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Abstract TheBell–Kochen–Specker (BKS) theoremand themore recentψ-epistemic no-go theorems ofQuantum
Mechanics (QM) are discussed in the context of entropic dynamics. In doing so we find that the BKS theorem allows
for, a perhaps overlooked, hybrid-contextual model of QM in which one set of commuting observables (position
in this case) is non-contextual and all other observables are contextual. Entropic Dynamics is in a unique position
as compared to other foundational theories of QM because it derives QM using standard techniques in Bayesian
probability theory. In this formalism, position is the preferred basis from which inferences about other contextual
operators are made. This leads to the interpretation that Entropic Dynamics is a hybrid-contextual model of QM,
which we show to be consistent with the BKS theorem and QM.

Keywords Quantum Contextuality · Quantum measurement · Quantum foundations · Quantum information ·
Probability theory

1 Introduction

Quantum Mechanics is an odd mix of the predictable and unpredictable. On one hand, it is hugely successful in
its ability to predict the set of eigenvalues, expectation values, and operators for a particle-system of interest. On
the other hand, each measurement holds some amount of unpredictability, quantified by a probability distribution,
except for a few trivial cases. This unpredictable nature leaves a space for the many interpretations of QM to coexist
inharmoniously within the community—a community, no doubt, easily bothered by disharmony of any-type.

The community reduces and organizes this disharmony by ruling out interpretations and foundational theories of
QM that disagree with the predictable findings of QM. This is done by first making a few reasonable assumptions a
theory of QM may obey, and then by showing these assumptions lead to contradictions in the formalism, construct
a no-go theorem. This is the basis of the Bell inequalities [4], the BKS theorem [5,23,25], as well as the findings
of Pusey–Barret–Rudolph (PBR) [28] (reviewed in [24]) on the epistemic interpretation of the wavefunction. Post-
analysis, the final results are sometimes tabulated in 2 by 2 tables—for example:
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2 K. Vanslette

ψ-ontic ψ-epistemic
contextual A B

noncontextual C D
,

and are followed by statements like, “theories of type “C” or “D” are ruled out by the BKS theorem and “B” is ruled
out by PBR”. A reader may be inclined to conclude that QMmust be a theory of type “A” (potential interpretation of
Bohmianmechanics). The 2 by 2 is by nature an over simplification; it fails to span the entire set of plausible theories,
and consequently interpretations, of QM. This is due the fact that no-go theorems are proofs by contradiction, and
only theories which strictly adhere to their (shown invalid) assumptions are ruled out.

In particular, this paper will show entropic dynamics (ED) to be a theory of QM which lies on the line between
theories “B” and “D”, while not being ruled out by any of the aforementioned no-go theorems. We classify ED
as a hybrid-contextual theory of QM because positions are treated noncontextually while all other observables are
treated contextually—the main result of this paper. In the same way, other theories and interpretations of QM may
slip between the cracks of these no-go theorems, which reopens the perhaps presumed closed universe of discourse
for a few edge theories and interpretations of QM.

ED will be reviewed briefly as it pertains to the no-go theorems of interest. New insights into how these no-go
theorems are handled within ED will be presented and some critiques will be given. The sense in which a theory
can be hybrid-contextual and still obey QM will be discussed.

2 Entropic dynamics

The axioms of a foundational Physics program must in large originate from outside of Physics or else one runs the
risk of “using Physics to derive Physics”. In this sense, ED is a foundational framework for Physics [8,9]. Starting
from the laws (or axioms) of probability theory, probability updating, and inference methods [8,9,12,18–20], ED
is able to reformulate parts of Physics as tools for inference [8,9,17]. It should be noted that ED is not an “be all
end all” for Physics—rather it generates models for inference that happen to be consistent with Physics. Along a
similar line of thought, the “discoveries” in ED are the inferential constraints and pertinent information required to
obtain Physics from probability theory rather than the physics equations themselves. Current and future research
in ED involves formulating other well known laws of Physics, attempting to refine and strengthen methods in ED
[7], and using ED to address conceptual or paradoxical issues in Physics—the later being the central focus of this
article.

Here we are interested in the constraints and assumptions required to derive QM from the first principles of
inference and probability updating.1 We will briefly review the aspects of ED pertaining to the no-go theorems of
interest. The full derivation of QM from ED may be found in [9].

2.1 From ED to QM

The first step in any inferences problem is to state the universe of discourse, the set of possible outcomes or
microstates, one would like to infer on the basis of incomplete information. To derive quantum mechanics (in flat
space) the universe of discourse spanned by N particles are their positions in a flat Euclidean space X (metric δab).
Our knowledge of the positions of particles is characterized by a probability density ρ(x) where x is a coordinate
in a 3N dimensional configuration space of particle coordinates xan , where a = 1, 2, 3 denotes the ath spacial axis
of the nth particle’s position. When convenient we use a super-index notation x A ≡ xan , where A = (n, a), and the
Einstein summation convention. From the onset, particles have definite yet unknown positions and are treated as

1 Other fields of Physics (Statistical Mechanics, QFT, ect.) have different relevant informational constraints in ED due to differences
in phenomenology [8,17].
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Entropic dynamics: a hybrid-contextual model... 3

the “physical” or “ontological” quantities we are interested in inferring. QM will be derived using this universe of
discourse—namely that particle positions are noncontextual.

Now that the microstates have been specified, we are inclined to ask how the position of these particles change.
In particular, if the particles are located at x = {x A}, we wish to know how probable it is for x → x ′, that is, we seek
a transition probability of the form P(x ′|x) to quantify this uncertainty. Not knowing anything about how particles
change position gives trivial dynamics, so we make the following assumptions: (1) particles move along continuous
trajectories and (2) particles may have a tendency to be correlated and drift. These assumptions are represented
by expectation value constraints on P(x ′|x). The first assumption is saturated by making large Δxan = x

′a
n − xan

improbable. This is done by imposing P(x ′|x) have small variances, κn , in particle coordinates,

〈ΔxanΔxbn 〉δab = κn, (n = 1, . . . , N ) (1)

where motion is continuous in the limit κn → 0. The second assumption is imposed by one additional expectation
value constraint,

〈Δx A〉∂Aφ ≡
∑

n,a

〈
Δxan

〉 ∂φ(x)

∂xan
= κ ′, (2)

where κ ′ is another small constant and ∂φ(x)
∂xan

is the “drift” gradient that guides probability flow and fixes the average

displacement through the constant κ ′.
There are many probability distributions P(x ′|x) that satisfy the above expectation value constraints. We, there-

fore, use the method of maximum entropy [8,18–20] to rank the candidate distributions and select the “least biased”
distribution by maximizing the relative entropy S[p(x), q(x)]. Given a prior state of knowledge q(x) and some
expectation values one knows p(x) ought to obey, the method of maximum entropy updates the prior distribution
q(x) to a new (posterior) state of knowledge q(x) → p(x). This method of inference is consistent with Bayesian
probability updating [15,16] and, in-fact, generalizes Bayesian inference. The method of maximum entropy is,
therefore, a nature tool for performing inference in ED.

In the present case, we are interested in updating a prior transition probability distribution Q(x ′|x) to a posterior
transition probability distribution P(x ′|x) using the method of maximum entropy. The prior transition distribution
Q(x ′|x) is a very broad normalizable Gaussian distribution to encode that, given nothing is known about particle
motion (equations (1) and (2) are yet to be imposed), particles may jump anywhere with near to equal probability—
there is no reason to believe otherwise. We will maximize the relevant relative entropy,

S[P(x ′|x), Q(x ′|x)] = −
∫

dx ′P(x ′|x) log P(x ′|x)
Q(x ′|x) , (3)

with respect to the expectation value constraints, (1) and (2), via the Lagrange multiplier method. Letting {αn} be
the particle specific Lagrange multipliers that impose the N constraints from (1) and letting α′ be the Lagrange
multiplier which imposes (2), maximizing the entropy (S = S[P(x ′|x), Q(x ′|x)]) with respect to these constraints
(and normalization) is setting the variation,

δ

(
S +

∑

n

αn(〈ΔxanΔxbn 〉δab − κn) + α′(〈Δx A〉∂Aφ − κ ′)
)

equal to zero. Varying P(x ′|x) above gives,
∫ (

− log

(
P(x ′|x)
Q(x ′|x)

)
− 1 +

∑

n

αnΔxanΔxbnδab + α′Δx A∂Aφ

)
δP(x ′|x) dx ′ = 0,

which is stationary for arbitrary variations of P(x ′|x) when,

P(x ′|x) = 1

Z
exp

[
−1

2

∑

A

αn(�x A − 〈�x A〉)2
]

, (4)
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4 K. Vanslette

after completing the square, where 〈Δx A〉 = α′
αn

δab
∂φ

∂xbn
. Because Q(x ′|x) is nearly constant over regions of interest,

it has been absorbed into the normalization constant Z . In principle, at anytime during the calculation the expectation
values on the RHS of (1) and (2) may be calculated by taking their corresponding expectation values over P(x ′|x).

There are explicit and in-depth arguments for the notion of an instant in ED [8,9] that we need not explore here;
however, in summary, t is introduced as a convenient book keeping parameter to label changes in the probability
distribution. In particular, αn ∝ 1

�t such that equal amounts of time are measured by equal fluctuations of position.
Because αn is a particle specific Lagrange multiplier, we expect it to have particle specific parameters, i.e αn = mn

η�t ,
where we see at the end of the calculation that mn is the particle specific mass and η is a constant that fixes units
and is related to h̄. After these arguments, the transition probability reads,

P(x ′|x,Δt) = 1

Z
exp

[
−

∑

A

(
mn

2ηΔt

(
Δx A − 〈Δx A〉

)2
]

, (5)

such that the state of knowledge of the positions of particles at a later time t ′ is given by marginalizing over the
previous position coordinates,

ρ(x ′|t ′) =
∫

P(x ′|x,Δt)ρ(x |t) dx, (6)

where ρ(x |t) ≡ ρ(x) ≡ ρ. Equation (6) is the integral form of the Fokker–Planck (diffusion) equation and may be
recast as the differential Fokker–Planck equation (an explication may be found in [8] which involves introducing a
test function and integrating by parts),

∂tρ = −∂Aρ
(
mAB∂Bηφ − η log ρ1/2

)
= −∂A

(
ρvA

)
, (7)

where the current “velocity” vA of the probability flow in configuration space is,

vA = mAB∂BΦ where mAA′ = m−1
n δaa

′
δnn′, (8)

and Φ = ηφ − η log ρ1/2, (9)

is a function defined in terms of previously defined variables. As the current velocity vA is a gradient of Φ from
(8), the current velocity separates into two parts: the drift velocity bA = mAB∂Bηφ and the osmotic velocity
uA = mAB∂B(−η log ρ1/2) such that the current velocity is vA = bA + uA. In this sense, Φ is something like a
“current potential” for the current velocity vA that tells us how ρ is going to change in time by (7). For the purpose
of transparency in this review, Φ eventually becomes the phase of the wavefunction in QM. At this point, Φ’s only
time dependence is through ρ, but it is important to evaluate what we have been able to derive using ED so far.

EDhasmanaged to show that the theFokker–Planck equation (7)maybe interpreted as amechanismofprobability
updating due to the maximum entropy considerations, arguments, and equations proposed up to this point. The
“current potential” Φ, as argued above, is thus a mechanism or function that guides probability updating, and in
this sense, is purely epistemic. To derive QM, we need an additional mechanism for updating the probability of the
positions of the particles. We impose φ(x) → φ(x, t) (in (2)) to be a dynamical variable such that Φ has further
functionality in its ability to update ρ.

First note that nothing prevents us from recasting (7) as the functional derivative ∂tρ = δ H̃
δΦ

, where

H̃ [ρ,Φ] =
∫

dx

[
1

2
ρmAB∂AΦ∂BΦ + F[ρ]

]
(10)

satisfies (7), and has integration functional constant of ρ, named F[ρ]. Later H̃ plays the role of a Hamiltonian.
At this point the dynamics of φ, and consequently Φ, are unknown and we need a natural way to tie down the
functional form of the time dependence in φ—we suppose that the dynamics of Φ are set such that changes in Φ

leads to changes in ρ such that dH̃
dt = 0. This assumption, and its motivation, is the subject of some of the current
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Entropic dynamics: a hybrid-contextual model... 5

research in ED (private communication A. Caticha, S. Ipek). At this point, we claim that “Physics assumptions”

like dH̃
dt = 0 are potentially unavoidable constraints if the updating process of ρ is eventually going to describe

physics.

Letting the evolution of ρ and Φ obey dH̃
dt = 0 means ρ and Φ are dynamically coupled (Hamilton–Jacobi)

equations:

∂tρ = δ H̃

δΦ
and ∂tΦ = −δ H̃

δρ
. (11)

The remaining arguments in ED involve the direct specification of the integration constant F[ρ], which is not
pertinent to the remaining content of this article. I suggest the interested reader follow the remaining arguments in
[9] that lead to a more complete specification of H̃ , which is

H̃ [ρ,Φ] =
∫

dx

[
1

2
ρmAB∂AΦ∂BΦ + ρV + ξmAB 1

ρ
∂Aρ∂Bρ

]
,

where V (x) is a particle potential and ξmAB 1
ρ
∂Aρ∂Bρ is attributed to information geometry. Following [9], nothing

prevents combining the solutions ρ and Φ of (11) into a single complex function Ψ ∼ ρ1/2 exp(iΦ/h̄). After some
massaging [9], ED reproduces the linear Schrödinger equation (SE),

i h̄
∂Ψ

∂t
= −

∑

n

h̄2

2mn

2

n Ψ + VΨ, (12)

as an application of inference.
At this point, the standard Hilbert space formalism may be adopted to represent the epistemic state Ψ (x) as a

vector,

|Ψ 〉 =
∫

dx Ψ (x)|x〉 with Ψ (x) = 〈x |Ψ 〉. (13)

The expression of |Ψ 〉 in another basis is regarded as a potentially convenient way of expressing position space
wavefunctions.

Amore general SE equation,which includes the presence of external nonzero electromagnetic vector potentialsA,
may also be generatedwithinED [9]. This is done by applying additional expectation value constraints�xa Aa(xn) =
κ ′′
n whenmaximizing (3), similar in form to the drift potential fromEq. (2). Spin is generated by positing the existence
of a “spin frame” field s(x) (motivated through geometric algebra), which again constrains the expected drift, and
the Pauli equation for a single particle is found using ED (private communication A. Caticha). The drift potential
φ, electromagnetic vector potential, and spin frame fields are introduced as epistemic parameters that update the
position space distributions of quantum mechanical particles—they are epistemic as they only provide information
about how epistemic probability distributions change. The correct spin statistics for identical multi-particle states
has yet to be generated from ED, so at this point we impose a symmetrization postulate ex post facto, which of
course is no better or worse than the standard quantum mechanical formalism.

2.2 Measurement in ED

A natural question is, “If position is the only definite quantity, how are other operators in quantum mechanics
measured?”. This question was originally addressed in [21] and more recently is addressed in [30] as well as
how the notions of von Neuman, weak measurements, and Weak Values [1,13,14] fit into ED. This question is
only addressed to the extent “operators” and “measurement” are defined within the entropic dynamics framework.
Measurement is a two step process: the state of a system is first updated via a unitary and Schrödinger evolution for
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6 K. Vanslette

the purpose of detection, which is a Bayesian update made due to the presence of data. As ED is an application of
inference and probability updating, measurement is simply tackled by applying the appropriate rules of inference.
Because position is the only beable in ED, a state vector |Ψ 〉 which is expanded in the basis |a〉, is a potentially
convenient stand-in for position space wavefunctions,

|Ψ 〉 =
∑

a

ca |a〉 =
∫

Ψ (x)|x〉 dx . (14)

An operator such as Â is an epistemic object, which does not require an ontic existence within the ED framework;
however, their values may still be inferred. Operators, Weak Values, and eigenvalues are, therefore, a subset of a
type of quantity we call the inferables of the theory [30]. As it is the position of particles that formulate the ontic
objects in ED, we make inferences about inferables by detecting positions. In most cases, the detecting of position
(or presence) of a particle in a detector is itself done by observing (and inferring) the result of a macroscopic
amplification within the detector that has been generated by positional presence [21,30].

To accomplish this, [21] introduces the concept of a unitary measurement device ÛA|ai , t〉 = |xi , t ′〉, which
maps states |a〉 (the state we wish to infer) at time t to a position xa at a later time t ′ (presumably on a screen). This
allows for the inference of |a〉 (the eigenvectors of an operator Â) by making detections of xa at a later time. An
example of such a unitary measurement device is a periodic crystal lattice or prism which diffracts “momentum”
states to position states. We have,

|Ψ ′, t ′〉 = UA|Ψ, t〉 =
∑

a

|xa, t ′〉〈a, t |Ψ, t〉 =
∑

a

ca |xa, t ′〉, (15)

such that p(xa |t ′) = p(a|t) = |ca |2, that is, the particle may be detected at xa with probability p(xa |t ′) at a later
time as if it were earlier in the state |a〉. Inferences can then be made about the operator Â = ∑

a λa |a〉〈a| where
λa are arbitrary scalars. The actual detection of the location of a particle in a single experiment is facilitated with
another detection device such as a photo-plate, CCD camera, or bubble chamber. In such instances, the probability
of x given a detection D is given by,

P ′(x) = q(x |D) = q(x, D)

q(D)
= p(x)q(D|x)

q(D)
, (16)

where q(D|x) is the likelihood function which accounts for the accuracy of the measurement device. In the present
case, after a detection at D,

P ′(xa |t ′) = q(xa |D, t ′) = p(xa |t ′)q(D|xa, t ′)
q(D)

, (17)

effectively “collapses” the wavefunction, which is to say the final state of the system is known with certainty for
sharply peaked likelihood functions in ED [30]. Similarly, if we want to infer the spin of a particle, we preform a
von Neumann or a weak measurement to entangle the position and spin of the particle (via unitary evolution as one
would with a Stern-Gerlach device) such that by detecting position, we may infer the spin in a similar fashion.

2.3 Remark

Quantum Mechanics has been derived as a peculiar application of epistemic probability updating when the ontic
elements of interest are the positions of particles. No further interpretation of QuantumMechanics in ED is needed.
Thewavefunction is found to be a useful epistemic quantity for calculating probability distributions, which represent
the state of knowledge of a system. Other quantum mechanical objects, like operators and Hilbert spaces, play a
supporting role.

Concepts in ED are naturally communicated in the the language of probability. The language generated by the
Copenhagen interpretation of quantum mechanics clashes somewhat with the language of probability; for instance,
the notion of an “observable” makes little sense when nontraditional Hermitian operators are considered, i.e. does
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Entropic dynamics: a hybrid-contextual model... 7

one ever really claim to “observe” p̂n , ρ̂, or one of its eigenvalues? In truth these quantities are inferred through
the measurement process no differently than the average energy of a statistical system is inferred by measuring the
height of mercury on a thermometer. What was observed in this scenario is the height of the mercury and what is
inferred is the temperature and the energy of the system. The word “observable” really looses meaning when one

considers “measuring” the Weak Value of an operator AW = 〈Ψ ′| Â|Ψ 〉
〈Ψ ′|Ψ 〉 , which in general is a complex numbers that

may lie outside the eigenvalue spectrum of the operator Â [1,13,14]. In ED, Weak Values are simply categorized as
potentially interesting inferables of the theory as they are inferred from pointer variable (positions in ED) detections
[30]. The language used in contextuality proofs does not naturally coincide with the language of probability and
inference, which is touched upon later.

3 ψ-epistemic?

In the previous section, we claimed that ψ is an epistemic object which represents our current knowledge of the
system in question. This immediately runs into conflict with the ψ-epistemic no-go theorem from [28]; however,
there is no issue. An excellent review of the ψ-epistemic/ontic dichotomy is presented in [24] and ED would be
categorized as a realist (or partial realist)ψ-epistemic model. The first assumption in [28] is (paraphrased) 1) is that
aψ-epistemic state has physical values upon which inferences may be made. ED agrees with this assumption whole
heartedly, and the variables which are “physical” in ED are alone the definite yet unknown positions of particles. The
second assumption (verbatim) 2) is that “systems which are prepared independently (a) have independent physical
states (b)”.

The second assumption requires further investigation: first (a)—what does it mean for a system to be prepared
independently and second (b)—what does it mean for a system to have independent physical states? The definition
of independence in (a) seems to be saturated by the definition of independence in probability theory, namely that
if two systems are prepared independently then their joint probability distribution is factorisable into independent
probability distributions, p(x1, x2) = p1(x1)p2(x2) and, therefore, there are no correlations between x1 and x2
at that time (however evolution may later induce correlations). The quantum mechanical analog is that these two
states are non-entangled product states. The definition of independent physical states in (b) is rather unclear from
the outset but later is defined quantitatively by,

D(μ0, μ1) = 1

2

∫
|μ0(λ) − μ1(λ)|dλ, (18)

or equivalently in our notation,

D[p1, p2] = 1

2

∫
|p1(x1) − p2(x2)|δ(x1 − x2)dx1dx2,

(19)

such that if D = 1 then p1 and p2 are completely disjoint, and thus occupy (in their words) “independent physical
states”. It is easy to see now how the definition of independence in (a) differs from the definition of independence
in (b), in-fact the (a) and (b) definitions clash in assumption 2) for any independent joint probability p(x1, x2) =
p1(x1)p2(x2) (a) which are not entirely disjoint (i.e. “physically” independent (b))—that is, if p1(x1) and p2(x2)
overlap in X . This regularly occurs in noninteracting multiparticle states in Quantum and Statistical Mechanics
(can be obtained by marginalizing over the momentum states of a phase-space probability distribution ρ(x, p)).
In ED, the “physicality” of particle positions is independent of the state of knowledge at hand. This is because
probability is not a measure of physicality (or onticity) but rather as a degree of belief or plausibility [8,12,20] that
the proposition “the particle is located at x” is true. As the leading assumptions of what entails a ψ-epistemic state
differ, the ψ-epistemic no-go theorem does not apply, which is admitted as a possible exemption to their no-go
theorem in the conclusion of [28]. We are, therefore, justified in treating ψ epistemically.
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8 K. Vanslette

4 Hidden variables, realism, and non-locality

The subject of hidden variables, realism, and non-locality in ED has been touched upon in [8,21] and it will be
further explored here. In Bell’s landmark paper [4], he found a contradiction between QM and hidden variable
theories which claimed local realism. It was accomplished by considering a hidden variable λ, which if known,
would give the outcome of an experiment (an eigenvalue of an operator) with certainty a0 = A(λ = λ0). By
integrating over the probability of a hidden variable,

〈A(λ)B(λ)〉 =
∫

p(λ)A(λ)B(λ) dλ, (20)

he showed that such expectation values do not always agree with the expectations values of QM, for general p(λ).
In ED there is no such hidden variable. The particle dynamics are non-deterministic as can be seen by the

Brownian like paths particles take due to the form of the transition probability P(x ′|x) in (5), or after energy
conservation, that the particles are undergoing a non-dissipative diffusion. Even if the initial conditions of particle
positions are known exactly (or with near perfect precision), ρ(x) ∼ δ(x−x0), Eq. (6) is inevitably nondeterministic
for time steps Δt . Because the Brownian paths of particles are non-differentiable, other equi-temporal quantities
(e.g. momentum or energy) are simultaneously indefinite, which is another argument against position being a hidden
variable. The process which is deterministic in ED is the evolution of the probability distribution as it follows the
HJ-like equations from (11) given the appropriate constraints, boundary, and initial conditions are known. The drift
potential φ(x) ∼ Φ updates the probability distribution of particle locations rather than guiding each particle at
every point, again seen by inspecting (11) and (5). The solution is to realize thatΦ(x) is an epistemic parameter that
is coupled to ρ(x) for each x in a complicated way through the HJ-like Eq. (11). The nonlocal nature of probability
as a means for quantifying knowledge (of the future, past, or present) accounts for the nonlocal behavior of QM in
ED. As any collapse is an epistemic change in the system, each observer assigns distributions that coincide with
their current state of knowledge of the system (i.e. Alice and Bob may preform partial traces and the like).

5 BKS type theorems

The BKS theorem sheds light on the incompatibility of hidden variable theories and quantum mechanics [5,23].
Years later Mermin demonstrated what is considered to be the simplest expression of what is usually an algebra and
geometry intensive BKS theorem [25]. BKS proofs have been generalized to the N -qubit Pauli group [31] and [27]
gives a BKS proof using continuous position and momentum observables. In [31], they give a simple algorithm to
convert observable based BKS proofs to a large number of projector based BKS proofs, so we will focus on the
simpler observable based proofs.

The class of hidden variable theories the BKS theorem excludes have the following reasonable conditions: The
value of an operator is definite yet unknown such that we may assign it a preexisting value (its eigenvalue) called
its valuation [3,25,31]. The valuation of an operator Â at any time is then,

v( Â) = 〈a| Â|a〉 = a. (21)

It is also assumed that functional relationships between operators f ( Â, B̂, Ĉ, . . .) = 0 hold throughout the valuation
process,

v( f ( Â, B̂, Ĉ, . . .)) = f (v( Â), v(B̂), v(Ĉ), . . .) = 0. (22)

It should be noted that the considered operators must commute v( Â B̂) = v( Â)v(B̂) = v(B̂ Â) when taking
valuations for (22) to hold. Mermin demonstrates the contradiction of equations (21) and (22) with quantum
mechanics by considering what is now know as the Peres–Mermin square:

ZI IX ZX
IZ XI XZ
ZZ XX YY

.
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Entropic dynamics: a hybrid-contextual model... 9

Each table entry is an observable from the 2-qubit Pauli group consisting of a joint eigenbasis consisting of 4
eigenvectors. As a notational convenience we will omit tensor products when there is no room for confusion and
let X = σx such that an arbitrary table entry X Z IY represents σ

(1)
x ⊗ σ

(2)
z ⊗ I (3) ⊗ σ

(4)
y , following the notational

structure in [31]. The product of the operators along a given row or column is the rank 4 identity I (4) = I I (in this
notation) with the exception of the last row, which is −I I . Consider the valuation of the standard matrix product
of the elements of the first row,

v(Z I · I X · Z X) = v(I I ) = 1. (23)

Supposing (22) is true then

v(Z I · I X · Z X) = v(Z I )v(I X)v(Z X) = 1. (24)

The valuation of the i j th element Ai j in the table is v(Ai j ) = ±1 and, therefore, (22) imposes a constraint on the
individual valuations v(Z I )v(I X)v(Z X) = 1, which is only satisfied if either 0 or 2 of the valuations are −1. This
cuts the universe of discourse from 23 = 8 possibilities down to 4. Let Ai� be the product of the operators in the
i th row and A� j the product of the operators in the j th column such that above A1� = Z I · I X · Z X is the
standard matrix product between the listed operators. Mermin showed his square indeed leads to a contradiction
when considering the product of the row and column valuations,
∏

i

v(Ai�)v(A�i ) = v(I I )5v(−I I ) = −1, (25)

whereas applying (22) to each row and column, v(Ai�) = ∏
j v(Ai j ), gives,

∏

i

v(Ai�)v(A�i ) →
∏

i

∏

j

v(Ai j )2 = 1, (26)

which is a contradiction. This is due to the fact that not all of the elements inMermin’s square commute and, therefore,
all observables cannot be assigned definite eigenvalues. Quantummechanical formalism and experiment agrees with
(25) and not with (26), and thus (22) must be thrown out. Bell makes a point that it may be overconstraining for
the valuation to produce identical values when different sets of commuting observables are being considered, just
to refute it by noting that a space-like separated observer could change which set of commuting observables he/she
wishes to measure mid-flight. A hidden variable theory would then have to explain this nonlocal change in the
valuation meaning that the BKS theory only refutes local hidden variables theories.

5.1 Interpreting the contradiction: contextuality

The standard interpretation of the contradiction by Bell, Kochen, Specker, Mermin and others is that quantum
mechanical observables are contextual, meaning that the operator’s “aspect”, “character”, or “value” depend on
the remaining set of commuting observables under which it is considered. Any observable which does not depend
on the remaining set of commuting observables in this way is called noncontextual, which, for example, are the
individual observables v(Ai j ) from the Mermin square and (26).

In more recent years the interpretation of the BKS theorem, which in principle would rule out all local hidden
variable theories obeying (21) and (22), has been under scrutiny, in essence, for having a more restrictive inter-
pretation than the theorem merits. The work by [10,22,26] opens a loophole due to the impracticality of infinite
measurement precision, and thus the BKS theorem is “nullified” in their language. Appleby (and others) find the
“nullified” critique to be too harsh of a criticism [2]. De Ronde [29] points out that epistemic and ontic contextualty
are consistently being scrambled into a omelet when perhaps the yoke and egg whites should be cooked separately.
He defines ontic contextuality as the formal algebraic inconsistency of the operator and valuation formalism of
QuantumMechanics within the BKS theorem—having nothing to do with measurement. The epistemic counterpart
is more aligned with the principles of Bohr in that Quantum Mechanics involves an interaction between system
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10 K. Vanslette

and measurement apparatus whose outcomes are inevitably communicated in classical terms—the context is given
by the measurement device. The difference is subtle but, as noted, ontic contextuality is defined to be independent
of the differing interpretations of quantum mechanics where epistemic contextuality need not be. Our treatment of
contextuality does separate in this fashion; however, de Ronde’s usage of the word “ontic” refers to the quantum
formalism, whereas our usage only refers to ontic particle positions in ED.

5.2 Critiques on representing onticity with valuations in QM

As we know, the assumptions (21) and (22) lead to contradictions. Inevitably (21) and (22) will be illogical on
several levels, some of which are discussed below. The main critique we present is, how do we know that the
valuation of an observable v( Â) accurately represents the notion of definite, preexisting values of an operator, that
would be obtained if a measurement is carried out? The alleged strength of the BKS theorem is that analysis has
been done independent of the particular state |Ψ 〉, and thus it should hold for all |Ψ 〉 in general. This is troubling
for a number of reasons, the first being that a particular |Ψ 〉 may not have components along every eigenvector of
an operator Â, in which case a zero probability event could be assigned a definite existence, and one would never
know because |Ψ 〉, which all of the observables in question pertain to, has not been specified. This issue here is an
interplay between the ontic and epistemic contextuality given by de Ronde, because only sensible valuations may
be given if the state of the system is known—in general the density matrix ρ̂.

If the valuation process is to be applicable to arbitrary “observables” independent of the state at hand, then
one runs into another logical inconsistency when attempting to apply valuations to a density matrix, ρ̂, because it
represents the probabalistic state of a system. It makes little sense to have different sets of commuting observables
{ρ̂1, ρ̂2, ρ̂3 . . .}which are required to span to the same Hilbert space as the state in question |Ψ 〉 (or ρ̂). Furthermore,
the valuation of a density matrix ρ̂ = ∑

i pi |i〉〈i | gives one of its eigenvalues, pi , which are probabilities themselves
and are never directly observed, but are usually inferred from the frequency of a large number of independent trials.
One cannot possibly claim that a system is ontically expressing a definite preexisting probability value pi . Probability
by its nature is a measure of the indeterminance of a state |i〉 rather than a value (physically) carried by the state
|i〉—which is as epistemic as it gets! If Alice knowingly prepares one system and Bob does not know which system
Alice has prepared, then it is clear that pi ’s cannot have a definite existence because both Alice and Bob disagree
about said values over the same single “ontic” system of interest. Furthermore, when the a measurement is made
to determine the state, the probability value updates (the eigenvalue changes) and in this sense the assignment of
an eigenvalue ρ̂ through valuation represents nothing physical about the state of the system’s definite, preexisting
values that would in principle be obtained if a measurement was carried out. In this sense, the eigenvalues of
operators in general do not represent definite, preexisting (noncontextual) values of an operator.

Due to these critiques, and that in ED one may infer eigenvalues from position detections, it is difficult to know
what precisely a valuation procedure represents meta-physically (linguistically), besides the simple choice of a
matrix element. As discussed, the valuation of an operator may not always represent an ontic value of an observable
and, therefore, we suggest relaxing this notion and replacing it by the more general statement, “The valuation of
an operator (or set of operators) represents a quantity that in principle may be inferred”, or in the language of [30],
“The valuation of an observable is an inferable of the theory”.

5.3 Hybrid-contextual theories

It should be noted that in Entropic Dynamics, the idea of valuation is very unnatural. An inference based theory
allows us to state, quantify, and represent howmuchwe do not know about the state of a system through a probability
distribution, upon which we use the rules of inference and probability updating to determine what we do. Recall in
Sect. 2.2 that the measurement procedure in ED allows for the inference of Â = ∑

a λa |a〉〈a|where λa are arbitrary
scalars by making detections of position at a later time. Eigenvalues themselves are an afterthought of the inference
process that are epistemically inferable parameters by the changes they make to (position) probability distributions.
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Entropic dynamics: a hybrid-contextual model... 11

Strictly speaking, the BKS theorem discards realist theories in which all of the considered operators are treated
ontically through their valuation. This leaves open the possibility for a hybrid-contextual theory in which only
a subset of commuting observables are definite yet unknown, or noncontextual, while other variables (or sets of
commuting observables) are contextual. To date the only theory of Quantum Mechanics known to the author that
seems to fit this description precisely is entropic dynamics [9].

The only operators required to undergo valuation in ED are the 3N -particle position coordinates with their
corresponding 3N operators X̂ (n). In the language of valuations, we would have,

vx (x̂
(n)
i ) ≡ 〈x (n)

i |x̂ (n)
i |x (n)

i 〉 = x (n)
i , (27)

for a particular coordinate x (n)
i . Position operators trivially obey (22),

vx ( f (x̂
(n)
i , x̂ (m)

j , . . .)) = f (v(x̂ (n)
i ), v(x̂ (m)

j ), . . .) = 0, (28)

for any function f , because all position operators mutually commute. No parity contradiction in the sense of [25,31]
can be reached because all of the operators requiring valuation mutually commute. The BKS proofs are proofs by
contradiction. This means a set of counter examples has been found which rule out the general applicability of
assigning definite yet unknown values to all operators all the time; however, as seen above, there are instances in
which there is no contraction and the assignment of definite yet unknown values in this instance is consequently
not ruled out.

Operators other than position, Ai j , need not be noncontextual in ED as they are considered to be epistemic in
nature. In this case, one should not claim Ai j , one of its eigenvalue ai j , or a state |ai j 〉 = ∫

dx ψai j (x)|x〉, to have a
definite existence outside of characterizing our knowledge of the definite yet unknown positions of particles x . That
being said, when one can expand Ai j in the position basis, we find that the Ai j are naturally contextual—although
in principle this is unwarranted in ED as no valuation is required.

As it is the position that is definite, the valuation of the operator Ai j , before measurement (where |x〉 = |x1〉 ⊗
|x2〉 · · · ⊗ |xN 〉 for N particles), is one of the diagonal matrix elements in the x basis,

vx (A
i j ) → 〈x0|Ai j |x0〉 =

〈
x0|

∑

n

|ai jn 〉ai jn
〉
ai jn x0 =

∑

n

ai jn |〈x0|ai jn 〉|2 = ai jn , (29)

where in this case it is supposed that the definite yet unknown value of x is x0. This is obviously not one of the
eigenvalues or “observables” of Ai j , but in ED Ai j is an inferable and so is vx (Ai j ). The position space valuation
vx (Ai j ) is some real number which in principle may be assigned to any position coordinate. In general, parity
type proofs of the BKS theorem require Ai j to be simultaneously part of an even number of sets of commuting
observables [31]. This means an operator Ai j is simultaneously diagonalized in (at-least two) different basis,

Ai j =
∑

n

|ai�n 〉ai jn 〈ai�n | =
∑

n

|a� j
n 〉ai jn 〈a� j

n |, (30)

where, for example in the Peres–Mermin square, |ai�n 〉 refers to the eigenvectors of the commuting set of variables

from the i th row and |a� j
n 〉 refers to the eigenvectors of the commuting set of variables from the j th column. The

largest number of distinct sets of eigenvectors is equal to the number of sets of commuting observables in the BKS
proof. Using this notation we may denote the product of the operators in a commuting set by,

Ai� =
∑

n

|ai�n 〉ai1n ai2n · · · aiNn 〈ai�n | =
∑

n

|ai�n 〉ai�n 〈ai�n |, (31)

where N is the number of operators in the commuting set of observables. In general, the application of (22) to the
position valuations of {Ai j } will not hold,
vx (A

i�) →
∏

j

vx (A
i j ), (32)

because it would require,

∑

n

|〈x0|ai�n 〉|2ai�n →
∏

j

(
∑

n

ai jn |〈x0|ai�n 〉|2
)

j

, (33)
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12 K. Vanslette

which is potentially equal, but in the vast majority of cases is not. The lack of equality can be seen if one considers
three commuting momentum observables p̂1 ⊗ 1̂2, 1̂1 ⊗ p̂2, and p̂1 ⊗ p̂2 with {|ai�n 〉} = {|p1, p2〉}—the LHS
diverges while the RHS is zero because it involves products of odd integrals. This poses no issue in ED because Ai�
or the individual Ai j need only exist epistemically, so their valuations (matrix elements) need not agree—the product
of matrix elements need not be the matrix element of the product so imposing equality is nonsensical. Furthermore
(if above was not enough), contextuality is preserved among non-position observables (for noncontextual position)
as can be seen when (22) is applied to the product of all of the commuting sets of observables,
∏

i

vx (A
i�)v(A�i ) →

∏

i

∏

j

vx (A
i j )2 ≥ 0, (34)

for situations when the LHS is less than zero or it is simply not equal to the RHS. This calculation shows that
definite (noncontextual) positions before measurement do not imply definite (noncontextual) Ai j and, therefore, we
are justified in treating the operators Ai j contextually—which means we should not apply valuations to them, or if
we do, we should not expect (22) to hold. This suggests that we may not expect equations like (22) to hold true in
general because, if valuations are interpreted as inferables (Sect. 5.2), then expecting something like v(A2) = v(A)2

to hold true is potentially analogous to expecting expectation values like 〈A2〉 = 〈A〉2 to hold true, which of-course
is not true in general. Spin in ED is not required to be noncontextual so valuation is not required. The current form
of ED would potentially be ruled out if Ai j were noncontextual under position valuations in general—but this is
not the case as the matrix elements are simply epistemic inferables.

Because all position operators always mutually commute with one another and, therefore, are all simultane-
ously diagonalizable in the same set of position eigenvectors (i.e. |x〉 = |xi�〉 = |x� j 〉 = |x��〉), they may be
treated noncontextually together. If an operator is a product of contextual and noncontextual operators, it remains
contextual because applying position space valuations on the noncontextual operators leaves the contextual oper-
ators contextual. This can be seen by applying position space valuations to the continuous operators defined in
[27] (|〈SQM 〉| = 6). As noted in the critiques, the valuation of an operator may not always express the definite
yet unknown values of an observable—it may be best to relax this notion such that the valuation of an operator
represents a quantity that in principle may be inferred, an inferable, in general.

A question of interest is, how, if everything is to be measured or inferred using a (non-contextual) position basis
(Sect. 2.2 and [21,30]), is the contextual nature of a set of contextual operators Âi j ∈ A non-contradictory? This
question is especially tricky because it mixes the epistemic and ontic palates of contextuality in the sense of [29],
who, as well as [6], quote Mermin , “the whole point of an experimental test of BKS [theorem] misses the point.”.
That being said, the contexuality of the operators Ai j is simply expressed through the lack of commutativity between
sets of commuting observables, we do not need to do position valuations {Ai j } to make inferences about the states.
ED perhaps sheds some light onto Mermin’s statement about the lack of an experimental test.

Suppose Alice prepares a two particle system and sends it to Bob who has a compound unitary measurement
device (15) for each set of commuting observables (each row and column) of the Mermin square (for simplicity),
but really this is applicable to any construction of sets of commuting observables. Because Bob can only measure
one row or column for a given pair of particles sent from Alice, him choosing a measurement device from the i th
row or column means he has chosen and applied the unitary measurement device ÛAi� to the incoming state and
mapped it to position coordinates for detection and inference. That is, the physical application of ÛAi� picks, Pi ,
the i th set of commuting observables,

Pi ∗
A11 A12 A13

A21 A22 A23

A31 A32 A33
−→ ÛAi� Ai1 Ai2 Ai3

−→ xi1 xi2 xi3 ,
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and at a later time onemay apply valuation(s) to the associated positions operators if onewishes, because the operator
is position based (at that later time) Ai j → ∑

n |xi jn 〉ai jn 〈xi jn |. The notion of detectors picking sets of commuting
observables is mentioned in [25], but here the process is specified to show how contextuality is preserved. The
positions may be detected and the associated commuting set of Ai j may be inferred.

This process resembles the epistemic notion of contextuality presented in [29]. The operators Ai j are treated
contextually—the position space valuation may be applied after the set of commuting observables has been chosen
by the unitary measurement device. As only one set of commuting observables may be picked at a time by Bob, the
quantum mechanical expectation values match that as read by Bob (and are, therefore, in the form of (25)). Alice,
being in the dark, does not know which row Bob will pick and is free to assign a probability Bob picks the i th row
or column, and after learning the chosen row or column may she update her probability accordingly.

6 Discussion

The most natural inferential tool in ED is probability. The critiques given in Sect. 5.2 are further motivation for the
use of probability to make rational inferences, while the interpretation of valuation functions, which inevitably lead
to contradictions in the BKS theorem, is not generally applicable. There, reason was given for the need of a more
general interpretation of the valuation of an operator, which was stated, “The valuation of an operator (or set of
operators) represents a quantity that in principle may be inferred”. Because the probability of a state is only defined
in terms of its set of commuting observables, and because there is no way to generate a unique joint probability
distributions among non-commuting observables [11], a rational discussion on the potential simultaneous onticity
between non-commuting observables is not possible—luckily ED formulates QM by assuming the position of
particles to be the only ontic variables.

ED is in a unique position among foundational theories of QM because QM was derived by applying standard
probability techniques to a system of particles with ontic positions. This naturally classifies the ontic and epistemic
elements of QM and provides a clean cut interpretation of QM such that physical and conceptual problems in QM
may be handled rigorously (as it has in [21,30] and other recent articles). The hope is that a full treatment of spin in
ED will provide better notions of the symmetrization postulate and the Pauli exclusion principle, but this problem
has yet to be tackled in full. At this point more work can be done to make sure that ED is able to reproduce all of the
known results of QM and to hopefully shine some light on the many interpretational paradoxes, no-go theorems,
and problems that surround QM. The end goal of ED is to show inferential origins of physical laws. This generates
new interpretations and directions for old ideas, and hopefully, ED will generate some new physics as well.

This paper shows the sense in which a foundational QM theory may be hybrid-contextual, i.e. one set of com-
muting operators is noncontextual (ontic) while all others are contextual, and still obey the BKS theorem. In ED this
occurs because contextual operators are not required to have definite ontological existence outside of their character-
ization of the state of knowledge of the noncontextual operators. A loose guide for a theory to be hybrid-contextual,
and also agree with QM, is that its ontic variables are treated noncontextually while its epistemic variables are
treated contextually. The values of interest associated with contextual operators (energy, momentum, and spin) are
inferred by measurement of noncontextual observables (position in ED).
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