter
ELM  Extreme learning machine
ABC  Artificial bee colony algorithm
LSSVM  Least square support vector machine
R  Coefficient of correlation
MLP  Multilayer perceptron
RF  Random forest
γd  Dry density
GEP  Gene expression programming
ARE  Average relative error
GBM  Gradient boosting machine
ROC  Receiver characteristics operator
AUC   Area under curve
LR  Linear regression
BR  Bayesian ridge
ENR  Elastic net regression
GBR  Gradient boosting regression
SPCE  Sparse polynomial chaos expansion
BN  Bayesian network
HPO  Hyper parameter optimization
GBAEF  Global best artificial electric field algorithm
MCMC  Bayesian Markov chain Monte Carlo method
SCA  Sine cosine algorithm
ASCPS  Adaptive sine cosine algorithm-pattern search
GA  Genetic algorithm
FFA  Firefly algorithm
GWO  Grey wolf optimization
XGBoost  Extreme gradient boosting
ACO  Ant colony optimization
ALO  Artificial lion optimization
ICA  Imperialist competitive algorithm
SCE  Shuffled complex evolution
τf   Mobilized shear strength
τ  Shear stress
σn  Normal stress
σw  Standard deviation
μw  Average value
PF  Processing factor
SR  Standardized residuals
L  Leverage
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SA  Sensitivity analysis
SOR  Strength of relation

1 Introduction

The analysis of slope stability is a crucial issue in the field of civil engineering, 
playing an important role in geotechnical engineering. It depends on many factors 
such as soil properties, geological structure, environmental conditions and more. By 
utilizing statistical and probabilistic techniques, machine learning models evaluate 
soil slope behaviour and stability through probabilistic analysis. This method pro-
vides detailed information about uncertainties surrounding slope stability, aiding 
engineers and geologists in making better decisions.

Many researchers have used the analytical method for the reliability analysis 
of slope stability. Malkawi et  al. (2020) used two analytical methods, namely the 
FOSM method and Monte Carlo simulation (MCS) to predict the FOS. They took 
cohesion (c), angle of shear resistance (φ) and unit weight of soil (γ) as input param-
eters. Model performances were judged using computation of the β. Wang et  al. 
(2022) used the multiplicative dimensional reduction method (MDRM), FOSM and 
MCS for the probabilistic analysis of slope stability. They have also computed β and 
probability of failure (Pf) value. Griffiths and Fenton (2004) used two types of ana-
lytical methods, namely the random finite element method (RFEM) and MCS to pre-
dict FOS. Based on the Pf, value, they concluded that the RFEM is better than other 
analytical methods. Griffiths et  al. (2011) used three analytical methods FOSM, 
FORM and random finite method (RFM) to predict FOS. They took slope height 
(H), c, slope angle (α), γ, pore pressure (u), effective cohesion (cˈ) and effective 
angle of shear resistance (φ ̍) as input parameters. Johari and Javadi (2012) consid-
ered the reliability assessment of infinite slope stability using the jointly distributed 
random variables method. They took three input parameters, namely c, γ and φ. The 
reliability assessment of the stability of infinite slope is compared with MCS, PEM 
and FOSM to compute FOS. Al-Karni and Al-Shamrani (2000) employed the study 
of the effect of soil anisotropy on slope stability using method of slices. They have 
used analytical method, namely limit equilibrium method (LEM) to compute FOS.

To anticipate the FOS, numerous researchers have employed a numerous machine 
learning (ML) techniques. Ray and Roy (2021) used soft computing techniques for the 
reliability analysis of slope stability in soil. They have used two types of soft computing 
techniques namely ANN and adaptive neuro fuzzy inference system (ANFIS) to predict 
FOS individually and make one hybrid model (PSO-ANN) by using metaheuristic opti-
misation technique namely particle swarm optimization (PSO). They took γ, c and φ as 
input parameters. The model’s performance was judged by numerous performance 
parameters like Nash Sutcliffe efficiency (NS), Legate and McCabe’s index (LMI), 
expended uncertainty  (U95), root mean square error (RMSE), variance account factor 
(VAF), coefficient of determination (R2), t-statistics, adjusted coefficient of determina-
tion (Adj. R2), performance index (PI), bias factor (BF), root mean standard deviation 
ratio (RSR), normalized mean bias error (NMBE), mean absolute percentage error 
(MAPE), relative percentage difference (RPD), Willmott’s index of agreement (WI), 
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mean bias error (MBE), mean absolute error (MAE), global performance indicator 
(GPI) and reliability index (β). Based on various performance parameters, they con-
cluded that the PSO-ANN model performed better compared to the other two models. 
Mahmoodzadeh et al. (2022) conducted a comparison of soft computing techniques for 
predicting of safety factors of slope stability in soil. They used six soft computing ML 
models, namely GPR, support vector regression (SVR), decision trees (DT), long-short 
term memory (LSTM), deep neural network (DNN) and k-nearest neighbour (KNN) to 
predict FOS of the considered slope. They took γ, H, α, φ, c and pore pressure ratio (ru) 
as input parameters. The model’s performance was assessed by numerous parameters 
like R2, MAE, RMSE and MAPE. Based on these performance parameters, the GPR 
model was identified as the most effective among the five ML models. Zhao (2008) 
used support vector machine (SVM) as a soft computing technique to predict FOS of 
finite slope in soil. They have taken three type of input parameter, such as γ, φ and c. 
Model performances were judged using computation of β. β is computed using FOSM 
method. Cho (2009) used ANN soft computing technique to predict FOS of slope sta-
bility in soil. They have taken two input parameters, such as c and φ. Model perfor-
mances were judged using computation of β and Pf value. Kumar et al. (2017) used soft 
computing techniques, namely ANFIS, GPR, multivariate adaptive regression spline 
(MARS) and generalized regression neural network (GRNN) to predict FOS of infinite 
slope in soil. They have considered three input parameters namely c, φ and γ. The ML 
model performance was assessed using computation of β. They concluded that the 
MARS model is better as compared to three ML models. Gupta et al. (2022) used two 
types of soft computing techniques, DNN and ANN, to predict FOS of slope stability in 
soil. They considered input parameters, such as undrain strain parameter (Su) and φ. 
The model was assessed using numerous performance parameters such as CC, RMSE, 
MAE, SI and NSE. Based on performance parameters, they concluded that the DNN 
model performed better than ANN ML models. Kang et al. (2016) used metaheuristic 
optimization technique, such as PSO and artificial bee colony algorithm (ABC), indi-
vidually to predict the FOS of slope stability in soil and made one hybrid model least 
square support vector machine with particle swarm optimization (PSO-LSSVM) by 
using metaheuristic optimization technique namely PSO. They took two input parame-
ters, such as c and φ. They used various performance parameters, such as MAE, RMSE 
and coefficient of correlation (R). Based on various performance parameters, they con-
cluded that the PSO-LSSVM model performed better compared to other ML models. 
Nanehkaran et al. (2022) used five different ML models, namely multilayer perceptron 
(MLP), SVM, KNN, DT and random forest (RF) to predict FOS of slope stability in 
soil. They took five input parameters like H, α, c, φ and dry density (γd). They used 
various performance parameter such as confusion matrix (accuracy, precision, recall 
and F1-score), MAE, MSE and RMSE. They concluded that the MLP gives best per-
formance as compared to other ML models. Johari et al. (2018) used gene expression 
programming (GEP) to predict the FOS of unsaturated slope stability in soil. They have 
taken input parameter such as void ratio, water content, clay content, silt content, cˈ, φˈ 
and γ. They have used numerous performance parameters namely average relative error 
(ARE), MSE and R2. Deris et al. (2021) used soft computing technique, namely SVM 
and DT to predict the FOS of slope stability in soil. They have taken five input parame-
ter such as γ, c, φ, α and H. They used confusion matrix to check the performance of 
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the model. Based on performance parameter, they have concluded that SVM model 
performs better than DT. Yang et al. (2023) used soft computing techniques like SVM, 
RF, DT, KNN and gradient boosting machine (GBM) to predict the FOS of slope sta-
bility in soil. They have taken c, φ, γ, H, ru and α as input parameters. They have ana-
lyzed them using the confusion matrix, receiver characteristics operator (ROC) and 
area under curve (AUC) value. They have concluded that RF performed better as com-
pared to the other four model. Liu et al. (2021) used ELM as soft computing technique 
to predict the FOS of slope stability in soil. They took three input parameters, such as γ, 
c and φ. They analyzed them using the R2. Lin et al. (2021) used various types of ML 
models, namely linear regression (LR), Bayesian ridge (BR), elastic net regression 
(ENR), SVM, DT, RF, adaptive boosting machine, KNN, GBM, bagging, and extra 
trees, to predict the FOS of finite slope in soil. They used three performance parameters 
such as R2, MAE and MSE. Based on performance parameters, they have concluded 
that gradient boosting regression (GBR), SVM, and bagging are better performed than 
another model. Xu et al. (2023) used numerous types of ML techniques, namely ANN, 
ANFIS, DNN, SVM, GPR, DT, RF, sparse polynomial chaos expansion (SPCE), 
Bayesian network (BN) and hyper parameter optimization (HPO), to predict the FOS of 
slope stability in soil. They have used performance parameters such as  R2, MSE, 
RMSE, MAE and MAPE. According to performance parameter, they concluded that 
ANFIS is better as compared to the other model. Khajehzadeh and Keawsawasvong 
(2023) used two types of ML model, namely, SVR and global best artificial electric 
field algorithm (GBAEF), to predict the FOS of finite slope in soil. They took five input 
parameters γ, c, φ, α, H and ru. They used four types of performance parameters, such 
as RMSE, MAE, MSE and R2. Based on the performance parameter, SVR performs 
better as compared to the other models. Kang et al. (2015) used GPR computational 
ML model to predict the FOS of slope stability in soil. Ahmad et al. (2023) used ensem-
ble ML models namely decision tree regression (DTR), multiple linear regression 
(MLR), k-nearest neighbour regression (KNN), random forest regression (RF), extreme 
gradient boosting regression (XGB) and support vector regression (SVR) to predict 
FOS values for railway embankments. Fattahi and Ilghani (2019) used ML technique 
for slope stability analysis using Bayesian Markov chain Monte Carlo method (MCMC) 
using the software win BUGS to predict the FOS of slope stability in soil. They have 
considered six input parameters, such as γ, c, φ, α, H and ru. The ML model was 
assessed by using the performance parameter such as R2 and MSE. Khajehzadeh et al. 
(2022) used four types of ML model namely ANN, sine cosine algorithm (SCA) and 
adaptive sine cosine algorithm-pattern search (ASCPS) to predict the FOS of infinite 
slope in soil. They used various performance parameters such as RMSE and R-value. 
Based on model performance parameters, they obtained ANN model performance bet-
ter than the other model. Ahmad et  al. (2023) used convolutional neural networks 
(CNN), deep neural networks (DNN), artificial neural networks (ANN) and multiple 
linear regression (MLR) to predict FOS of railway embankment. Sabri et  al. (2024) 
used artificial neural networks (ANN), Bayesian neural networks (BNN), convolutional 
neural networks (CNN) and deep neural networks (DNN) to evaluate the slope stability 
of a heavy haul freight corridor.

Some researchers have also employed various types of ML technique for probabil-
istic analysis in the other geotechnical engineering fields. Yousuf et al. (2023) used 
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ANN and ELM to predict the load sustaining capability of the rectangular footing. 
Mustafa et  al. (2022) utilized four types of meta-heuristic optimization techniques, 
namely PSO, genetic algorithm (GA), firefly algorithm (FFA) and grey wolf optimi-
zation (GWO) to predict FOS of gravity retaining wall individually and make hybrid 
with soft computing model ANFIS such as ANFIS-PSO, ANFIS-FFA, ANFIS-GA 
and ANFIS-GWO. Mustafa et al. (2024) utilize three soft computing models, ANFIS, 
ELM and extreme gradient boosting (XGBoost), to predict the thermal conductivity of 
soil. Kumar et al. (2024) used soft computing technique ANN and ANN make hybrid 
with four different type of metaheuristic optimization such as ant colony optimization 
(ACO), artificial lion optimization (ALO), imperialist competitive algorithm (ICA) 
and shuffled complex evolution (SCE) to predict the bearing capacity of strip footings 
subjected to inclined loading.

The probabilistic analysis of stability of slope in c-φ soil is rarely replicated by the 
application of machine learning (ML) methods. The aim of this study is to develop 
reliable machine learning models for computing safety factor for the soil slope. The 
literature review shows that the artificial neural network (ANN), hybrid model of 
ANN with PSO (ANN-PSO) and Gaussian process regression (GPR) models have 
not yet been widely used to evaluate the prediction of FOS of c-φ soil slope. In order 
to eliminate the need for the tedious, conventional and time-consuming calculating 
procedure, ML models are intended to give a method that is ready for use and that 
can compute the FOS of slope in c-phi soil. In order to evaluate the probabilistic anal-
ysis of slope in c-φ soil, the ML models were trained taking into account cohesion 
(c), unit weight of soil (γ), angle of shearing resistance (φ), slope angle (α) and height 
of soil slope (H). The performance of the proposed model was thoroughly assessed 
using a range of performance parameters, including rank analysis, regression curves, 
reliability index, William’s plot, error matrix and confusion matrix. Geotechnical 
engineers may find the proposed models to be a helpful tool in rapidly and simply 
estimating the FOS of slope in c-φ soil, even with limited computer knowledge.

2  Details of the Present Study

Using conventional approach factor of safety (FOS) for an infinite slope in c-φ soil 
is defined as the ratio of mobilized shear strength 

(
�f
)
 of the soil to the shear stress 

(τ) acting on the soil. The FOS can be expressed mathematically as:

As per Mohr’s coulombs theory which is described in Das (1985), the mobilized 
shear strength 

(
�f
)
 of soil normally expressed as a function of c and φ. The math-

ematical expression for the �f can be written as:

where c is the cohesion of the soil, φ is the angle of shear resistance and σn is the 
normal stress acting on the soil which can be expressed as follows:

(1)FOS =
�f

�

(2)� f = c + �
n
tan�
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The shear stress acting on the soil (τ) can be expressed as:

where γ is the unit weight of soil, H is the slope height and α is the slope angle. 
From Eqs. (1–4), the FOS can be calculated as follows:

Reliability analysis in geotechnical engineering deals with the uncertainty 
in structural systems and soil mechanics, which can be due to variations in soil 
properties, or the analytical methods used. The goal is to observe this uncertainty 
or find a reliable method to predict the FOS for an infinite slope in c-φ soil. The 
FOSM approach is useful for calculating the β. In this approach, σY and μY rep-
resent the standard deviation and average value of the performance function Y, 
respectively. τf and τ are represented as P and Q, respectively, and μP and μQ are 
the mean values and σP and σQ are the standard deviation of P and Q, respectively.

Since the standard deviation and mean of the observed FOS have an important 
impact on the β, the FOS can be calculated as follows:

where the mean and standard deviation of the observed FOS are represented by µFOS 
and σFOS, respectively.

3  Proposed ML Model

As noted in the previous section, many researchers have employed various sta-
tistical parameters to conduct probabilistic analysis of an infinite slope. The pri-
mary objective of this study is to provide the most effective ML models, enabling 
designers and engineers to calculate the FOS for infinite slope in c-φ soil. The 
context of soft computing techniques briefly explained in the subsequent parts.

3.1  Artificial Neural Network (ANN)

The ANN model relies on weighted simulated neurons and various specialized units, sim-
ulated by the genetic neural system, which shown in Fig. 1 (Anand et al., 2021). ANNs 

(3)�n = �H cos
2�

(4)� = �H cos� sin�

(5)FOS =
C + �H cos2 �tan�

�H cos � sin �

(6)
� =

�
Y

�
Y

=
�
P
− �

Q√
�2

P
+ �2

Q

(7)� =
�FOS − 1

�FOS
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are also known as a processing factor (PF) that serve as information processors. Each PF 
has one or more transfer functions, an output and weighted inputs. Generally, a PF is an 
equation that equates the output and input. As the connection weights put the system’s 
memory, ANNs are identified as connectionist models. An ANN depend on three major 
sets of layers with neurons. The last and first layers of the ANN are designated as the 
output and input layers, respectively. They have more neurons representing the output and 
input variables. The hidden layer is located between these two layers. The hidden layers 
serve as the predictors, and the decision-making process is show within the output layer. 
Biases and weights are important parameters of an ANN. Biases determine the degree of 
freedom, while weights show the interconnection between a layer’s neurons. Every node, 
apart from the input nodes, receives the output by using a nonlinear activation function. 
The output serves as the input for the next node. This process repeats until a correct solu-
tion to the given problem is not obtained. The primary objective of the problem is to cal-
culate the error by comparing the prediction (i.e. the outcome of the network) to the actual 
result. Backpropagation is utilized for error transmission. Then, the error is transmitted 
back to a layer back at a time throughout the ANN structure. Adjustments are made to the 
weights based on the portion of the error. Table 1 depicts the hyperparameters of ANN.

Fig. 1  Schematic representation for an ANN
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3.2  Particle Swarm Optimization (PSO)

The PSO algorithm simulates the common actions of organisms, mostly bird gather-
ing or fish schooling. It was proposed by the authors Kennedy and Eberhart (1995). 
The main goal of this algorithm is to find a universal optimal solution in the search 
space. It initializes the particles with random locations and velocities. After updat-
ing their position, each particle determines its individual and global most suitable 
position in the search space. The best position in each particle, along with the suit-
able ranking of particles, shows the most suitable state in the universe. The discrete 
most suitable direction and position in the universe plays an important role in the 
updating process of a particle. The difference between the global most suitable state 
and each particle’s most suitable position is important for revising the particle’s 
speed. As represent in Fig. 2,

where v and y denote velocity and position, respectively; p-best and g-best shows 
the best particle position and suitable group position, respectively; r1 and r2 are the 
random number between 0 and 1 and  a1 and  a2 are the cognitive and social coeffi-
cients. These parameters are problem solving; thus, their main aim is to decide the 
level of dependence of a particle on its universal and individual position, which is 
determined by its inertia weight parameter, denoted as uk. This parameter affects the 
particle’s movement within the universe space which directly depend on time, which 
expressed as:

(8)vt+1
n

= uvt
n
+ a1r1

(
p − bestn − yt

n

)
+ a2r2

(
g − bestn − yt

n

)

(9)yt+1
n

= yt
n+
vt+1
n

(10)uk = umax −
umax − umin

tmax

t

Table 1  Hyperparameters of the 
model ANN

Parameters ANN

Batch size 08
Number of epoch 100
Input layer 40 Neurons
Hidden layer 40 Neurons
Output layer 1 Neuron
Optimizer Adam
Loss function RMSE
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Here, umax and umin show the maximum and minimum inertia weights, respec-
tively; tmax is defined based on the highest number of iterations and k represents 
the current iteration number. The value of uk effects the particle’s behaviour during 
optimization. A low value of uk defines the particle’s individual best position and 
higher value of uk gives more weight to the global best position, inspiring study of 
the search space. Figure 2 indicates the flowchart of PSO. Table 2 shows the hyper-
parameters used for PSO.

Fig. 2  Steps presenting the process involved in PSO
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3.3  Gaussian Process Regression (GPR)

The GPR is an informal Bayesian is an informal Bayesian approach to controlled 
learning that models the link between input and output parameters, as discussed by 
Mahmoodzadeh et al. (2021) and Zhu et al. (2021). It is applied to issues involving 
classification as well as regression.

The Gaussian process is a generalization of the Gaussian distribution and is used 
to define the variation in functions, whereas the Gaussian distribution can be used to 
describe the distribution of random variables. The covariance function n 

(
z, z′

)
 and 

the mean function j (z) in the function space can be used to create a Gaussian process.

The Gaussian process may be expressed as:

In general, at this point, we take the mean function as zero for the purpose of 
simplicity in notation, as discussed by Wang et al. (2019). Considering a dataset L 
containing n observations (L = {(zi, oi) | i = 1, 2, 3, …, n}), where the output scalar is 
denoted by oi and zi is the input vector, which is M-dimensional.

where g(z) is the random regression function and Ꜫ is the Gaussian noise with a 
variance of σn

2(Ꜫ⁓N(0, σn
2)) and an independent, identically distributed Gaussian 

distribution. Two matrices, Z = [z1, z2, …, zn] and O = [o1, o2,…,  on], represent the 
input and output data, respectively. The group of functions g = [g(z1), g(z2), …., 
g(zn)]P follows the Gaussian process is to determine (q(g|T) = B(0, K)), where K is 
the covariance function matrix n(z, zʹ).

(11)j(z) = E(g(z))

(12)n
(
z, z�

)
= E

((
g(z) − j

(
z�
))(

g
(
z�
)
− j

(
z�
)))

(13)g(z) = GP ∼ (j(z), n (z, z�))

(14)o = g(z) + �

Table 2  Hyperparameters used 
for PSO

Parameters PSO

Population size 50
Number of iterations 100
Cognitive coefficient 0.50
Social coefficient 0.30
Inertia weight 0.90
Number of epochs 100
Batch size 08
Input layer 64 Neurons
Hidden layer 40 Neurons
Output layer 01 Neuron
Optimizer Adam
Loss function RMSE
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The multivariate normal distribution is equally distributed as the prediction out-
put, which includes the training outputs (o) and testing outputs (o∗) . When testing at 
a predetermined position, the joint distribution of the actual target value (o) and the 
predicted value (o∗) is expressed as follows.

Then, the predictive distribution of the function values o* at test points Z* = [z1
⃰, 

z2
⃰, …., zn

⃰] is calculated using GPR.

One of the most popular uses of Gaussian process regression is Bayesian optimi-
zation, as discussed by Sonek et al. (2012). By utilizing a Gaussian process model of 
the objective function to estimate the next evaluation point, Bayesian optimization 
techniques effectively identify the best value when evaluating the objective function 
which is highly costly. Table 3 shows the hyperparameters of GPR model.

4  Dataset Preparation

The uncertainty of the FOS for an infinite slope in c-φ soil is directly correlated 
with the analytical method used. For the reliability analysis, we have generated total 
200 datasets to predict the FOS. We have generated the datasets randomly using the 
command NORM.INV (RAND (), Mean, Standard deviation) in MS-Excel. Statisti-
cal input parameters such as γ, c, α, φ and H were prepared, which follow the nor-
mal distribution function. For this study, datasets were generated using mean and 
standard deviation values taken from previous studies by Nanehkaran et al. (2023). 
Table 4 shows the descriptive statistics of the collected dataset, and Fig. 3 represents 

(15)K(Z, Z) =

⎡
⎢⎢⎣

n(z
1
, z

1
) ⋯ n(z

1
, zn)

⋮ ⋱ ⋮

n(zn, z1) ⋯ n(zn, zn)

⎤
⎥⎥⎦

(16)
[
o

o∗

]
∽ N

(
0,

[
K(Z, Z) K(Z, Z∗)

K(Z∗, Z) K(Z∗, Z∗)

])

(17)q(o∗|Z∗, Z,O) ∼ N(g∗, cov(g∗))

(18)g∗ = K(Z∗, Z)K(Z, Z)−1O

(19)COV(g∗)=K(Z∗, Z∗)−K(Z∗, Z)−1K(Z, Z∗)

Table 3  Hyperparameters of 
GPR model

Parameters GPR

Input layer 64 Neurons
Hidden layer 40 Neurons
Learning rate 0.005
Batch size 08
Adam decay 0.000001
Output layer 01 Neuron
Number of hidden layers 06
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considered slope for this study which is taken from the previous study of Feng et al. 
(2018).

The pre-processing steps involved in preparing a dataset for a machine learning 
model include normalization, a processing technique used to remove the dimen-
sional influence of the variables. In this case, the value of both input and output 
variables were normalized between 0 and 1. The normalization of the dataset can 
be done as follows:

where Fmax and Fmin are the maximum and minimum values of the parameter (F), 
respectively. After normalization has been performed, the total datasets are divided 
into two phases namely training and testing phases. For this, 80% of the entire data-
set (160 datasets) is used for training the machine learning model, and the remaining 
20% (40 datasets) is used for testing the performance. Figure 4 indicates the method-
ology flowchart.

5  Statistical Performance Indicators

Using numerous types of statistical performance parameters and graphical judg-
ments such as radar diagram and R-curve, the prediction accuracy of soft comput-
ing models ANN, GPR and ANN combined with one metaheuristic optimization 

(20)FNormalized =

(
F − Fmin

Fmax − Fmin

)

Fig. 3  Geometry of considered slope for this study



 Transportation Infrastructure Geotechnology

technique as PSO to create a hybrid model known as ANN-PSO was investigated. 
Various statistical performance parameters are used, including trained measuring 
parameters like R2, VAF, LMI and a-10 index and error measuring parameters 
like RMSE, RSR, MAE and MAD.

(21)R
2 =

∑n

i=1

�
FOSobs,i − FOS

�2

−
∑n

i=1

�
FOSobs,i − FOSpred,i

�2

∑n

i=1

�
FOSobs,i − FOS

�2

Fig. 4  Methodology flowchart
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where the real and predicted ith values in this scenario are denoted by  FOSobs,i and 
 FOSpred,i, respectively. The mean of actual value is represented by FOS , the number 
of training or testing sample is denoted by n, the model input capacity is denoted by 
k and the quantity of data with observed/predicted value ratio between 0.90 and 1.10 
is found in k10. Equations (21–28) are used to determine that the model has a mini-
mum value of RMSE, RSR, MAE and MAD and a higher value of R2, VAF, LMI 
and a-10 index.

(22)VAF =

(
1 −

var
(
FOSobs,i − FOSpred,i

)

var
(
FOSobs,i

)
)

× 100

(23)LMI = 1 −

⎡
⎢⎢⎣

∑n

i=1

���FOSobs,i − FOSpred,i
���∑n

i=1

���FOSobs,i − FOS
���

⎤
⎥⎥⎦

(24)a − 10 Index =
K10

n

(25)RMSE =

√
1

n

∑n

i=1

(
FOSobs,i − FOSpred,i

)2

(26)
RSR =

RMSE�
1

N

∑n

i=1
(FOSobs,i − FOS)

(27)MAE =
1

n

n∑
i=1

|||
(
FOSpred,i − FOSobs,i

)|||

(28)
MAD = Median

(|||FOSpred,1 − FOSobs,1
|||,
|||FOSpred,2

||| − FOSobs,2|,…………… , |FOSpred,n − FOSobs,n
|||
)
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6  Result and Discussion

6.1  Prediction Power of the Proposed Model

In this study, the factor of safety (FOS) of an infinite slope is predicted using three 
ML techniques, namely ANN, GPR and a hybrid model of ANN (ANN-PSO). 
The performance of these models are evaluated by calculating statistical param-
eters, namely R2, VAF, LMI, a-10 index, RMSE, MAE, RSR and MAD. The 
results of calculation statistics for the training (TR) and testing (TS) stages are 
provided in Table  5. The comparison of two soft computing techniques and the 
hybrid model was based on statistical indices. According to the result, it has been 
noted that ANN-PSO achieved better prediction performance with higher value 
of R2 = 0.931, VAF = 93.569, LMI = 0.754 and a-10 index = 0.381 and a lower 
value of RMSE = 0.060, RSR = 0.260, MAE = 0.436 and MAD = 0.031 in training 
stage, whereas the slightly decrease in the testing stage (R2 = 0.833, VAF = 87.240, 
LMI = 0.667 and a-10 index = 0.350, RMSE = 0.073, RSR = 0.408, MAE = 0.043 
and MAD = 0.026. Among the three ML models, it can be concluded that the ANN-
PSO model provided better predictions than the other two models.

Figure 5a indicates the comparison of the R2 values for the training (TR) and 
testing (TS) as well as the overall datasets of the proposed models. The model 
with the highest R2 value is considered the best model. In Fig.  5a, the ANN-
PSO model has the highest R2 value in the TR and TS datasets, as well as for the 
overall datasets, indicating its superiority over the other two models. Similarly, 
Fig. 5b shows a comparison of the RMSE values for the TR, TS and overall data-
sets of the proposed models. The model with the lowest RMSE value is deemed 
the best predicting model. In Fig. 5b, the ANN-PSO model demonstrates the low-
est RMSE value across the TR, TS and overall datasets, thereby surpassing the 
other two models.

Table 5  performance parameters of the proposed models

Parameter ANN GPR ANN-PSO Ideal value

Training Testing Training Testing Training Testing

R2 0.858 0.698 0.911 0.775 0.931 0.833 1
VAF 85.919 70.868 91.135 77.850 93.569 87.240 100
LMI 0.666 0.495 0.720 0.550 0.754 0.667 1
a-10 Index 0.306 0.250 0.356 0.225 0.381 0.350 1
RMSE 0.087 0.098 0.069 0.084 0.060 0.073 0
RSR 0.375 0.549 0.297 0.473 0.260 0.408 0
MAE 0.059 0.065 0.049 0.058 0.043 0.043 0
MAD 0.042 0.042 0.037 0.045 0.031 0.026 0
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(a)

(b)

Fig. 5  Comparison of performance parameters for training and testing as well as overall datasets. a Coef-
ficient of determination (R.2) and b root mean square error (RMSE)
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6.2  Rank Study

In this section, a ranking study is performed, as shown in Table  6. After com-
puting all the statistical parameters for both the training (TR) and testing (TS) 
stages, the models are simultaneously ranked. The model with the best per-
formance is assigned rank 1, while the model with the worst performance is 
assigned rank 3 (as three models namely ANN, GPR and ANN-PSO are used 
in this study). After this, the sum of all ranks is calculated to obtain the total 
rank and final rank, which is also determined in this study. The model with the 
lowest rank is considered the best performing model, while the model with the 
highest rank is considered the worst performing model. From Table  6, we find 
that the total ranks for both training and testing datasets are as follows: the ANN-
PSO model has (Rank)TR = 8, (Rank)TS = 8 and a final rank = 16; the GPR model 
has (Rank)TR = 16, (Rank)TS = 18 and a final rank = 34; and the ANN model has 
(Rank)TR = 24, (Rank)TS = 22 and final rank = 46. This gives a complete calcula-
tion of the prediction power and performance of the model. Hence, based on the 
ranking, we conclude that the ANN-PSO model demonstrates superior predictive 
ability compared to the other two models. Rank analysis is also represent in the 
form of radar diagram which shown in Fig. 6a–c.

Table 6  Rank analysis of the proposed model

Parameters ANN GPR ANN-PSO

Training Testing Training Testing Training Testing

R2 3 3 2 2 1 1
VAF 3 3 2 2 1 1
LMI 3 3 2 2 1 1
a-10 Index 3 2 2 3 1 1
RMSE 3 3 2 2 1 1
RSR 3 3 2 2 1 1
MAE 3 3 2 2 1 1
MAD 3 2 2 3 1 1
Total rank 24 22 16 18 8 8
Final rank 46 34 16
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(a)

(b)

(c)

Fig. 6  The rank analysis is represented in the form of radar diagram. a TR stage. b TS stage. c Final rank
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6.3  Reliability Analysis

Reliability analysis aims to observe uncertainty and obtain a reliable approach to pre-
dict the FOS for an infinite slope in c-φ soil. The FOSM approach is applied to calcu-
late the reliability index (β). The reliability index value is obtained by using Eq. (7). 
By comparing the reliability index of proposed models with the observed β, the model 
whose β is very close to the observed β is considered to have better performance than 
other models. Table 7 shows that the ANN-PSO model performs better than the other 
two models and is assigned rank 1, while the ANN model has worst performance and 
is assigned ranked 3. The bar graph in Fig. 7 shows a comparison of the observe β to 
the model’s β values. Among the proposed models, the model whose β is closer to the 
observe β is considered the best. The ANN-PSO model’s β is closer to the observe β. 
Hence, it is considered to be best model to predict the FOS of an infinite slope com-
pared to the than other two models.

Table 7  Comparison of the 
proposed model based on β 

Models Observed β Model’s β Rank

ANN 0.879 0.952 3
GPR 0.948 2
ANN-PSO 0.895 1

Fig. 7  Comparison of reliability index (β) between observed β and model’s β 
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6.4  Regression Curve

The regression curve is a graphical representation of the observed and predicted val-
ues of FOS (normalized), with the observed FOS (normalized) represented on the 
abscissa and the predicted FOS (normalized) on the ordinate. This curve is also known 
as R-curve or scatter plot. This R-value (coefficient of correlation), which is calculated 
and presented in Table 5, is derived from this curve.

Using training and testing datasets, Fig. 8a–c represents the observed FOS (normal-
ized) and predicted FOS (normalized) for an infinite slope. From the regression curve, 
we can observe that all the three models overlap (observed FOS with predicted FOS) 
each other and follow the almost same trend. The ANN-PSO model shows slight devia-
tion, whereas significant deviations are observed in the ANN model for both testing 
and training datasets. From the other measures, it is clear that ANN-PSO model has 
more reliable predictability than other two models.

6.5  William’s Plot

The William plot is a graphical representation between the standardized residuals 
versus leverage (L), which helps visualize the applicability domain. In this plot, the 
leverage (L) values are represented on the abscissa, while the standardized residuals 
are represented on the ordinate, as shown in Fig. 9a–c. Evaluating the applicability 
domain of the three different proposed models is essential for determining whether 
the model is reliable in prediction. By assessing the leverage (L) values for both 
testing (TS) and training (TR) datasets, the applicability domains for the three dis-
tinct proposed models were determined. These graphs show that the applicability 
domain is enclosed by the boundary region PQRS within a leverage threshold L* 
(L* = 3(I + 1)/w, where I is the input parameters and w is the number of training 
datasets) and ±3 standard deviations. Elements falling within the boundary region 
PQRS and having a leverage value L < L* are reliably predicted by the model.

The William plot for both the training and testing datasets is used to evalu-
ate the applicability domain of the ANN, GPR and ANN-PSO models, within 
the standardized residual (± 3σ) and a leverage threshold L* = 0.1125. From 
Fig.  9a–c, it can be observe that each element in the training dataset has an 
L < L*, but two elements in the testing datasets exceed the L* threshold and five 
training and one testing dataset elements lie outside the boundary region (± 3σ) 
in the ANN model. In the GPR model, all training dataset elements have L < L*, 
but two elements in the testing dataset exceed the L* threshold and four training 
and one testing dataset elements have are outside the boundary region (± 3σ). 
In the ANN-PSO, training dataset elements have L < L*, but three elements in 
the testing datasets exceed the L* threshold, and two training dataset elements 
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(a)

(b)

(c)

Fig. 8  Regression curve of observed and predicted FOS for both training (TR) and (TS) datasets for the 
models. a ANN. b GPR. c ANN-PSO
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Fig. 9  Williams plot for a ANN, 
b GPR and c ANN-PSO
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lie outside the boundary region (± 3σ). Among the three models, the ANN-PSO 
model shows less deviation from PQRS region. From the William plot, we con-
clude that ANN-PSO model predicts better than other two models.

6.6  Error Matrix

An error matrix, also known as a confusion matrix, is a table used to describe 
the performance of different models. It allows visualization of an algorithm’s 
performance by comparing the predicted values of selected variables with their 
ideal values. The matrix calculates and provides a graphical representation of 
the amount of error in the predicted models, judged based on the ideal values 
of each performance parameter. It also provides an understanding of the highest 
and lowest values of error in a predictive model. Hence, the error values (E%) 
of a predictive model can be calculated using the two terms listed below for 
trend-measuring parameters (R2, VAF, LMI and a-10 Index) and error measuring 
parameters (RMSE, RSR, MAE and MAD), respectively.

where ETMP and EEMP denote the error for trend measuring parameters and error 
measuring parameters, respectively; ITMP and IEMP denote the ideal values for trend 
measuring and error measuring parameters, respectively; PTMP and PEMP denote the 
performance indices estimated for trend measuring and error measuring parameters, 
respectively. The amount of error is calculated for trend measuring and error meas-
uring parameters using Eqs. (29 and 30), which are located in Table 8.

Figure  10 shows the error matrix for trend measuring and error measuring 
parameters. The quantity of error is computed for both training and testing data-
sets by considering trend measuring parameters, namely R2, VAF, LMI and a-10 
index and error measuring parameters, namely RMSE, RSR, MAE and MAD 
as shown in Fig.  10. ANN-PSO has the lowest error for both trend measuring 
and error measuring parameters out of all three models. The lowest error range 
(0–27) is shown in dark green, moderate error range (27–45) in light green, the 
semi-moderate error range (45–60) in pink and the highest error range in red. 
The ANN model performs the worst among all three models due to the highest 
error. Overall, we can conclude that the ANN-PSO model has better prediction 
for both training and testing datasets because it has the lowest error.

(29)ETMP =
ITMP −

||PTMP
||

||PTMP
||

× 100

(30)EEMP = ||(IEMP −
||PEMP

||)|| × 100
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Table 8  Calculation of error for both trend and error measuring parameters (TR and TS dataset)

Parameters ANN GPR ANN-PSO

Error in % Error in % Error in %

TR TS TR TS TR TS

R2 16.550 43.266 9.769 29.032 7.410 20.048
VAF 16.388 41.107 9.727 28.452 6.873 14.626
LMI 50.150 102.020 38.888 81.818 32.625 49.925
a-10 index 226.797 300.000 180.898 344.444 161.780 185.714
RMSE 8.700 9.800 6.900 8.400 6.000 7.300
RSR 37.500 54.900 29.700 47.300 26.000 40.800
MAE 5.900 6.500 7.900 5.800 4.360 4.300
MAD 4.220 4.240 3.700 4.500 3.100 2.600

Fig. 10  Error matrix for trend and error measuring parameters (training and testing datasets)



 Transportation Infrastructure Geotechnology

6.7  Comparative Analysis

Comparative analysis is a method used to examine two or more proposed models 
based on their performance parameters to identify their similarities and differences. 
Lin et al. (2021) used the SVM model to predict FOS of slopes. The highest per-
forming model achieved an overall R2 value of 0.864. In terms of performance, 
ANN slightly lagged behind SVM, while GPR performed better compared to SVM. 
However, the ANN-PSO model outperformed SVM. Ray and Roy (2021) used a 
hybrid model, PSO-ANN, which combines ANN with meta-heuristic optimization 
such as PSO to predict the FOS of slopes. The highest performing model achieved 
an overall R2 value of 0.904. Based on the performance, ANN and GPR lag margin-
ally behind PSO-ANN hybrid model. However, ANN-PSO performed better com-
pared to the same hybrid model. Mahmoodzadeh et al. (2022) used GPR model to 
predict the FOS of slope stability. The highest performing model achieved an overall 
R2 value of 0.813. Based on performance parameters, ANN, GPR and ANN-PSO 
performed better compared to the GPR model. Ahmad et al. (2024) used the hybrid 
model ANFIS-PSO to predict the FOS of soil slopes. The highest performing model 
achieved an R2 value of 0.901 in training and 0.896 in testing. In terms of perfor-
mance, ANN slightly lagged the ANFIS-PSO hybrid model, while GPR showed 
similar performance. However, the ANN-PSO model gives superior result compared 
to the ANFIS-PSO hybrid model. Table  9 shows the comparative analysis of the 
proposed models based on coefficient of determination (R2).

Table 9  Comparative analysis of the proposed models based on coefficient of determination
Performance 
parameters/
Phase

Present study Past research

Lin et al. 
(2021)

Ray and Roy  
(2021)

Mahmoodzadeh  
et al. (2022)

Ahmad et al. 
 (2024)

ANN GPR ANN-
PSO

SVM PSO-ANN GPR ANFIS-PSO

R2 (Training) 0.858 0.911 0.931 - - - 0.901
R2 (Testing) 0.698 0.775 0.833 - - - 0.896
R2 (Overall) 0.840 0.895 0.920 0.864 0.904 0.813 -
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6.8  Confusion Matrix

A confusion matrix, a specific type of table layout, is used to visualize the performance 
of machine learning algorithms. To assess the performance of predictive models, vari-
ous metrics such as accuracy, F1 score, Matthew’s correlation coefficient (MCC), pre-
cision and recall are used (Zhou et al. 2021, Wang et al. 2023, Liu et al. 2023 and Liu 
et al. 2024). It is commonly used in supervised learning and in unsupervised learning; it 
is referred to as a matching matrix. The rows of the matrix represent instances of a pre-
dictive class, while the columns represent instances of an actual class. In predictive ana-
lytics, a confusion matrix is a two-row, two-column table that records the counts of true 
positives, false negatives, false positives and true negatives. This provides a more com-
prehensive analysis than merely looking at the ratio of correct classification (accuracy). 
If the dataset is unbalanced, meaning the number of observations in different classes 
varies significantly, accuracy can be misleading. However, the performance matrix, 
which includes accuracy, F1 score, Matthew’s correlation coefficient (MCC), precision 
and recall parameters, is a specific table that depicts a prediction algorithm’s perfor-
mance based on its predicted values (also known as evaluation indexes). True positive 
(TP), true negatives (TN), false positives (FP) and false negatives (FN) are used in clas-
sification tasks to compare the classifier’s results with reliable external evaluations. 
Therefore, each confusion matrix offers evaluation indexes used to analyze the capabili-
ties and performances of machine learning classifiers. Precision (also known as positive 
predictive value) is the ratio of relevant instances among the retrieved instances, while 
recall is the ratio of relevant instances that have been retrieved. Table 10 shows the 
mathematical expression and their ideal values of performance parameters. Figure 11 
indicates the confusion matrix as classified from the model (a) ANN, (b) GPR and (c) 
ANN-PSO. Table 11 indicates the performance indices for all the proposed models. For 
assessing the best model, a ranking is assigned to the model based on its performance 
indicators. The model with the higher performance indicators receives a lowest rank. In 
the overall ranking, the ascending sequence of performance is ANN, GPR and ANN-
PSO. The best performing model among all is the ANN-PSO model, as it gets the low-
est rank of 5, while the ANN model is the lowest performing model with an overall 
rank of 15. Figure  12 indicates the radar diagram of performance indices for ANN, 
GPR and ANN-PSO models. From Fig. 12, we can observe that ANN-PSO performed 
better followed by GPR and ANN.

Table 10  Mathematical 
expression and their ideal values 
of performance parameters

Parameters Mathematical expression Ideal value

Accuracy TP+TN

TP+TN+FP+FN
1

F1 score 2×TP

2×TP+FP+FN
1

Matthew’s cor-
relation coefficient 
(MCC)

TP×TN−FP×FN√
(TP+FP)×(FP+TN)×(TP+FN)×(FN+TN)

1

Precision TP

TP+FP
1

Recall TP

TP+FN
1
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Fig. 11  Confusion matrix for 
the model. a ANN. b GPR. c 
ANN-PSO
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6.9  Rate Analysis

In this section, both observed and predicted factors of safety are analyzed on the 
basis of stable (FOS > 1) or unstable slope (FOS < 1). Analysis is done on the basis 
of success rate (If FOS > 1) and failure rate (If FOS < 1). The success rate is the per-
centage of stable slopes whose FOS > 1, while the failure rate is the percentage of 
unstable slopes whose FOS < 1 among all slope conditions to judge the performance 
of the proposed models in both TR and TS phase. Figure 13 shows the success and 
failure rates for both TR and TS phase. It is observed from Fig. 13 that the success 
rate of the ANN-PSO model has nearly closet to the success rate of observe FOS in 
the TR phase and equal in the TS phase while predicting FOS. Hence, the best reli-
able model is ANN-PSO among all three models.

6.9.1  Sensitivity Analysis (SA)

Sensitivity analysis (SA) is the study of the relative importance of different input 
parameters on the model output (FOS). Each input (γ, c, φ, α and H) has an impact 
on the output (FOS), which is determined by the strength of relation (SOR) param-
eter. A higher SOR value indicates that the input parameter has more influence on 
the output. The following is an expression for strength of relation (SOR).

where Ar,i implies the ith value of rth independent variable; j and r are the whole 
observations and total input parameters, respectively; Zs,i denotes the ith value of 
sth dependent variable. SORZs,r

 is the strength of relation of rth independent variable 
to sth dependent variable and s is the total dependent variables. In this study, r = 5, 
s = 1 and j = 200. Figure 14a–d indicates the strength of relation between different 
input parameters. As shown in Fig. 14a–d, the parameter c has the most influence on 
the FOS computation in all scenarios (actual case as well as all three proposed mod-
els) because it has the highest SOR value out of all five input parameters followed 
by φ, α, γ and H. Finally, it is clear that the ANN-PSO almost perfectly mirrored the 
actual output in predicting the FOS.

(31)SORZs,r
=

∑j

i=1
Ar,iZs,i�∑j

i=1

�
Ar,i

�2�
Zs,i

�2

Table 11  Computed values and their rank analysis of confusion matrix

ML models Accuracy F1 score MCC Precision Recall Total rank

ANN 0.865 0.891 0.713 0.874 0.909 15
Rank 3 3 3 3 3
GPR 0.885 0.906 0.756 0.896 0.918 10
Rank 2 2 2 2 2
ANN-PSO 0.920 0.937 0.832 0.901 0.975 5
Rank 1 1 1 1 1
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Fig. 12  Radar diagram of per-
formance indices for a ANN, b 
GPR and c ANN-PSO
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Fig.13  Reliability criteria of proposed model. a TR and b TS phase
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7  Conclusion

This study conducts a reliability analysis of infinite slope stability in c-φ soil, 
considering five input parameters like γ, c, φ, α and H. we have used two types of 
soft computing techniques namely artificial neural network (ANN) and Gaussian 
process regression (GPR) to predict the factor of safety (FOS) individually and 
make one hybrid model (ANN-PSO) by using metaheuristic optimisation tech-
nique namely particle swarm optimization (PSO).

The conclusion can be outlined as follows:
(i) The ANN-PSO hybrid model is better than the other two models to pre-

dict the FOS. It achieves superior predictive power with higher values (R2 = 0.931, 
VAF = 93.569, LMI = 0.754 and a-10 index = 0.381) and lower values (RMSE = 0.060, 

(a)                                                                                       (b)

(c) (d)

Fig. 14  The relative significance of input parameters for a ACTUAL, b ANN, c GPR and d ANN-PSO model
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RSR = 0.260, MAE = 0.436 and MAD = 0.031) in the training stage, whereas the 
slightly decrease in the testing stage (R2 = 0.833, VAF = 87.240, LMI = 0.667 and a-10 
index = 0.350, RMSE = 0.073, RSR = 0.408, MAE = 0.043 and MAD = 0.026).

(ii) On the basis of reliability index (β), the ANN-PSO is superior to the other 
two models. The FOSM method is used to calculate the reliability index (β). The 
model’s β is closest to the observed β which perform better than the other models. 
Other criteria, such as rank analysis, R-curve, William’s plot, error matrix, confu-
sion matrix and rate analysis, also indicate that ANN-PSO is superior.

(iii) The strength of relation (SOR) value is calculated to analyze the influence of 
input parameters on FOS for an infinite slope in c-φ soil. Among the five input vari-
ables, cohesion (c) has the most significant impact, followed by the angle of shear-
ing resistance (φ), slope angle (α), unit weight of soil (γ) and slope height (H).

(iv) Machine learning techniques offer advantages such as higher accuracy and low-
est error, fast decision making, more reliability and time saving. The drawbacks include 
high cost, inability to think beyond set limits.
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