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Abstract
This study overviews how to strengthen railway embankments using a geo-grid in 
the cohesive soil embankment layer and the Bishop method to determine a safety 
factor using Geo-Studio software. The primary goal of this study is to show the 
relationship between an embankment’s safety factor with and without a geo-grid. 
These parameters, such as angle of internal friction, cohesion value, and unit weight 
for both the subsoil and embankment layer, respectively, pull-out resistance, and 
tensile capacity for geo-grid, have been used as input in this test. The safety fac-
tor has increased continually after altering its features and incorporating a geo-grid 
into the embankment layer. Based on the Geo-Studio results, the ideal choice was to 
strengthen the railway embankment by adding a geo-grid to the embankment layer 
and employing a reliable computational technique to analyse the corridor’s proba-
bilistic slope stability for heavy-duty freight trains. The current method, which has 
been utilised to undertake a probabilistic study of a high embankment of 12.29 m 
taken by the Ministry of Indian Railways for a heavy-haul freight corridor, consists 
of four model analyses: convolutional neural networks (CNN), deep neural networks 
(DNN), artificial neural networks (ANN), and multiple linear regression (MLR). 
Performance indicators assessed the models’ performance, such as R2, RMSE, RSR, 
WI, MAE, NS, and PI. According to the analysis of the results, the CNN model out-
performed DNN, ANN, and MLR. CNN is, therefore, a trustworthy soft computing 
technique for determining the safety of a railway embankment slope.

Keywords  Soft_computing method · Reliability analysis · GeoStudio SLOPE/W 
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1  Introduction

The development of its infrastructure facilities significantly influences the growth 
and advancement of a nation. Infrastructure, including trains, roads, bridges, and 
airports, is a crucial factor in the country’s economic growth and helps to reduce 
poverty. There has been a constant need for engineering and building research 
and innovation since industrialisation and urbanisation are accelerating. Recently, 
transportation engineering has witnessed significant changes in how infrastruc-
ture facilities are built (Huang et al. 2020; Démurger 2001; Straub 2008).

Most nations rely mostly on rail and road transit for public transportation. 
With 8.25 billion passengers and over nine hundred eighty million metric tonnes 
of goods transported annually, India had the world’s second-largest and busiest 
road network in 2015. India’s rail network will be the second busiest and fourth 
largest globally by 2020, carrying 8.1 billion people and 1.2 billion metric tonnes 
of freight annually. Railways utilise wheeled vehicles that move along tracks to 
transport people and cargo, making them a form of public transportation. Con-
structors commonly use steel rails to build tracks, placing them over ballast cush-
ions and securing them to sleepers. The Permanent Way is the prepared founda-
tion for the entire track system (P-way). When creating P-ways, it is essential to 
adhere to specified standards to ensure equal distribution of train load and proper 
passage to the sub-soils. Engineers commonly make P-ways using either earth-
work in formation and cutting or a combination of the two. Cutting and form-
ing procedures comply with the specifications for cross-sectional and longitudi-
nal gradients (Sushma et al. 2022; Kabongo Booto et al. 2020). A large railway 
project requires significant earthwork due to the frequent construction of P-ways 
on naturally existing ground surfaces. The building of a rail track system also 
requires a substantial financial investment. Carefully evaluating the stability and 
dependability of a railway embankment is crucial for successfully operating the 
entire procedure.

Ground enhancement improves the soil’s engineering qualities and is primarily 
used for embankments, retaining walls, and other structures. The stability of the 
soil mass is one of the most crucial factors to consider when designing and build-
ing systems that support the soil. The shear strength of the soil directly affects 
its bearing capacity and stability against retaining structures. The demand for 
ecologically benign, practical, and cost-effective geotechnical systems is rising 
worldwide. There has been a negative environmental impact from the removal 
of aggregate. There has been a tendency to employ cohesive soil as a building 
material to lessen this impact and make it more affordable. Despite being one of 
the least expensive building materials, cohesive soil is widely available. How-
ever, due to its reduced frictional strength, it should not be utilised directly as a 
backfill material for embankment construction due to its pore water pressure and 
compatibility.

Reinforcing components like geosynthetics can expand their application. Geo-
synthetics are employed due to their quick construction, adaptability to various 
site conditions, flexibility, durability, and cost-effectiveness. To transfer stress 
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from the soil to the reinforcement to improve the behaviour of cohesive soil, ade-
quate clay-geogrid interaction must be achieved. Adding geogrid improves the 
cohesive soil’s stability while providing sideways drainage and preventing exces-
sive pore water pressure during saturation. Using geosynthetic materials as filters 
and for material separation is well-recognised (Faure et al. 2006). For a safe and 
economically sensible design of soil reinforcement, it is crucial to understand the 
dynamics between the soil and the reinforcement (Giroud 1986). The effective-
ness of adding geogrids to thin layers of sand has been shown to increase the 
reactivity of clay soils significantly. However, the interactions between cohesive 
soils and geosynthetics have only been the subject of a few investigations (Ber-
gado et al. 1991; Abdi et al. 2009; Chen et al. 2007; Das et al. 1998).

Researchers have developed numerous techniques for analysing slope stability. 
Practices often employed include the limit analysis method, the strength reduction 
approach, and the limit equilibrium method (LEM) (Assefa et al. 2017; Reale et al. 
2015). The factor of safety (FOS) is used by the deterministic LEM and SRM tech-
niques to estimate the slope’s stability of the soil using fixed values for several soil 
properties (Reale et  al. 2015; Das et  al. 2022). Despite repeatedly proven ineffec-
tive, the FOS-based approach generates a careful analysis (Zhao 2008). The soil’s 
uncertainty parameter consists of pore-water pressures, angle of internal friction (φ), 
cohesion (c), bulk density (γ), and external loads, which have not been expressed 
explicitly in the FOS, which is a significant drawback of a deterministic method 
(Zhao 2008). In addition, it is usual to use the evaluated value of the factor of safety 
for a specific type of application, such as long-term slope stability, regardless of the 
magnitude of the calculational error. However, using the same FOS value in situa-
tions with vastly different levels of uncertainty is not reasonable. The main things 
that complicate soil materials are how they react to non-linear stress–strain rela-
tionships, how they change over time in response to stress and strain, and how they 
behave when loaded and unloaded (Majedi et  al. 2021; Afrazi and Yazdani 2021; 
Rezamand et al. 2021; Shariati et al. 2020a). A thorough investigation of geotechni-
cal parameters is required to consider the uncertainty in slope stability estimations. 
In this case, reliability analysis (RA) is a beneficial technique.

Geotechnical assessments can logically account for the uncertainty in soil param-
eters with the help of probability theory and statistics (Cao et al. 2017). Engineers 
have evaluated the performance of geotechnical structures based on this approach. 
Probabilistically calculated reliability index (R) and probability of failure (POF or 
P_f) are often used. The likelihood that the performance standards have not been 
met is the POF (Cao et  al. 2017; Phoon and Ching 2015). Numerous techniques, 
including the first-order second-moment method, have been developed during the 
last few decades to perform RA of geotechnical structures (FOSM) (Cao et al. 2017), 
the first-order reliability method (FORM) (Cao et al. 2017; Phoon and Ching 2015), 
and the direct Monte Carlo simulation (MCS) method (Cao et al. 2017; Phoon and 
Ching 2015; Baecher and Christian 2005). The abovementioned techniques return β 
and P_f of predetermined probabilistic estimates of soil characteristics and subsur-
face stratigraphy as inputs for developing geotechnical structures (Cao et al. 2017). 
However, there has not been much focus on using these techniques to address issues 
with railway slope stability (Assefa et al. 2017).
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The most effective slope RA utilises the FOSM. The FOSM requires the com-
putation of performance functions and their partial derivatives for the fundamen-
tal random variables at each iteration step. As a result, researchers must calculate 
the performance functions and their partial products numerous times (Zhao 2008). 
When the performance functions are defined directly concerning the fundamental 
variables, they can effectively perform such computations. On the other hand, these 
calculations require additional work and may take a while when the performance 
functions are implicit. Implicit performance functions are frequently encountered 
when using LEMs for slope stability analysis (Zhao 2008; Deng 2006; Deng et al. 
2005).

There are a few established methods for handling implicit performance functions. 
The response surface approach is one of them (RSM) (Zhao 2008; He et al. 2020). 
To estimate the implicit performance functions, RSM employs a polynomial func-
tion. A reasonably good approximation of β will be constructed if the designated 
polynomial closely fits the limit state (Zhao 2008). Two other techniques that can 
help improve the accuracy of the results are the multi-tangent plane surface method 
and the multi-plane surface method. However, in non-linear dynamics, they can only 
be used with limit-state surfaces that are concave or convex (Zhao 2008).

Researchers have performed RA of soil slopes. Examples of machine learn-
ing (ML) techniques include the use of least-square SVM, artificial neural net-
work (ANN), multivariate adaptive regression splines (MARS), relevance vector 
machine (RVM), extreme learning machine (ELM), and support vector regression 
(SVR) (Deng 2006; Deng et al. 2005; He et al. 2020; Cho 2009; Kumar et al. 2019). 
Because they are good at non-linear modelling, ML algorithms can simulate slope 
reliability problems well by getting close to the implicit performance functions 
(Zhang et al. 2022; Shariati et al. 2020b, 2021; Safa et al. 2020).

In the present work, a railway embankment of a height of 12.29 (Bardhan and 
Samui 2022) is assumed, in which the embankment layer is made up of cohesive 
soil, and the parameter that affects the railway embankment is based on a factor of 
safety criteria. After selecting parameters, find the range of parameters in which they 
vary. Generate 100 datasets using these parameters to calculate the safety factor for 
the actual data set. These actual data sets are utilised to run on the Geo-Studio soft-
ware using the Bishop, a method to acquire the trend chart of a safety factor. A soft 
computing model consisting of ANN, CNN, DNN, and MLR was used to calculate 
the RA of a 12,293-m-tall Indian railway embankment. The FOSM was used to map 
the soil’s uncertainty by applying probability theory and statistics. The reliability 
and the POF were exclusively computed during non-seismic situations to analyse the 
influence of soil parameter errors.

2 � Methodology

2.1 � Deterministic Analysis

The ratio along a potential slope surface of resistance to disturbance is what 
LEM refers to as a slope’s FOS (Reale et  al. 2015). There are many documented 
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techniques for calculating the FOS, and many of them are based on the slice tech-
nique (Reale et al. 2015). Using the simplified Bishop’s method of slices (Bishop 
1955), a typical profile of a given soil slope’s FOS is depicted in Fig. 1.

Ci and �i have been defined as cohesion and angle of internal friction at the base of 
the ith slice of soil; xi and Wi are the ith slice’s width and weight, respectively; ui is 
the ith slice of the pore water pressure; and αi is the ith slice tangential angle of the 
base. N stands for the total number of slices. It should be mentioned that optimi-
sation or trial-and-error methods are used to determine the minimum safety factor. 
Theoretically, a stable slope has a factor of safety greater than 1. But in practice, the 
stability level is rarely considered sufficient unless the safety factor is far greater 
than 1. It is mainly done to make up for the cumulative effect of parameter uncer-
tainty in the slope stability analysis. The Research Designs and Standards Organiza-
tion (RDSO) of IR recommends that a factor of safety of 1.4 be used as a standard 
measure of protection against slope failure. Smaller embankments up to 4 m in a 
seismic-free environment should have a minimum safety factor of 1.6 for slope sta-
bility (RDSO, GE:IRS-0004 2020).

2.2 � Probabilistic Analysis

Numerous uncertainties might affect a slope stability analysis, including the natural 
geographic variability of soil characteristics, unknowns regarding subsurface stra-
tigraphy, and modelling flaws (He et al. 2020; Cho 2009). Using Statistics and the 
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(Witan�i)

Fig. 1   Geometry of a typical slope
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theory of probability, it is possible to logically incorporate the uncertainties, includ-
ing the intrinsic soil spatial variability in soil properties, into geotechnical designs 
and analysis; minimising these uncertainties in slope stability analysis requires a 
balanced strategy (He et al. 2020; Cho 2009). The dependability of a soil slope is 
quantified to POF or P_f, which, as previously stated, is specified as the chance that 
the performance requirements will not be met. In other words, P_f = P (FOS < 1) 
means that the POF is the likelihood that the minimum safety factor is less than 
unity. Below is a presentation of the completed methodology of applied FOSM. 
Suppose g(x) is the deterministic performance function or model utilised in the sta-
bility of slope study to calculate the factor of safety, where g(x) has a set of random 
variables x = [ x1, x2, x3,… .., xk ], representing uncertain model parameters. There-
fore, the � can be determined as follows (Cao et  al. 2017; Baecher and Christian 
2005):

where �FOS and �FOS are the mean and standard deviation of the factor of safety. The 
�FOS denotes the value of g(x) determined at mean values of �1,�2,�3,… ..,�k of 
random variables x1, x2, x3,… .., xk and can be written as follows:

and the �FOS can be described as follows:

where �i ( i = 1, 2, 3,… .., k ) is the random variables’ standard deviation xi ; �ij is the 
coefficient of correlation between two different uncertain variables, xi and xj ; 

�g

�xi
 is 

the performance function’s partial derivative about xi . Therefore, the POF of slope 
can be depicted as follows:

where Φ is depicted as a function of cumulative standard distribution with a stand-
ard deviation of one and mean 0, usually expressed as z = β ∼ N(0, 12) (Cao et al. 
2017). The calculation of probabilistic slope stability using FOSM is simple. How-
ever, an analytical model for slope stability analysis is required.

3 � Theoretical Details of Soft Computing Methods Used

This section explains how all soft computing techniques operate. The building 
method of all models is illustrated in completing probabilistic studies of a heavy-
haul railway embankment’s soil slope, which is 12.435 m high in an IR dedicated 
freight corridor (DFCC).
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3.1 � Artificial Neural Network

The human brain, specifically how our nervous system’s neurons may retain infor-
mation from the past, is the inspiration for ANNs, who frequently use machine 
learning algorithms (Golafshani et al. 2020; Bardhan et al. 2021). Artificial neural 
networks (ANNs) can conclude data and respond with predictions or classifications 
like humans. One or more hidden layers, one input layer, and one output layer com-
prise an ANN (as shown in Fig. 2). In contrast to computational neurons performing 
linear and non-linear computations in the hidden and output layers, non-computa-
tional neurons collect data in the input layer. Remember that weighted linkages con-
nect each neuron in the input, hidden, and output layers.

Furthermore, the biases in the hidden and output layers are proportional to the 
number of neurons. Inverse relationships exist between the counts of the respective 
input and output variables and the number of neurons in those layers. On the other 
hand, the quantity of neurons in the hidden layers varies from issue to issue and can 
be established through experimentation.

In ANN, for every neuron i, the individual input dataset p1, .., pr are multiplied 
with the corresponding values of weightswi,1, ..,wi,r , and the weighted values are fed 
into the summation function’s junction, where the dot product ( p.W ) of the input 
vector p =

[
p1, .., pr

]T and the weight vector W =
[
wi,1, ..,wi,r

]
 is generated. The bias 

value, b, is added to the dot-product to form the net input n, which is the activation 
function’s argument.

In ANN, given a set of inputs, a non-linear activation function, also known as the 
transfer function, determines the output. The most well-known activation activities 
are listed below.

(6)n = W ∙ p = wi,1p1 + wi,2p2 +⋯ + wi,rpr + b

Fig. 2   A basic ANN architecture with many hidden levels
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The appropriate values of biases and weights are established iteratively to 
reduce the error between calculated and actual values (Zhu et  al. 2021). The 
root mean square error (RMSE) index frequently serves as the fitness function. 
Many training methods, such as gradient descent, conjugate gradient, and Leven-
berg–Marquardt functions, start with random biases and weights and iteratively 
advance to the best possible result. In the literature, ANNs are used extensively 
to address engineering issues (Cho 2009; Golafshani et al. 2020; Bardhan et al. 
2021; Le et al. 2019).

3.2 � Convolutional Neural Network

Researchers primarily developed deep learning algorithms that use convolutional 
neural networks for image and video processing. It uses photos as inputs, extracts 
and learns about the qualities of the pictures, and then, categorises the images 
using the features it has discovered. The visual cortex, a component of the human 
brain responsible for processing external visual input, was used to construct this 
application. The visual cortex in the human brain is responsible for processing 
external visual input. Each level serves a distinct function; for instance, each 
layer extracts data from an image or other graphic. After combining the data 
from those layers, the image or visual undergoes evaluation or classification. The 
CNN model has two steps: feature extraction and classification. The CNN model 
applies various filters and layers to the images during feature extraction to extract 
their information and features. The CNN model then forwards the photos to the 
classification step and categorises them based on the problem’s target variable. 
The CNN model has an input layer, a convolution layer, an activation function, a 
polling layer, and a fully connected layer (Sabri et al. 2023), as shown in Fig. 3.

(7)Sigmoidfunction ∶ f (z) =
1

1 + e−z

(8)Hyperbolictangentfunction ∶ f (z) =
ez − e−z

ez + e−z

Fig. 3   A basic architecture of a CNN
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3.3 � Deep Neural Network

An ANN with several hidden layers (more than one) between the input and output 
layers is known as a deep neural network (DNN). DNNs may represent complex 
non-linear interactions similar to shallow ANNs (Kumar et al. 2023). When dealing 
with practical issues like categorisation, a neural network’s primary operation is to 
take in a set of inputs, analyse those inputs using progressively complex computa-
tions, and then, output the results.

As the diagram below indicates, a deep neural network has a flow of sequential 
data, an input, and an output. Figure 4 depicts the basic structure of DNN.

3.4 � Multiple Linear Regression

Regression analysis is a statistical technique used to forecast the nature of relation-
ships between several variables (Fig. 5). Learning more about the link between sev-
eral independent or predictive factors, together with a dependent variable (Raja et al. 
2021), is the primary goal of MLR. This method frequently forecasts landslides and 
slope failures (Pradhan et al. 2012). In multiple regressions, the criterion is predicted 
by two or more variables, unlike simple linear regression, which indicates a single 
criterion value from one predictor variable. So, examining many independent vari-
ables and the dependent variable correlations is the focus of multiple regressions. 
The general equation of MLR is as follows:

where Y is the dependent variable, x1, x2…..xn is the independent variable, and b1, 
b2…….,bn is the regression coefficient.

4 � Data collection and Analysis

4.1 � Material Properties

The values of the various layers’ material attributes are shown in Table 1 (Bard-
han and Samui 2022) and Fig. 6 for the filling of earthworks. Information on soil 

(9)Y = a + b1x1 + b2x2 + b3x3 +……… . + bnxn

Fig. 4   A basic architecture of a DNN
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parameters, such as cohesion (c in kN/m2), angle of internal friction (ɸ in °), and 
unit weight of soil (γ in kN/m3), was gathered for this inquiry. Information on the 
properties of the embankment fill material prepared, sub-grade, blanket layer, and 
sleeper was also acquired. The blanket layer is 600 mm thick, the prepared sub-
grade is 1000 mm wide, and the varying height of the embankment fill that makes 
up the embankment’s overall height should be noted.

Fig. 5   Multilayer feed-forward network

Table 1   Various soil properties’ 
details

Layer description c (kN/m2) ɸ (o) �(kN/m3)

Blanket layer 0 32 19
Prepared subgrade 10 26 17
Embankment fill 62 10 20.89
Subsoil layers 1 and 2 17.25 15.5 39.5

Fig. 6   DFCC embankment’s typical cross-section (earthwork in the filing)
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Table 1 shows the material properties of various layers. Note that the constant 
material properties of sleepers ( c = 50 kN/m2, ɸ = 40°, and � = 24 kN/m3), bal-
last ( c = 0 kN/m2, ɸ = 40°, and � = 18 kN/m3), and blanket layer ( c = 0 kN/m2, 
ɸ = 32°, and � = 19 kN/m3) were taken into account. The parameter c has a value 
of 17.25 kN/m2 for the sub-soils (layers 1 and 2) and 62 kN/m2 for the prepared 
sub-grade and embankment fill. The four levels are prepared sub-grade, embank-
ment fill, sub-soil layer-1, and sub-soil layer-2. The parameters ɸ and � have the 
values of 26°, 10°, 15.5°, and 17 kN/m3 to 20.89 kN/m3, 39.5 kN/m3, respectively. 
We used Table 1 data to generate random samples for the slope stability experiment. 
We used tri-axial and direct shear tests to determine the soil shear strength values for 
the undisturbed and disturbed samples.

4.2 � 12.29‑m‑High Embankment Details

For the probabilistic analysis, the embankment’s maximum height in this study, 
12.29  m, has been considered. Figure  7 shows the geometry of the slope. We 
selected the study’s critical cross-section based on the embankment’s maximum fill 
height.

After measuring this material property, we measured the pull-out resistance as 75 
kN/m2 and the tensile capacity as 180 kN of geogrid to analyse the data collected 
while comparing the factor of safety with and without encapsulating the geogrid as a 
thin layer in the cohesive soil embankment.

4.3 � Computational Modelling for Slope Stability Analysis

The workflow for the whole methodology utilised to create ML models for the esti-
mation of slope stability of the 12.29 m soil slope is presented in Fig. 8. The proce-
dure consists of two phases. Slope stability analysis was carried out in the first phase 
using various combinations of input parameters, including soil parameters (c, ϕ, and 
γ) for both embankment fill and subsoil layer and geogrid parameters (PR and TC). 

Fig. 7   Geometry of the high embankment’s slope of 12.29 m (all dimensions are in mm)
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We fed each combination, representing a single sample of data, into the GeoStudio 
Slope/W module and used Bishop’s approach to determine the FOS of the slope. 
The output FOS values and the associated input parameters (c, ϕ, γ, PR, and TC) 
were used to create the primary dataset. For slope stability analysis, random samples 
were generated with coefficient of variation values of 0.10 for c, 0.05 for � , 0.04 for 
� , 0.135 for PR, and 0.1 for TC. In particular, 100 datasets were developed consider-
ing the values of c, � , � , PR, and TC. We normalised and divided the entire dataset 
into subgroups for training and testing to construct and validate the employed com-
putational models.

4.4 � AI‑Based Modelling for Probabilistic Analysis

There are two parts to creating AI-based models for the soil slope of 12.29 m using 
probabilistic analysis. In the first step, a slope stability study was conducted utilis-
ing several input parameter combinations, specifically (a) soil parameters (c, ɸ, γ, 
PR, and TC). We applied Bishop’s method to these combinations to calculate the 
FOS of the slope. Each combination represents a single data sample submitted to 
the Geo-Studio Slope/W module. The primary dataset was created by combining 
the output FOS values with their associated input parameters (i.e. c, ɸ, γ, PR, and 
TC). The values of c, ɸ, γ, PR, and TC for three soil layers (i.e. embankment fill, 
sub-soil layer-1, and sub-soil layer-2) were combined to create 100 datasets. The 
entire dataset was then standardised and split into subgroups for training and test-
ing. We randomly selected 70% of the overall dataset as the training subset, and the 
remaining 30% was designated as the testing subset. The testing subgroup evaluated 
the models’ capacity to generalise, while the training subgroup built the models out-
lined above. The best model for forecasting the soil slope’s safety factor was chosen 
(based on the testing subset’s performance), utilising many performance indices.

Fig. 8   Flowchart showing the workflow of model analysis
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5 � Results and Discussion

The results of slope stability analyses, with or without using an encapsulating geo-
grid as a thin layer in the embankment fill of cohesive soil, are presented. Addition-
ally, an assessment of the performances of the constructed models is included. This 
section presents a probabilistic study using the top-performing model with a soil 
slope of 12.29 m.

5.1 � Slope Stability Analysis

As previously mentioned, geotechnical engineering utilises the factor of safety as 
a standard index to evaluate the safety of a slope. The FOS exhibits the smallest 
ratio of resistive and overturning moments among all possible sliding surfaces. We 
completed the deterministic slope stability analysis using the SLOPE/W module of 
the Geo-Studio 2016 program. We randomly generated one hundred datasets using 
the mean values of the soil parameters and entered them into the SLOPE/W mod-
ule to determine the FOS of the specified soil slope. Each dataset’s FOS has been 
estimated. Figure 9 shows the results of slope stability calculations with or without 
geogrid. Annexure provides the data on these safety factors with or without encap-
sulating geogrid.

5.2 � Computational Modelling

The soil parameters (c, ɸ, and γ) and the geogrid parameter (PR and TC) were uti-
lised as the input variables, and the derived FOS values were produced as FOS as 
(clay + geogrid) was used as the output variable. Table 2 lists the specific input and 
output parameters when building models. This study looked into the number of hidden 
layers of NH, which ranged from 5 to 20. We also examined Levenberg–Marquardt 

Fig. 9   Slope stability study of 12-m slopes with or without encapsulating geogrid is demonstrated
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back-propagation and tan-sigmoid activation functions to establish the optimal topol-
ogy of neural networks (NNs). The model utilised eight input parameters throughout.

5.3 � Performance Assessment

We identified and evaluated multiple performance indices to assess the built mod-
els’ performance in calculating the safety factor of the specified soil slope. We com-
puted the following metrics using the corresponding mathematical formulas: the terms 
root mean square error (RMSE), performance index (PI), Nash–Sutcliffe efficiency 
(NS), mean absolute error (MAE), determination coefficient (R2) (Sabri et al. 2023), 
Willmott’s index of agreement(WI), and weighted mean absolute percentage error 
(WMAPE) (Ahmad et al. 2023) are some of those used in statistics.

(10)MAE =
1

n

∑n

i=1

|||
(
ỹi − yi

)|||

(11)NSE = 1 −

∑n

i=1
(yi − ỹi)

2

∑n

i=1
(yi − ymean)

2

(12)PI = adj.R2 + (0.01 × VAF) − RMSE

(13)RMSE =

√
1

n

∑n

i=1
(yi − ỹi)

2

(14)
RSR =

RMSE�
1

n

∑n

i=1
(yi − ymean)

2

Table 2   Input and output 
parameter details considered in 
constructing models

Input/output Layers Parameter Unit

Inputs Embankment fill c 1 kN/m2

ɸ 1 °
� 1 kN/m3

Sub-soil layer-1 c 2 kN/m2

ɸ 2 °
� 2 kN/m3

Geogrid layer PR kN/m2

TC kN
Output Factor of safety FOS -
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where yi and ỹi define actual and modelled ith value, n is the sample numbers, yavg 
is the mean of the actual values and the variance account factor (VAF). It is impor-
tant to note that for a perfect model, these indices’ values should match their ideal 
(Kumar et al. 2019; Bardhan et al. 2021; Raja et al. 2021; Raja and Shukla 2021a, 
2020, 2021b). Furthermore, selecting various indices allows for estimating the 
model’s performance regarding multiple factors, such as variance, accuracy, and the 
error between estimated and actual values.

Table  3 displays the prediction outcomes of the developed models. Table  3 
exclusively presents information on the performance of the models created using 
training data. The RMSE and R2 figures demonstrate that the CNN maintained 
the expected accuracy throughout the training phase (RMSE = 0.00208 and 
R2 = 0.99992). Furthermore, the R2 value indicates that every model achieved 
greater than 90% accuracy, demonstrating an excellent fit to the gathered data-
set. For the best models, CNN (RMSE = 0.00208), DNN (RMSE = 0.0079), ANN 
(RMSE = 0.0283), and MLR (RMSE = 0.0307), regressions of the measured and 
predicted FOS values are provided in Fig. 10 to illustrate the fit further.

After developing the models, a testing subset of the new dataset was used to 
evaluate the generalisation potential. We established the performance indica-
tors to gauge model performance during the training phase for the testing subset. 
Table 4 displays the performance of the testing dataset, where it can be observed 
that the suggested CNN consistently achieved the highest precision (R2 = 0.9746 
and RMSE = 0.0342). The ANN model was determined to be the least efficient, 
with R2 = 0.9430 and RMSE = 0.0558. Figure  11 shows scatterplots for the 
top three models, MLR (RMSE = 0.0387), CNN (RMSE = 0.0342), and DNN 
(RMSE = 0.0398), based on their RMSE values.

(15)WI = 1 −

⎡
⎢⎢⎢⎣

∑n

i=1
(yi − ỹi)

2

∑n

i=1

����ỹi − yavg
��� +

���yi − yavg
���
�2

⎤
⎥⎥⎥⎦

(16)WMAPE =

∑n

i=1

���
yi−ỹi

yi

��� × yi
∑n

i=1
yi

Table 3   Model performance for the training dataset

Models MAE NS PI R2 RMSE RSR WI WMAPE

CNN 0.00170 0.99991 1.99775 0.99992 0.00208 0.00972 0.99998 0.00322
DNN 0.0068 0.9986 1.9912 0.9996 0.0079 0.0370 0.9997 0.0128
ANN 0.0213 0.9826 1.9364 0.9827 0.0283 0.1318 0.9956 0.0381
MLR 0.0252 0.9803 1.9306 0.9815 0.0307 0.1404 0.9951 0.0482
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5.4 � Accuracy Matrix

This section explores using accuracy matrices as a novel graphical method for 
analysing efficiency using a heat map. The matrices incorporate multiple statisti-
cal factors, enabling the estimation of predictive accuracy in testing and train-
ing datasets. During the training and testing phases, Fig.  10 displays the accu-
racy matrices of the models related to FOS. The accuracy matrix compares the 

)b()a(

)d()c(

2.10

2.50

2.90

3.30

2.10 2.50 2.90 3.30

Pr
ed

ict
ed

Measured

ANN
Ideal

2.1

2.5

2.9

3.3

2.1 2.5 2.9 3.3

Pr
ed

ict
ed

Measured

MLR
Ideal

Fig. 10   Regression plots on measured versus predicted values for the training dataset, a CNN, b DNN, c 
ANN, and d MLR

Table 4   Model performance for the testing dataset

Model MAE NS PI R2 RMSE RSR WI WMAPE

CNN 0.0193 0.9746 1.9003 0.9746 0.0342 0.1698 0.9927 0.0351
DNN 0.0173 0.9695 1.9005 0.9720 0.0398 0.1746 0.9924 0.0313
ANN 0.0347 0.9402 1.8236 0.9430 0.0558 0.2446 0.9846 0.0629
MLR 0.0210 0.9712 1.9000 0.9712 0.0387 0.1594 0.9910 0.0369
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performance factor accuracy outcomes to the ideal accuracy in the following 
ways:

where pe represents the acquired values for RMSE, MAE, RSR, and WMAPE; pa 
represents the obtained values for R2, WI, NSE, and PI; and it means the ideal value 
for R2, WI, NSE, and PI. We used Eq. (17) to evaluate the accuracy of the created 
models in terms of RMSE, MAE, RSR, and WMAPE indices. On the other hand, 
Eq. (18) assessed the predictive precision of the developed models in terms of R2, 
WI, NSE, and PI indices.

For instance, the RMSE value of the CNN model was determined to be 
0.0017135; consequently, the accuracy of (1 − 0.0017135) × 100 = 0.9983 × 

(17)Ae = |(1 − ||pe||)| × 100

(18)At =
|pa|
ia

× 100
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Fig. 11   Regression plots on measured versus predicted values for the testing dataset, a CNN, b DNN, c 
ANN, and d MLR
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100 = 99.83% as depicted in Fig.  12a for the CNN model vs. the RMSE index. 
The R2 value of the CNN model was determined to be 0.99996, resulting in an 
accuracy of (0.99996/1) × 100 = 0.99996 × 100 = 100%, as depicted in Fig. 12a.

5.5 � Reliability Analysis

The reliability index is a comparative indicator of the state of things and offers a 
qualitative structural performance assessment. Structures with a relatively high-
reliability index are assumed to work well. In this section, we compute the relia-
bility index independently for the measured and predicted neural network training 
and testing models. The reliability index must be greater than one for a safe and 
dependable situation. We use the first-order reliability (FORM) method to cal-
culate the reliability index. The proposed model exhibits an extremely low fail-
ure probability, indicating a very high level of safety. We compare the reliability 
index values to the actual values and select the model with the slightest diver-
gence between the actual and model values. In the training and testing phase, 
CNN performed the best, followed by DNN, ANN, and MLR. We thoroughly 
calculated the POF by estimating the high-speed heavy-haul freight corridor’s 
12.29-m-high soil slope, as indicated in Annexure. Tables 5and 6 report the reli-
ability index values of the actual and suggested models for training and testing, 
respectively. Figure 13 compares these values.

)b()a(

CNN
(TR)

DNN
(TR)

ANN
(TR)

MLR
(TR)

R2 100.00% 99.96% 98.27% 98.15% 100%

WMAPE 99.73% 98.72% 96.19% 95.24%

NS 99.99% 99.86% 98.26% 98.03%

RMSE 99.83% 99.21% 97.17% 96.93%

VAF 100.00% 99.96% 98.27% 98.07%

PI 99.91% 99.56% 96.82% 96.53% 98%

MAPE 99.63% 98.25% 91.51% 94.10%

WI 100.00% 99.97% 99.56% 99.51%

MAE 99.85% 99.32% 97.87% 97.48%

MBE 99.89% 99.34% 99.86% 99.57%

LMI 99.15% 96.06% 87.70% 85.80% 86%

CNN
(TS)

DNN
(TS)

ANN
(TS)

MLR
(TS)

R2
97.46% 97.20% 94.30% 97.12%

100%

WMAPE 96.36% 96.91% 93.84% 96.53%

NS 97.46% 96.95% 94.02% 97.12%

RMSE 96.58% 96.02% 94.42% 96.13%

VAF 97.46% 97.15% 94.30% 97.12%

PI 95.60% 95.03% 91.18% 95.01%
96%

MAPE 94.68% 93.58% 84.08% 94.21%

WI 99.35% 99.24% 98.46% 99.27%

MAE 97.90% 98.27% 96.53% 98.07%

MBE 100.00% 98.98% 98.79% 99.99%

LMI 88.21% 90.94% 81.80% 89.85% 82%

Fig. 12   Accuracy matrix for FOS prediction. a Training; b testing
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6 � Summary and Conclusion

This research utilised convolutional neural networks (CNN), deep neural networks 
(DNN), artificial neural networks (ANN), and multiple linear regression (MLR) to 
examine the reliability analysis of railway embankments located on clay, focusing on 
a factor of safety criteria. These models were comprehensively evaluated, employ-
ing diverse fitness measures, resulting in enlightening comparisons. The reliability 
index demonstrates that all four models had reliable prediction skills. CNN had a 
notably higher level of performance in comparison to other fitness-based models 
when it came to predicting the safety factor of railway embankments. The strategy is 
a reliable soft computing method for accurately forecasting the slope factor of safety 
for railway embankments composed of clay.

Table 5   Probabilistic analysis 
outcomes in terms of β and POF 
(training)

β/POF CNN DNN ANN MLR

β 7.504 7.478 7.503 7.148
POF 0.00 0.00 0.00 0.00

Table 6   Probabilistic analysis 
outcomes in terms of β and POF 
(testing)

β/POF CNN DNN ANN MLR

β 7.365 7.150 7.307 7.203
POF 0.00 0.00 0.00 0.00
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Fig. 13   Comparison of β values. a Training; b testing
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Furthermore, this technique shows promise for applying to various slope sce-
narios in embankments. The built models demonstrated a high degree of gen-
eralizability, increasing their potential for practical use. Therefore, the existing 
models exhibit potential in forecasting the dependability index of embankment 
slope safety.

The proposed convolutional neural network (CNN) presents several ben-
efits from a computational modelling perspective. These advantages encompass 
enhanced accuracy in predicting outcomes during training and testing stages, 
accelerated convergence, and enhanced ability to generalise to new data. How-
ever, a limitation of the suggested CNN model is the challenge of determining the 
search space for CNN parameters, which imposes restrictions on the movement of 
particles. The investigation of alternate sets of mechanisms of action (MOAs) can 
potentially improve the performance of convolutional neural networks (CNNs), 
given the study’s exclusive emphasis on supervised learning methods. In addition, 
a thorough probabilistic examination of soil slope should include pertinent factors 
such as pore-water pressure, the width of the embankment at its upper and lower 
sections, the angle of the side slope, and the height of the embankment. By adopt-
ing a more inclusive methodology, the slope reliability assessment can be con-
ducted by utilising a well-established machine learning-based model. Moreover, 
the prospective utilisation of a hybrid machine learning paradigm in forthcoming 
research exhibits possibilities for additional progressions.

Annexure

Calculating the reliability index (β) and the failure probability (POF).

	1.1.	 Determination of β and POF

Steps: The following steps can be followed:

a)	 Generation of random values of c 1, ɸ 1, � 1, c 2, ɸ 2, � 2, PR, and TC
b)	 Calculation of FOS using CNN, DNN, ANN, and MLR.
c)	 Calculate �FOS and �FOS.
d)	 Calculation of � and POF as per Eq. (2) and Eq. (5), respectively.

Tables 7, 8 and 9
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Table 7   Generated soil 
parameters and estimated FOS

c
1

ɸ1 �
1

c
2

ɸ2 �
2

PR TC FOS

10.57 25.45 17.30 0 25.76 19.01 0 31.69 1.669
58.49 8.46 20.36 15.44 15.31 38.34 75.21 190.55 2.68
55.15 8.15 21.33 16.72 16.64 40.13 71.30 168.45 2.70
75.00 8.79 21.72 19.27 14.66 40.92 74.60 195.74 2.89
55.51 11.18 20.67 11.88 15.48 39.41 55.08 204.66 2.59
72.24 10.77 19.71 18.47 15.14 40.99 69.48 184.05 3.03
75.69 10.86 21.34 14.53 15.74 38.52 77.60 193.30 2.83
55.18 11.60 20.58 14.39 15.02 39.52 92.06 146.85 2.56
67.29 9.92 19.85 20.66 15.57 42.05 77.42 153.18 3.04
68.46 11.61 20.16 21.75 15.98 39.93 67.82 164.91 3.10
64.59 9.50 20.57 22.37 15.55 39.60 85.73 178.51 3.00

Table 8   Normalised soil parameters and estimated FOS

c
1

ɸ1 �
1

c
2

ɸ2 �
2

PR TC FOS

0.5022 0.1156 0.3812 0.4794 0.5839 0.2373 0.4775 0.5368 0.4452
0.4476 0.0541 0.6860 0.5585 0.7456 0.5565 0.3913 0.2911 0.4634
0.7718 0.1816 0.8077 0.7161 0.5050 0.6978 0.4640 0.5946 0.6316
0.4535 0.6544 0.4785 0.2603 0.6043 0.4280 0.0336 0.6938 0.3629
0.7267 0.5736 0.1759 0.6667 0.5627 0.7089 0.3510 0.4646 0.7669
0.7830 0.5910 0.6902 0.4234 0.6355 0.2698 0.5302 0.5675 0.5841
0.4481 0.7377 0.4477 0.4151 0.5480 0.4475 0.8490 0.0509 0.3382
0.6459 0.4055 0.2200 0.8013 0.6145 0.8981 0.5262 0.1213 0.7706
0.6649 0.7401 0.3166 0.8689 0.6646 0.5204 0.3145 0.2517 0.8282
0.6017 0.3213 0.4475 0.9067 0.6124 0.4622 0.7095 0.4029 0.7331

Table 9   FOS with or without 
Geogrid

SN Clay Clay-geogrid

1 2.393 2.681
2 2.393 2.701
3 2.633 2.885
4 2.278 2.591
5 2.767 3.033
6 2.583 2.833
7 2.339 2.564
8 2.801 3.037
9 2.856 3.100
10 2.732 2.996
11 2.825 3.092
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