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Abstract The study of superoscillations naturally leads to the analysis of a large class of convolution operators
acting on spaces of entire functions. In particular, the key point is often the proof of the continuity of these operators
on appropriate spaces. Most papers in the current literature utilize abstract methods from functional analysis to
establish such continuity. In this paper, on the other hand, we rely on some recent advances in the study of entire
functions, to offer explicit proofs of the continuity of such operators. To demonstrate the applicability and the
flexibility of these explicit methods, we will use them to study the important case of superoscillations associated
with quadratic Hamiltonians. The paper also contains a list of interesting open problems, and we have collected as
well, for the convenience of the reader, some well-known results, and their proofs, on Gamma and Mittag–Leffler
functions that are often used in our computations.

Keywords Superoscillations · Entire functions · Infinite order differential operators

1 Introduction

The notion of superoscillatory behavior first appears in a series of works of Aharonov and Berry, see [1,12,13,18–
20]. In this context, there are good physical reasons for such a behavior, but the discoverers pointed out the
apparently paradoxical nature of such functions, thus opening the way for a more thorough mathematical analysis
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of the phenomenon. In the last years, superoscillations have been systematically studied also from the mathematical
point of view, see [2–8,11,22] and the monograph [9].

The classical example of superoscillatory function is the following: let a > 1 be a real number, we define the
sequence of complex valued functions Fn(x, a) defined on R by

Fn(x, a) =
(
cos

( x

n

)
+ ia sin

( x

n

))n =
n∑

k=0

Ck(n, a)ei(1−2k/n)x , (1)

where

Ck(n, a) =
(

n

k

)(
1 + a

2

)n−k (
1 − a

2

)k

, (2)

and
(n

k

)
denotes the binomial coefficients. The first thing one notices is that if we fix x ∈ R, and we let n go to

infinity, we immediately obtain that

lim
n→∞ Fn(x, a) = eiax .

Moreover, it is not difficult to see that such convergence is uniform on all compact sets in R but it is not uniform on
all of R, see [3]. The representation in terms of ei(1−2k/n)x , together with the calculation of the limit of Fn(x, a)

when n goes to infinity, explains why such a sequence is called superoscillatory.
There are several mathematical problems associated with superoscillations and the list, far from being complete,

is as follows:

(I) Since superoscillations arise naturally in the context of quantum mechanics, it is important to study the
evolution of superoscillatory functions under Schrödinger equation with different potential.

(II) The creation of larger classes of superoscillating functions that extend the fundamental example we described
above.

(III) The study of superoscillatory functions in several variable.
(IV) The approximation of the Schwartz test functions and distributions by bounded limited functions associated

with superoscillations.
(IV) The approximation of Sato’s hyperfunctions by bounded limited functions associated with superoscillations.
(V) The approximation of fractal functions by superoscillations.

The above problems have been under investigations by several authors so that the theory of superoscillations has
now become also a mathematical theory.

A common denominator of the above-mentioned problems is that their understanding always relies on the study
of the continuity of classes of convolution operators, which appear naturally in connection with the superoscillating
functions. These convolution operators mostly operate on spaces of entire functions with growth conditions, to
which we will dedicate the next section.

To bemore precise, the study of the evolution of superoscillations requires to determine the continuity of operators
like

Pλ(t, ∂z) =
∞∑

n=0

λ(t)n

n! ∂
pn
z ,

where λ(t) is a given bounded function for the parameter t ∈ [0, T ], and p is a natural number. We will consider
these operators as acting on the analytic extension to C of the functions Fn(x, a).

For historical reasons, the continuity of such convolution operators has been deduced by the theory of the Fourier
transform. It turned out that in several cases it is necessary to study convolution operator with coefficients that
depend also on the variable z ∈ C so we had to study operators of the form

Q(t, z, ∂z) =
∞∑

n=0

an(t, z)∂ pn
z ,
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Continuity of some operators arising in the theory of superoscillations 465

where {an(t, z)}n∈N0 are entire functions in z depending on the parameter t ∈ [0, T ]. In this case, we found useful
to develop a more direct method that avoids the use of the Fourier transform but uses just the theory of holomorphic
functions. This fact has reduced enormously the theoretical tools also for the case of constant coefficients convolution
operators that can now be more accessible to audience of non-specialists. For this reason, we compute explicitly a
couple of examples to show how these techniques work. Precisely, we show explicitly the continuity of the operators
Pλ(t, ∂z) defined above and of the operator

U (t, ∂z) =
∞∑

m=0

(−i t/2)m

m! (t + ∂z)
m∂m

z

that appears in the evolution of superoscillations in uniform electric field. We conclude this introduction with some
bibliographical remarks on recent applications of this theory to different potentials: while the historical development
is described in [15], we refer the reader to [22] for the evolution of superoscillations in magnetic field and to [23]
for the case of the centrifugal potential. As far as the relations between superoscillations and theory of distributions
and hyperfunctions is concerned, the most recent progress is obtained in [24,25]. Finally, an historical introduction
to superoscillatory function theory is given in [14].

2 Continuity of the convolution operator Pλ(t, ∂z)

Let f be a non-constant entire function of a complex variable z. We define

M f (r) = max|z|=r
| f (z)|, for r ≥ 0.

The non-negative real number ρ defined by

ρ = lim sup
r→∞

ln ln M f (r)

ln r

is called the order of f . If ρ is finite then f is said to be of finite order and if ρ = ∞ the function f is said to be of
infinite order.

In the case f is of finite order we define the non-negative real number

σ = lim sup
r→∞

ln M f (r)

rρ
,

which is called the type of f . If σ ∈ (0,∞) we call f of normal type, while we say that f is of minimal type if
σ = 0 and of maximal type if σ = ∞.

Definition 2.1 Let p be a positive number. We define the class A1 to be the set of entire functions such that there
exists C > 0 and B > 0 for which

| f (z)| ≤ C exp(B|z|), ∀z ∈ C.

To prove our main results we need an important lemma that characterizes the coefficients of entire functions with
growth conditions.

Lemma 2.2 The function

f (z) =
∞∑
j=0

f j z
j

belongs to A1 if and only if there exists C f > 0 and b > 0 such that

| f j | ≤ C f
b j

�( j + 1)
.
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Lemma 2.2 has been proved in [16] and is a crucial fact in what follows.
We now study, for p ∈ N, the following operator:

Pλ(t, ∂z) =
∞∑

n=0

λ(t)n

n! ∂
pn
z ,

where λ(t) is a complex valued bounded function for t ∈ [0, T ] for some T ∈ (0,∞) on the space of entire
functions of exponential type. The main result is the following theorem.

Theorem 2.3 Let λ(t) be a bounded function for t ∈ [0, T ] for some T ∈ (0,∞) and let f ∈ A1. Then, for p ∈ N,
we have Pλ(t, ∂z) f ∈ A1 and Pλ(t, ∂z) is continuous on A1, that is Pλ(t, ∂z) f → 0 as f → 0.

Proof Let us consider

Pλ(t, ∂z) f (z) =
∞∑

n=0

λ(t)n

n! ∂
pn
z f (z)

=
∞∑

n=0

λ(t)n

n! ∂
pn
z

∞∑
j=0

f j z
j

=
∞∑

n=0

λ(t)n

n!
∞∑

j=pn

f j
j !

( j − pn)! z j−pn

=
∞∑

n=0

λ(t)n

n!
∞∑

k=0

f pn+k
(pn + k)!

k! zk

and now we take the modulus

|Pλ(t, ∂z) f (z)| ≤
∞∑

n=0

|λ(t)|n
n!

∞∑
k=0

| f pn+k | (pn + k)!
k! |z|k

and using Lemma 2.2 on the coefficients f pn+k we have the estimate

| f pn+k | ≤ C f
bpn+k

�(pn + k + 1)

and using the gamma function estimate, see the Appendix,

(a + b)! ≤ 2a+ba!b!
we also have

(pn + k)! ≤ 2pn+k(pn)!k!
so we get

|Pλ(t, ∂z) f (z)| ≤
∞∑

n=0

|λ(t)|n
n!

∞∑
k=0

C f
bpn+k

�(pn + k + 1)

2pn+k(pn)!k!
k! |z|k .

We now use the estimate, see the Appendix,

1

�(a + b + 2)
≤ 1

�(a + 1)

1

�(b + 1)

to separate the two series, so we have

1

�(pn − 1
2 + k − 1

2 + 2)
≤ 1

�(pn + 1
2 )

1

�(k + 1
2 )
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and so

|Pλ(t, ∂z) f (z)| ≤ C f

∞∑
n=0

((2b)p|λ(t)|)n

n!
(pn)!

�(pn + 1
2 )

∞∑
k=0

1

�(k + 1
2 )

(2b|z|)k .

Now observe that the series in k satisfies the estimate
∞∑

k=0

1

�(k + 1
2 )

(2b|z|)k ≤ Ce2b|z|

because of the properties of the Mittag–Lefler function, see the Appendix, for some constant C > 0. Now we have
to show that the series in n is convergent. In fact, we have that the series

∞∑
n=0

((2b)p|λ(t)|)n

n!
(pn)!

�(pn + 1
2 )

has positive terms, so we study the asymptotic behavior. Set

An := ((2b)p|λ(t)|)n

n!
(pn)!

�(pn + 1
2 )

and recall the duplication formula for the Gamma function

�(pn)�(pn + 1

2
) = 21−2pn√

π�(2pn)

we set

An := ((2b)p|λ(t)|)n

n!
(pn)!�(pn)

21−2pn
√

π�(2pn)

from the functional equation of the gamma function z�(z) = �(z + 1) we also have

An := ((2b)p|λ(t)|)n

n!
(pn)!

21−2pn
√

π

�(pn+1)
pn

�(2pn+1)
2pn

An := ((8b)p|λ(t)|)n

n!
(pn)!√

π

�(pn+1)
pn

�(2pn+1)
pn

An := ((8b)p|λ(t)|)n

n!
(pn)!√

π

�(pn + 1)

�(2pn + 1)

and so

An := ((8b)p|λ(t)|)n

n!
(pn)!√

π

(pn)!
(2pn)!

and using the Stirling formula m! ∼
√
2πm(m/e)m we get

An ∼
((8b)p|λ(t)|)n

n!
(pn)!√

π

(pn)!
(2pn)!

∼
1√
π

((8b)p|λ(t)|)n

n!
[√2πpn(pn/e)pn]2√
2π2pn(2pn/e)2pn

∼
1√
π

((8b)p|λ(t)|)n

n!
√

pπn

4pn

∼
√

p
((2b)p|λ(t)|)n

n!
√

n,
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so the series is convergent. So we set

Gλ(t) :=
∞∑

n=0

((2b)p|λ(t)|)n

n!
(pn)!

�(pn + 1
2 )

and we obtain the estimate

|Pλ(t, ∂z) f (z)| ≤ C f Gλ(t)Ce2b|z|.

This tells that Pλ(t, ∂z) takes A1 into A1 and the continuity follows from the fact that for C f → 0 we have
|Pλ(t, ∂z) f (z)| → 0. 	


2.1 Some applications

(I) In the case of the harmonic oscillator we have to study the continuity of the operator

U (t, ∂z) :=
∞∑

n=0

1

n!
(

i

2
sin t cos t

)n
∂2n

∂z2n
, (3)

so the above results apply for p = 2 and λ(t) = i
2 sin t cos t .

(II) Another example with time-depending coefficients is the following Cauchy problem:

im−1 ∂

∂t
ψ(x, t) = λ′(t) ∂m

∂xm
ψ(x, t), ψ(x, 0) = Fn(x, a)

where λ(0) = 0 and λ ∈ C1, using the Fourier transform method we can find the solution that is given by

ψn(x, t) =
n∑

k=0

Ck(n, a)ei x(1−2k/n)eiλ(t)(1−2k/n).

The solution can be written as

ψn(z, t) = U (t, ∂z)Fn(z, a)

where

U (t, ∂z) =
∞∑

	=0

(iλ(t))	

	! ∂m	
z .

3 The case of the operator of the electric field

In the paper [10], we have considered the evolution of superoscillations and as a corollary of Theorem 3.6 in [10]
we have the following known result:

Corollary 3.1 Let a > 1. Then the solution of the Cauchy problem

i∂tψ(t, x) = −1

2
∂2x ψ(t, x) − xψ(t, x), ψ(0, x) =

n∑
k=0

Ck(n, a)ei x(1−2k/n), (4)

is given by

ψn(t, x) =
n∑

k=0

Ck(n, a)e−i t3/6 e−i(1−2k/n)t ((1−2k/n)+t)/2ei((1−2k/n)+t)x . (5)
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Moreover,

lim
n→∞ ψn(t, x) = e−i t3/6 e−iat (a+t)/2ei(a+t)x .

To show the last part of the above theorem, that is, to compute the limit

lim
n→∞ ψn(t, x) = e−i t3/6 e−iat (a+t)/2ei(a+t)x

one has to write the solution (5) in terms of convolution operators. Indeed, considering the series expansion

e−i(1−2k/n)t ((1−2k/n)+t)/2 =
∞∑

m=0

1

m! (−i(1 − 2k/n)t ((1 − 2k/n) + t)/2)m,

we observe that the functions

ψn(t, x) = e−i t3/6 ei t x
n∑

k=0

Ck(n, a)e−i(1−2k/n)t ((1−2k/n)+t)/2ei x(1−2k/n) (6)

can be written in the following way:

U (t, ∂z) =
∞∑

m=0

(−i t/2)m

m! (t + ∂z)
m∂m

z

(when passing to the complex variable z). Thus, the solution becomes

ψn(t, z) = e−i t3/6 ei t zU (t, ∂z)Fn(z, a).

The aim of this section is to give a direct proof of the continuity of the operator U .

Theorem 3.2 The operator

U (t, ∂z) =
∞∑

m=0

(−i t/2)m

m! (t + ∂z)
m∂m

z

acts continuously from A1 into itself.

Proof We have

U (t, ∂z) f (z) =
∞∑

m=0

(−i t/2)m

m! (t + ∂z)
m∂m

z

∞∑
j=0

f j z
j

and

U (t, ∂z) f (z) =
∞∑

m=0

(−i t/2)m

m! (t + ∂z)
m∂m

z

∞∑
j=0

f j z
j

=
∞∑

m=0

(−i t/2)m

m!
m∑

	=0

(
m

	

)
tm−	∂	+m

z

∞∑
j=0

f j z
j

=
∞∑

m=0

(−i t/2)m

m!
m∑

	=0

(
m

	

)
tm−	

∞∑
j=	+m

f j
j !

( j − 	 − m)! z j−	−m

=
∞∑

m=0

(−i t/2)m

m!
m∑

	=0

(
m

	

)
tm−	

∞∑
k=0

fm+	+k
(m + 	 + k)!

k! zk .
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With similar computations, as we did in Theorem 2.3, we get

|U (t, ∂z) f (z)| ≤ C f

∞∑
m=0

(|t |/2)m

m!
m∑

	=0

(
m

	

)
|t |m−	

∞∑
k=0

bm+	+k

�(m + 	 + k + 1)

2m+	+k(m + 	)!k!
k! |z|k,

and, therefore,

|U (t, ∂z) f (z)| ≤ C f

∞∑
m=0

(b|t |)m

m!
m∑

	=0

(
m

	

)
|t |m−	(2b)	

(m + 	)!
�(m + 	 + 1

2 )

∞∑
k=0

(2b|z|)k

�
(
k + 1

2

) .

Now we observe thanks to the duplication formula

(m + 	)!
�(m + 	 + 1

2 )
= 4m+	 (m + 	)!

2
√

π

�(m + 	)

�(2(m + 	))

and the functional equation of the gamma function z�(z) = �(z + 1)

(m + 	)!
�(m + 	 + 1

2 )
= 4m+	 (m + 	)!

2
√

π

�(m+	+1)
m+	

�(2(m+	)+1)
2(m+	)

which gives

(m + 	)!
�(m + 	 + 1

2 )
= 4m+	 (m + 	)!√

π

(m + 	)!
(2(m + 	))!

but since

(n!)2
(2n)! ≤ 1,

we get

(m + 	)!
�(m + 	 + 1

2 )
≤ 4m+	.

So the estimate of the operator becomes

|U (t, ∂z) f (z)| ≤ C f

∞∑
m=0

(b|t |)m

m!
m∑

	=0

(
m

	

)
|t |m−	(2b)	4m+	

∞∑
k=0

(2b|z|)k

�
(
k + 1

2

)

and since, see the Appendix,

∞∑
k=0

(2b|z|)k

�(k + 1
2 )

≤ Ce2b|z|

we have

|U (t, ∂z) f (z)| ≤ C f

∞∑
m=0

(4b|t |)m

m!
m∑

	=0

(
m

	

)
|t |m−	(8b)	Ce2b|z|

but
m∑

	=0

(
m

	

)
|t |m−	(8b)	 = (|t | + 8b)m,
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we finally get

|U (t, ∂z) f (z)| ≤ C C f e
4b|t |(|t |+8b) e2b|z|

and so we get the statement. 	


The above proof can be adapted to more general problems like the case when we have the fourth-order operator as
in the following example, already considered in [10].
Let a > 1, then the solution of the Cauchy problem

i∂tψ(t, x) = −1

2
∂2x ψ(t, x) − 3

8
∂4x ψ(t, x) − xψ(t, x), ψ(0, x) =

n∑
k=0

Ck(n, a)ei x(1−2k/n),

is given by

ψn(t, x) =
n∑

k=0

Ck(n, a)e−i t3/6 e−i(1−2k/n)t ((1−2k/n)+t)/2ei((1−2k/n)+t)x ei 3
40 [(t+a)5−a5]. (7)

Moreover, we have

lim
n→∞ ψn(t, x) = e−i t3/6 e−iat (a+t)/2ei(a+t)xei 3

40 [(t+a)5−a5].

4 Some open problems on superoscillations

4.1 Approximations of the Weierstrass function

This problem is suggested by a paper of Berry andMorly-Short [17], where they propose to study the representation
of fractal function by band-limited sequences of superoscillatory functions. We consider the Weierstrass fractal
function

W (x, D, γ ) =
∞∑

m=0

cos(γ m x)

γ m(2−D)

where γ > 1 and D ∈ (1, 2) is the fractal dimension of the graph of the function W . Wewill use the superoscillatory
function Fn(x, a)n to approximate the function W . We recall that uniformly on the compact sets of R we have

lim
n→∞ Fn(x, a) = eiax .

By the Euler identity we have that

W (x, D, γ ) =
∞∑

m=0

Re(eiγ m x )

γ m(2−D)
,

so we consider the following problem.

Problem 4.1 For γ > 1 and D ∈ (1, 2), approximate uniformly on the compact sets of R the function

w(x, D, γ ) =
∞∑

m=0

eiγ m x

γ m(2−D)

by the band-limited sequence.
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472 T. Aoki et al.

We observe that

w(x, D, γ ) =
∞∑

m=0

eiγ m x

γ m(2−D)
=

∞∑
m=0

1

γ m(2−D)
lim

n→∞ Fn(x, γ m)

but as we will show in the next few lines, one cannot directly exchange the series and the limit. Indeed observe that

w̃(x, D, γ ) = lim
n→∞

∞∑
m=0

1

γ m(2−D)
Fn(x, γ m)

w̃(x, D, γ ) = lim
n→∞

∞∑
m=0

1

γ m(2−D)

n∑
j=0

C j (n, γ m)e
i x

(
1− 2 j

n

)

and also

w̃(x, D, γ ) = lim
n→∞

n∑
j=0

∞∑
m=0

1

γ m(2−D)
C j (n, γ m)e

i x
(
1− 2 j

n

)
.

So we obtain

w̃(x, D, γ ) = lim
n→∞

n∑
j=0

K j (n, γ, D)e
i x

(
1− 2 j

n

)

where we set

K j (n, γ, D) :=
∞∑

m=0

1

γ m(2−D)
C j (n, γ m),

so we have to compute

K j (n, γ, D) :=
∞∑

m=0

1

γ m(2−D)
C j (n, γ m).

Since

C j (n, γ m) :=
(

n

j

) (
1 + γ m

2

)n− j (
1 − γ m

2

) j

we have

K j (n, γ, D) :=
(

n

j

) ∞∑
m=0

1

γ m(2−D)

(
1 + γ m

2

)n− j (
1 − γ m

2

) j

,

and one immediately sees that the series
∞∑

m=0

1

γ m(2−D)

(
1 + γ m

2

)n− j (
1 − γ m

2

) j

diverges. But we observe that with the new representation

lim
n→∞

n∑
j=0

C j (n, γ 1/m)ei t (1−2 j/n)m2 = ei tγ m

the series

L j (n) :=
∞∑

m=0

1

γ m(2−D)

(
1 + γ 1/m

2

)n− j (
1 − γ 1/m

2

) j

converges. The problem is to see if it converges to the Weierstrass fractal function.
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Continuity of some operators arising in the theory of superoscillations 473

4.2 The case of continuous Fn(x, a)

Another interesting problem is to replace the discrete sequence Fn(x, a) by its continuous counterpart that is
obtained by replacing the index n with a continuous variable u. In this case, the expression for Fn becomes

Fu(x, a) =
∫ u

0

(
u

y

) (
1 + a

2

)u−y (
1 − a

2

)y

ei x(1−(2y)/u)dy

where(
u

y

)
= �(u + 1)

�(u − y + 1)�(y + 1)
,

and one would want to study the properties of this family of functions in the same spirit as what has been done so
far.

Appendix

We state in this section some well-known results on the gamma function and the Mittag–Leffler functions that we
have used in the proofs.

Lemma 5.1 Let j , k ∈ N, then we have

( j + k)! ≤ 2 j+k j !k!.
Proof Let

(p
j

)
be the binomial coefficients, then it is well known that from the Newton binomial formula, we have

2p =
p∑

j=0

(
p

j

)
=

p∑
j=0

p!
j !(p − j)! ,

so

p!
j !(p − j)! ≤ 2p

and setting p − j = k we get the statement. 	

Lemma 5.2 Let n, k ∈ N, then we have

�(n + 1)�(k + 1) ≤ �(n + k + 2).

Proof Let

B(p, q) :=
∫ 1

0
t p−1(1 − t)q−1dt

be the beta function B. Its relation with the gamma function � is given by

B(p, q) = �(p)�(q)

�(p + q)
.

This can be shown in two steps. First, with the change of variable t = cos2(ϑ) the beta function can be written as

B(p, q) = 2
∫ π/2

0
cos2p−1(ϑ) sin2q−1(ϑ) dϑ

Second, we observe that

�(p)�(q) =
∫ ∞

0
e−t t p−1 dt

∫ ∞

0
e−ssq−1 ds
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and with the change of variables

t = r2 cos2(ϑ), s = r2 sin2(ϑ)

the previous formula becomes

�(p)�(q) = 4
∫ π/2

0

∫ ∞

0
r2p+2q−1e−r2 cos2p−1(ϑ) sin2q−1(ϑ) dϑ dr.

By setting r2 = u in the above relation we obtain

�(p)�(q) = �(p + q)B(p, q).

Finally, we observe that

�(n + 1)�(k + 1)

�(n + k + 2)
= B(n + 1, k + 1) ≤

∫ 1

0
tn(1 − t)kdt ≤

∫ 1

0
dt = 1;

since, for t ∈ [0, 1] it is tn(1 − t)k ≤ 1, and this ends the proof. 	

We conclude with a useful estimate that we have not used in this paper, but it enters into several problems in

convolution operators associated with superoscillations.

Lemma 5.3 Let q ∈ [1,∞). Then we have

�
(n

q
+ 1

)
≤ (n!)1/q .

Proof It is a direct consequence of Hölder inequality. Consider p and q such that 1/p + 1/q = 1, observe that

�
(n

q
+ 1

)
=

∫ ∞

0
e−t tn/q dt

=
∫ ∞

0
e−t (1/p+1/q)tn/q dt,

so we obtain

�

(
n

q
+ 1

)
=

∫ ∞

0
e−t/q tn/q e−t/p dt

≤
(∫ ∞

0
e−t tn dt

)1/q (∫ ∞

0
e−t dt

)1/p

=
(∫ ∞

0
e−t tn dt

)1/q

= (n!)1/q .

	


On the Mittag–Leffler function

The Mittag–Leffler function is defined by its power series

Eα(z) =
∞∑

k=0

zk

�(αk + 1)
, α ∈ C, Re(α) > 0.

The series converges in the whole complex plane for all α ∈ C, Re(α) > 0. For all Re(α) < 0 it diverges
everywhere onC\{0}. For Re(α) = 0 the radius of convergence is R = eπ |I m(α)|/2. The most interesting fact is that
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for Re(α) > 0 the Mittag–Leffler function is an entire function of finite order. Indeed using Stirling’s asymptotic
formula

�(αk + 1) = √
2π(αk)αk+1/2e−αk(1 + o(1)), for k → ∞,

so that for

ck = 1

�(αk + 1)

for α > 0 we have

lim sup
k→∞

k ln k

ln 1
|ck |

= lim sup
k→∞

k ln k

ln |�(αk + 1)| = 1

α

and

lim sup
k→∞

(
k1/ρ k

√|ck |
)

= lim sup
k→∞

(
k1/ρ k

√
1

|�(αk + 1)|

)
= (e/α)α.

This means that:
for each α ∈ C such that Re(α) > 0 the Mittag–Leffler function is an entire function of order ρ = 1/Re(α) and of
type σ = 1.
This function provides a generalization of the exponential function because we replace k! = �(k + 1) by (αk)! =
�(αk + 1) in the denominator of the power terms of the exponential series. A useful generalization that we have
used in the computations of this paper is the two-parametric Mittag–Leffler function

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
, α, β ∈ C, Re(α) > 0.

The function Eα,β(z) for α, β ∈ C and Re(α) > 0 is an entire function of ρ = 1/Re(α) and of type σ = 1 for
every β ∈ C.
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