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Abstract One of the most difficult problems in quantum mechanics is the analysis of the measurement processes.
In this paper, we point out that many of these difficulties originate from the different roles of measurement outcomes
and observable quantities, which cannot simply be identified with each other. Our analysis shows that the Hilbert
space formalism itself describes a fundamental separation between quantitative properties and qualitative outcomes
that needs to be taken into account in an objective description of quantum measurements. We derive fundamental
relations between the statistics of measurement outcomes and the values of physical quantities that explain how
the objective properties of a quantum system appear in the context of different measurement interactions. Our
results indicate that non-classical correlations can be understood in terms of the actual role of physical properties
as quantifiable causes of the external effects observed in a quantum measurement.

Keywords Measurement uncertainties · Operator algebra · Quantum correlations · Weak values

1 Introduction

The problem with quantum mechanics is that it does not provide a satisfactory justification of the mathematical
elements of the theory in terms of the actual physics happening in the laboratory. The reason for this irritating
failure is that the notions used to connect the theory to the physics are hardly ever discussed. One might go so far
as to say that physicists have adapted to the situation by accepting the connection between technical procedures
and mathematical expressions “on faith”. Very often, this failure to address the empirical justification of quantum
theory is justified by invoking the uncertainty principle, which seems to suggest that experimental outcomes will
always be random and ambiguous. However, this may not be what the uncertainty principle really means. Recently,
new insights into measurement uncertainties have emerged, initiated by Ozawa’s analysis of the relation between
errors and disturbance in quantum measurements [1–9]. In the context of these new results, it is interesting to
note that there is no clear consensus about the physics involved in quantum measurements [10–14]. It seems that
too much of focus has been on quantitative evaluations of the uncertainties, and too little attention has been paid
to the astonishing fact that quantum mechanics does not provide a clear explanation of the measurement process
itself. Recently, we have applied the procedure used in the first experimental evaluation of Ozawa’s uncertainties
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to investigate the quantum properties of a two-level system in more detail [15]. As we tried to understand the
experimental procedure better, we found that it was necessary to re-examine the relation between the experimental
evidence and the physical properties of the system. Specifically, the explanation of the Hilbert space formalism
seems to be incomplete: a physical property is not defined by the outcomes of precise measurements represented
by eigenstates and eigenvalues, but by quantitative effects in which different physical properties act together to
produce the outcome of a specific experiment.

In this paper, we explain how the standard formalism of quantum theory describes the relation between physical
quantities and measurement outcomes. We point out that it is not possible to identify physical properties with
their eigenstates and derive the correct relations between the different measurement contexts by showing that the
mathematical relations between the operators provide the appropriate description of the physics of the quantum
system.Most importantly, we find that the quantum formalismprovides a precise description of the relations between
different measurements that leaves little room for interpretation. The quantitative relations described by the operator
algebra define error-free assignments of quantities to specific combinations of initial condition and measurement
outcomes, even when neither the initial state nor the measurement is given by an eigenstate of the physical quantity
in question. In this sense, the structure of quantum theory is fully deterministic, and it is this feature of the theory
that allows us to objectify measurement results obtained from different measurement procedures.

A major concern addressed by this paper is that the one-sided focus on the statistics of quantum states may have
created a widespread misconception that quantum physics is a fuzzy and random theory that is open to various
interpretations. What we demonstrate in the following is a more rigorous link between experimental evidence and
objective physical properties that can serve as a solid empirical foundation of quantum theory. It is our hope that
this approach may bridge the gaps that have opened up between different schools of thought in quantum physics.
Ultimately, real scientific questions need to be decided by the experiment, and not by the arbitrary opinions of
individual researchers, no matter how qualified they may seem to be. We therefore believe that the following theory
is urgently needed to explain the objective relations between the outcomes of different experiments, as the starting
point of a more thorough and comprehensive experimental exploration of quantum physics.

The rest of the paper is organized as follows. In Sect. 2, we review the theoretical description ofmeasurements and
discuss the relation between measurement operators and the operators representing quantitative physical properties.
The concept of a quantitative measurement error is introduced as a quantitative expression of this relation. In
Sect. 3, the error is evaluated and its relation with individual measurement outcomes is considered. It is shown that
the quantitative error can be used to assign joint statistical weights to the outcomes of two different measurements.
In Sect. 4, it is shown that error-free estimates are possible whenever the target observable Â can be expressed as a
sum of an initial property B̂ and a property M̂ determined by themeasurement outcomes. In Sect. 5, we show that the
joint statistical weights introduced in Sect. 3 explain how physical quantities depend on the specific measurement
context and derive the corresponding relations between the eigenvalues of non-commuting operators. In Sect. 6,
the relation between error-free measurements and operator statistics is explained and non-classical correlations are
identified as context-independent features of quantum statistics. Finally, Sect. 7 summarizes the insights gained
from the quantitative analysis of measurements.

2 Quantum measurements

The problem of formulating a quantum theory of measurement starts with the fact that Hilbert space does not
describe the system in terms of its physical properties, but provides only an indirect description in terms of state
vectors, the components of which are loosely associated with potential outcomes of measurements that might or
might not be performed. It is therefore insufficient to define a measurement as the observation of a pre-existing
physical property. Instead, the connection between the state of a system with an eventual measurement outcome
is generally expressed by a statistical operator. According to the well-established rules of quantum theory, this
operator Êm defines the probability P(m|ψ) of obtaining the outcome m as a product trace of the operator with the
density operator of the system. In the case of a pure state | ψ〉,
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P(m|ψ) = Tr
(
Êm ρ̂

)
= 〈ψ | Êm | ψ〉. (1)

Thus, the statistical operator describes the causality relation between the input state | ψ〉 and a qualitative outcome
m observed as an effect of the system on the technical devices used in the measurement. Importantly, the notion of
a physical property does not enter into this description at all, despite that the measurement operator is a summary
of dynamics that are described in terms of quantitative physical properties of the system. To recover the original
connection between physical properties and measurement, it is necessary to introduce the notion of quantitative
physical properties in the form of self-adjoint operators Â. In most introductions to quantum mechanics, these
operators are used to establish a somewhat unclear analogy with classical physics by suggesting that they could
somehow replace the classical notion of numbers. A more specific explanation of the role of operators would be
that they describe a combination of quantity and quality by mathematically combining eigenstates | a〉 associated
with precise measurement results with eigenvalues that represent the quantitative outcomes Aa observed in such
measurements. The self-adjoint operator itself can then be expressed by its spectral decomposition as

Â =
∑
a

Aa | a〉〈a | . (2)

Quite possibly, some confusion is created by the fact that many textbook introductions seem to make the implicit
assumptions that energy is so fundamental to physics that neither the Hamilton operator nor any of the operators
that appear in its quantitative definitions need any further explanation. In the light of the recent controversies on
quantum measurement, it may be good to ask whether this implicit assumption is really justified. In general, the
operator Â may appear as part of a Hamiltonian, or it may be a generator of the system dynamics in its own right.
However, it is not clear whether we can observe this role of the operator experimentally, and whether this role is
similar to the role of a corresponding classical quantity in the dynamics of a system [16,17]. It may therefore be
helpful to focus first on the physical meaning of the operator in the context of a quantum measurement with a
well-defined observable outcome.

As mentioned above, the formulation of the operator itself combines a potential measurement outcome | a〉 with
a value Aa that describes the magnitude of an effect caused by the physical property Â. However, the value Aa does
not enter into the theoretical description of such an ideal measurement of Â. It is sufficient to identify the individual
outcomes a, which are obtained with a probability given by

P(a|ψ) = 〈ψ | Êa | ψ〉 = |〈a|ψ〉|2. (3)

In this measurement, the quantity Â is determined by assigning a measurement value of Aa to each of the outcomes
a. The only physical motivation for the specific assignment of values a is obtained from the interpretation of the
dynamics that relate the system property Â to the measurement outcomes a, and this interpretation is in turn based
on the analysis of the interaction between the system and the meter in the Hilbert space formalism.

In a more realistic description of measurements, it is rarely possible to identify each outcome with a precise
value of Â. If the outcome m is partially decided by the quantity Â, we can still associate an estimate Ãm of the
quantity Â with each outcome. Since this is a quantitative estimate, its precision cannot be given in qualitative
terms. Specifically, it makes no sense to ask for a probability that the estimate is correct. Instead, the magnitude of
the error must be quantified in terms of the difference between the estimate Ãm and the target observable Â. In the
operator formalism, this quantitative definition of an error is expressed by

ε̂m(A) = Ãm − Â. (4)

Since this error is an operator, its evaluation requires an application of the Hilbert space algebra. In cases where
the measurement operator Êm does not commute with the operator ε̂m(A) describing its error, this evaluation
contains non-classical correlations between themeasurement outcomem and the observable Â [15]. The quantitative
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relation between the outcomem and the physical property Â is therefore a non-trivial scientific problem that cannot
be reduced to the classical notions of information or statistics. In the following, we will address this problem by
analyzing the Hilbert space expression of quantitative errors given by Eq. (4) with respect to the quantitative relation
they establish between the general measurement outcomes m and the precise measurement outcomes a associated
with the eigenvalues Aa of the physical property described by the operator Â.

3 Error statistics in Hilbert space

Although there are many ways of evaluating statistical errors, a widely used measure is the variance, which is
defined as the average square of the error values. In the context of quantum measurements, this error measure was
first applied to a general Hilbert space description of measurement interactions by Ozawa [1], who found that the
operator ordering obtained from the detailed description of the measurement dynamics results in an error of

ε2(A) =
∑
m

〈ψ | ( Ãm − Â)Êm( Ãm − Â) | ψ〉. (5)

This formulation of a measurement error has recently attracted a lot of attention since it provides a description
of errors that seems to defy the uncertainty principle [4–9]. However, it is important to recognize that this result
relies on the inclusion of information from the initial state | ψ〉, which is a separate condition that is not part of the
theoretical description of the measurement process given by Êm [12,18]. To understand the physics described by
this quantification of the error, it is therefore important to consider how quantum mechanics expresses the relation
between the physical property Â and the observable causality that connects the initial conditions ψ with the final
outcomes m.

What makes it difficult to understand the physics described by the mathematical form of Eq. (5) is that it relates a
qualitative outcome to an operator, thereby creating an artificial asymmetry in the description of the physical process.
To restore the symmetry in terms of measurement outcomes, we can make use of the fact that the operator Â is
associated with a set of projective measurements Êa =| a〉〈a | for which the eigenvalues Aa represent an error-free
set of measurement outcomes. The error ε2(A) therefore evaluates a quantitative difference between the assignment
of Ãm to m and the assignment of Aa to a. Importantly, Hilbert space describes a well-defined correlation between
these two assignments, even though the formalism also indicates that it is impossible to combine the outcomes
m and a into a joint measurement corresponding to the logical combination of “m and a”. Quantum theory thus
provides a unique definition of non-classical correlations between the two quantitative evaluations, even though the
outcomes m and a never share a joint reality.

Mathematically, it is possible to trace back the non-classical correlations to joint statistical weights, since the
contribution from the hypothetical outcome a is exclusively associated with the value Aa , in the same way that the
outcome m is exclusively associated with its estimate Ãm . Even though there exists no joint measurement of a and
m, it is possible to define a joint statistical weight P(a,m|ψ) for any combination of a and m by evaluating how
the changes in the error ε2(A) caused by variations of Aa and Ãm are correlated. Specifically, the joint statistical
weight of a and m is obtained by

P(a,m|ψ) = −1

2

∂2

∂Aa∂ Ãm
ε2(A). (6)

We can thus derive a uniquely defined joint statistical weight of the measurement outcomes a and m from the error
measure ε2(A) defined by the operators Â and Êm . Importantly, this joint statistical weight is different from a joint
probability because it does not require a joint reality of a and m. Instead, it is based entirely on the quantitative
relation between the estimates of Â obtained under the two different circumstances described by the two separate
sets of outcomes {a} and {m}. Since this quantitative relation is described by the Hilbert space formalism, the joint
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On the relation between measurement outcomes and physical properties 233

statistical weight can also be described in terms of states and operators. Using the Hilbert space expression of the
measurement errors in Eq. (5), the joint statistical weight describes a relation between the measurement operators
Êm and | a〉〈a | in the state | ψ〉,

P(a,m|ψ) = Re
(
〈ψ | Êm | a〉〈a | ψ〉

)
. (7)

Thus, the quantitative evaluation of errors corresponds to joint statistical weights for measurement outcomes of
measurements that cannot be performed jointly and therefore have no joint reality. This observation is particularly
significant, because the mathematical form in Eq. (7) results in the assignment of non-positive joint statistical
weights in several important cases that we will discuss in more detail in the following.

At this point, it may be worth noting that the relation between non-positive joint statistical weights and the
measurement uncertainties introduced by Ozawa has been discussed previously in the context of quasi-probability
representations of quantum statistics. Specifically, the joint statistical weights in Eq. (7) are the real parts of the
Dirac distribution of the state | ψ〉, a quasi-probability representation that is closely associated with the algebra
of weak values [2,3,19–22]. It has also been shown that the measurement error can be observed experimentally
by performing a weak measurement of Êa =| a〉〈a | on the input state [3,5], and the present discussion was
originally motivated by an attempt to understand the physics of these experimental results better [15]. Here, we
would like to address the problem that such measurement results cannot be interpreted as a relative frequency of
joint outcomes, since the individual weak measurements represent only a statistical preference for the outcome a
and not an exclusive selection of a [12]. It is therefore necessary to consider the role of the outcomes a in the
experiments more carefully. As discussed above, the joint statistical weights actually describe quantitative relations
between non-commuting physical properties in the absence of any joint reality. Based on a more thorough analysis
of the mathematical relations, we have shown that the joint statistical weight is defined by the way that the quantum
formalism attaches physical quantities to the outcomes of individual measurements. This means that the notion of a
joint statistical weight does not require any joint realities of a andm, which explains why its values can be negative.
The present approach thus allows us to identify the relations between physical properties that are responsible for the
appearance of negative joint statistical weights, which can help us understand the paradoxical nature of non-classical
correlations [23–31].

Before we proceed to analyze the quantitative relations that cause the appearance of negative joint statistical
weights, it may be useful to reflect a bit on the more familiar aspects of joint statistical weights and the reason why
they are often confused with conventional joint probabilities, despite the fact that they can take negative values. In
fact, we should not forget that the concept of “uncertainty” did not originate from quantum mechanics, but from
practical considerations about the role of quantities in physics. The notion of a perfectly precise measurement only
makes sense in the context of discrete values, which only emerge as a result of quantization. In classical physics,
all physical properties are necessarily given by continuous and real-valued quantities, so perfect precision would
require the measurement of a never ending series of digits. Classical physics is therefore based on the idea that
physical quantities can be used to describe physical situations even when the precision with which we can know
these quantities is limited. This means that the physical properties only appear in the measurement outcomes m,

because we can identify a quantitative causality relation that connects the physical property Â of an object with
the outcome m, even though this relation cannot be described by a simple identity between the outcome m and
a hypothetical precise outcome a. In classical physics, this problem can be solved by the joint statistical weights
defined in Eq. (6), where the joint statistical weight corresponds to a hypothetical joint probability of the outcome
m and the correct result a. However, quantum theory suggests that the assumption of such a joint probability is a
misinterpretation of the physics, even in the case where the joint statistical weights are positive.

A close analogy to the classical statistical argument is obtained when the measurement operator Êm commutes
with Â, so that the eigenstates | a〉 are also eigenstates of Êm . In this case, it is tempting to argue that Êm describes
a conventional conditional probability P(m|a), given by the eigenvalue relation
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Êm | a〉 = P(m|a) | a〉. (8)

As a result, the joint statistical weight of Eq. (7) can be written as

P(a,m|ψ) = P(m|a)P(a|ψ), (9)

which corresponds to the probability of measuring first a and thenm in a sequence of two measurements. However,
we should remember that this formula is used to relate m to a in the absence of a measurement of a. The actual
role of the joint statistical weight P(a,m|ψ) is to provide a universally valid description of the causality relation
between m and a which identifies the influence of the physical quantity Â on the outcome m. Thus, we should be
careful to note that the hypothesis of a joint reality (a,m) is not even needed when the observables commute, so
that the positivity of the joint statistical weight P(a,m|ψ) should not be misunderstood as an argument in favor of
realist models.

Interestingly, there exists one case where it is possible to identify a joint reality of a and m, and this case does
not even require commutativity of Êm and Â. If the initial state is an eigenstate of Â, the causality relation between
a and m is given by the experimentally observed conditional probability

P(m|a) = 〈a | Êm | a〉. (10)

This expression shows that the outcome m is sensitive to a, and therefore to the quantity Â associated with a.
However, it is not possible to apply P(m|a) to any other input state | ψ〉, since Eq. (9) only applies when Êm

and Â commute. In the case of non-commuting operators, the consistency of quantum theory requires that the
only statistical representation of the causality by which Â causes the outcome m is given by Eq. (7), where the
unavoidable negative joint statistical weights represent the quantum modifications of causality by non-classical
correlations between the physical properties.

The conclusion from the above discussion is that it is insufficient to associate physical quantities Â exclusively
with the outcomes of precise measurements of the eigenvalue outcomes a. The role of physical properties Â is not
limited to the individualmeasurement outcomes a, since non-commuting physical properties are related to each other
quantitatively by the operator algebra of Hilbert space. In the following, we will use the definition of quantitative
errors in Eq. (5) to identify the precise quantitative relations between non-commuting physical properties.

4 Error-free measurement

Equation (5) defines the quantitative error of the estimate Ãm for a measurement outcome of m for any set of
measurement operators {Êm}. If this error is zero, we can conclude that the quantity Â is precisely determined
by the combination of initial conditions | ψ〉 and final outcomes Êm . Error-free measurements thus provide us
with fully deterministic relations between the physical properties represented by these conditions, resulting in a
quantitative description of measurement causality that explains the physics without any statistical concepts.

To identify the conditions under which a measurement has zero error, we make use of the fact that Eq. (5)
describes the error as a sum of positive contributions from each measurement outcome m. Because of this, the total
error can only be zero if the contribution for everym is itself zero. We therefore find that the necessary and sufficient
condition for an error of ε2(A) = 0 is that every estimate Ãm must satisfy the relation

〈ψ | ( Ãm − Â)Êm( Ãm − Â) | ψ〉 = 0. (11)

Since each operator Êm can be replaced by its spectral decomposition, a value of zero is only obtained when Êm

can be expressed by a single pure state projector, or when Êm is an arbitrary combination of pure state projectors
that achieve an error of zero for the same value of Ãm . We can therefore conclude that error-free measurements
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can always be represented by measurement operators of the form Êm = λ | m〉〈m |. Using these measurement
operators, the condition for error-free measurements can be simplified to

Ãm = 〈m | Â | ψ〉
〈m | ψ〉 . (12)

Consistent with previous observations [32,33], the necessary and sufficient condition for an error-free measurement
according to Eq. (5) is that the estimates Ãm are all equal to an expression of the Hilbert space algebra that is usually
identified as the weak value of Â for the state | ψ〉 post-selected on | m〉. Importantly, this result is independent of
the actual performance of weak measurements and demonstrates that weak values are part of the standard operator
formalism. In an error-free measurement, the physical meaning of Ãm is that of a precise quantitative evaluation of
Â associated with every measurement outcome m. Note that no post-selection is considered. Instead, the spectrum
of values of Ãm assigned to the different outcomes m replaces the eigenvalue spectrum of Â as an equally valid
representation of the statistics of Â in the state | ψ〉.

In principle, Eq. (12) indicates that any projectivemeasurement {| m〉} can have ameasurement error of ε2(A) = 0
if the corresponding set of weak values of m are chosen for the estimates Ãm . However, weak values are generally
complex, and the imaginary part is usually obtained in a dynamical response of the system that is not directly
connected to the quantity represented by Â [34,35]. Since Ãm is an estimate of the quantity Â, it does not have
an imaginary part and Eq. (12) can only be satisfied if the weak value is real from the start. We therefore need to
distinguish clearly betweenmeasurements {| m〉} that result in real weak values andmeasurements that do not satisfy
this requirement. The mathematical form of this necessary and sufficient condition for error-free measurements of
Â on a known input state | ψ〉 is given by

Im

(
〈m | Â | ψ〉

〈m | ψ〉

)
= 0 (13)

for all outcomes m. Note that this condition is much less restrictive than the conventional demand that {| m〉} must
be the set of eigenstates of Â. This relaxation of the textbook definition of an error-free measurement is possible
because of the role played by the initial state | ψ〉. As a consequence, Eq. (13) requires us to examine the role of
quantum coherence in the initial state | ψ〉 and in the modified state vector Â | ψ〉 obtained by applying the operator
Â to the initial state. To do so, it is convenient to express | ψ〉 as a superposition of eigenstates | a〉 of the operator
Â, where the arbitrary phases of the eigenstates can be defined in such a way that all the coefficients 〈a | ψ〉 are real.
| ψ〉 therefore provides a physically meaningful gauge condition for the quantum phases of eigenstates | a〉. With
this phase standard, we can now identify measurements {| m〉} that can be expressed by real-valued superpositions
of eigenstates | a〉 as error-free measurements.

It may be convenient to illustrate the possibility of error-free measurements by an example. Consider the well-
known spin algebra given by the operators L̂ x , L̂ y and L̂ z . In the conventional representation based on eigenstates
of L̂ z , the matrix elements of L̂ x are all real. This represents the fact that a real and positive superposition of L̂ z

eigenstates represents a state with the maximal expectation value of L̂ x that can be achieved with this particular
distribution of L̂ z eigenvalues. This means that the conventional phase gauge of the L̂ z representation uses the
spin direction represented by L̂ x as a phase reference. As a result of this phase standard, the eigenstates of L̂ x are
all represented by real-valued superpositions of the L̂ z eigenstates. This means that, if we chose any state | ψ〉
represented by a real and positive superposition of L̂ z eigenstates, a measurement of the L̂ x eigenstates {| mx 〉} will
result in real weak values for L̂ z , since both | ψ〉 and L̂ z | ψ〉 are given by real-valued superpositions of the L̂ z

eigenstates. It is therefore possible to realize an error-free measurement of L̂ z by projective measurements of L̂ x

eigenstates if the initial state is in a real-valued superposition of L̂ z eigenstates. Note that this still leaves a large
variety of possibilities for the initial state | ψ〉, since only the phases of the L̂ z components have been fixed. Any
probability distribution of L̂ z values can be used to define | ψ〉, including non-classical superpositions of extremal
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L̂ z values and highly phase-squeezed states with large L̂ z uncertainties. The example of spin components shows
that it is comparatively easy to find practical examples of error-free measurements, and such measurements can be
realized in the laboratory using available technologies. In the most simple case of a two-level system, anymaximally
resolved measurement in the same plane of the Bloch sphere shared by the initial state | ψ〉 and the target observable
Â permits an error-free evaluation of Â, and an expample of this case has been reported in a previous experimental
work [15]. We can therefore conclude that the condition given by Eq. (13) is not overly restrictive and includes a
wide variety of cases relevant to our understanding of fundamental quantum meachanics.

The possibility of error-free measurements Êm that do not commute with the target observable Â indicates that
there is a precise quantitative relation betweenm, Â, andψ which is expressed by the error-free measurement result
Ãm . In the Hilbert space formalism, this quantitative relation can be described as a relation between three operators,
where one operator is associated with the measurement outcomes m and another is associated with the initial state
| ψ〉. Specifically, the measurement result Ãm associated with a measurement outcome | m〉 can be described as a
quantity M̂ with a possible state-dependent offset Bψ to represent the initial expectation value of Â in | ψ〉,

M̂ =
∑
m

(
Ãm − Bψ

)
| m〉〈m | . (14)

Note that this operator is constructed by applying the optimization of the measurement to the eigenstate basis
defined by the measurement {| m〉}. As a result, we can always obtain a linear relation between the operator Â of
the target observable, the operator B̂ representing the quantitative contribution of the initial state, and the operator
M̂ representing the quantitative contribution of the measurement outcome,

Â = B̂ + M̂ . (15)

In the present context, it is important that each of the three operators has a completely different set of eigenstates.
The initial state | ψ〉 is an eigenstate of the operator B̂, which means that the physical property B̂ of the system was
determined as a result of the initial quantum state preparation. The operator M̂ represents a quantity determined
exclusively by the measurement outcomes, so its eigenstates are given by the measurement basis {| m〉}, which
are different from the eigenstates {| a〉} of Â. Since the eigenstates of M̂ and Â are different, there must be a
non-vanishing difference B̂ between the two, and this difference is represented by the third physical quantity B̂
associated with the initial state | ψ〉. An error-free measurement is possible because this physical property has a
fixed value of Bψ for its eigenstate | ψ〉. Since this value contributes equally to each estimate Ãm , it is not possible
to identify a unique value of Bψ using Eqs. (14) and (15) above. The reason for this ambiguity is that M̂ and B̂ are
only distinguished by their different eigenstates, and not by their absolute values. Adding or subtracting a constant
value does not change the eigenstates of the operators, so it is not possible to decide from mathematics alone how
the average contribution to Â should be split between M̂ and B̂. However, it is interesting to note that Eq. (15)
automatically determines the complete set of eigenstates of B̂, since the operator B̂ is determined by the difference
of the operators Â and M̂ , and this difference is completely defined by the initial state and the measurement. By
using this general definition of the operator B̂, we can confirm that Bψ is the eigenvalue of B̂ for the initial state
| ψ〉,

B̂ | ψ〉 = ( Â − M̂) | ψ〉
=

∑
m

| m〉〈m | ( Â − Ãm + Bψ) | ψ〉

= Bψ | ψ〉. (16)

Note that the operator expression Â − Ãm in the second line can be identified with the error operator ε̂m(A) in Eq.
(4). Thus, the disappearance of the error ensures that | ψ〉 is an eigenstate of the difference between Â and M̂ .
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We can now explain why a quantitative measurement error of zero does not require a joint reality of eigenstates,
and why it is usually obtained for measured values Ãm that are different from the eigenvalues Aa of the target
observable Â. The quantitative relation that makes this error-free estimate possible is the additivity of physical
properties, as expressed by the operator sum in Eq. (15). The quantitative relation between physical properties
expressed by such operator sums cannot be explained in terms of the eigenvalues of the operators, because the sum
of the eigenvalues is different from the eigenvalues of the sum. It is this non-classical quantitative relation between
physical properties that is expressed by the error-free weak value estimates of Eq. (12). In particular, the initial
state | ψ〉 always corresponds to a known physical property B̂ that evaluates the quantitative difference ( Â − M̂)

between the target observable Â and the measured quantity M̂ .
The explanation of error-free measurements by precise quantitative relations between physical properties shows

that it is not sufficient to identify physical properties with the particular set of idealized measurement outcomes
represented by their eigenstates. In many circumstances, a more meaningful definition of a physical property will
involve a combination of initial and final conditions, and in these cases the eigenstate decomposition of the operator
will have no physical meaning. A particularly striking example of this problem is given by the description of
time evolution in quantum mechanics, where it is reasonable to be interested in the rate of change for a specific
observable. Such a rate of change is usually observed by a sequence of measurements, where the first measurement
prepares the initial value and the final measurement determines the final value. This corresponds exactly to the
situation discussed above, where M̂ is simply B̂(t) and the rate of change is given by Â/t = (B̂(t) − B̂(0))/t .
Importantly, the time derivative of an operator does not commute with that operator. This means that the classical
concept of trajectories must be replaced with quantitative operator relations that describe the observable effects of
the time evolution. For the motion of a particle, it is only possible to assign an error-free position between the initial
preparation and final measurement if the weak value of position associated with the initial and final conditions is a
real value, and even then it is not correct to identify the value of the position operator with the detection of a particle
at that position, since the quantitative estimate of position is different from an estimate of the probability of finding
a particle at that position. However, it should be kept in mind that positions are usually observed in the quantitative
dependence of interaction strength on distance, so the quantitative evaluation of position is closer to the observable
physics than the qualitative assignment of position associated with particle detections.

Quantitative relations are at the heart of the definitions of physical concepts. It is therefore not possible to reduce
the physics of a system to the measurement outcomes observed in limited sets of specific measurements. Instead,
it is necessary to explain how physical quantities appear in different contexts, each of which is represented by a
specific combination of initial and final conditions. Problems arise because the quantities observed in each context
are different from each other. For this reason, it is extremely important to examine the relation between different
measurement outcomes described by the joint statistical weights given by Eq. (7) in more detail.

5 Relations between physical properties

As shown in Sect. 3, it is possible to express the error statistics of the measurement Êm in terms of the joint statistical
weights of a and m defined by Eq. (6). The measurement error ε2(A) itself is then given by

ε2(A) =
∑
m,a

( Ãm − Aa)
2 P(a,m|ψ), (17)

an expression that corresponds to classical error statistics, where P(a,m|ψ) would be the probability of a joint
outcome of a and m. However, quantum mechanics does not permit an interpretation of Eq. (17) in terms of joint
realities of a and m, as indicated by the possibility of negative joint statistical weights.

As shown in the previous section, the error ε2(A) can be zero in situations where the measured values Ãm are
generally different from the eigenvalues Aa . Since thismeans that the squared differences between the two values are
all positive and non-zero, the sum in Eq. (17) can only be zero if some of the joint statistical weights P(a,m|ψ) are
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negative.We can therefore conclude from the discussions above that negative joint statistical weights are a necessary
characteristic of error-free measurements. Since the error-free measurement can also be explained in terms of the
quantitative relations between the physical quantities represented by Hilbert space operators, these non-positive
statistical weights are simply amore specific formulation of the physics represented by the established formalism. In
particular, non-positive joint statistical weights describe the necessary relations between themeasurement outcomes
m and the measurement outcomes a that are required to reconcile the quantitative relations between the operators
Â, M̂ and B̂ with the eigenvalues of the respective operators. We can therefore combine the results for the joint
statistical weights with the results of the previous section to arrive at a better understanding of how joint statistical
weights describe the relations between quantities and measurement outcomes in different measurement contexts.

To make the connection between error-free measurements and joint statistical weights, we first derive the optimal
estimate Ãm for a given joint statistical weight P(a,m|ψ) by minimizing the error as given by Eq. (17). As
expected from the formal analogy with classical error statistics, the minimal error is obtained when the estimates
Ãm correspond to conditional averages of the joint statistical weights,

Ãm =
∑
a

Aa
P(a,m|ψ)

P(m|ψ)
. (18)

Now, we need to identify the condition under which this optimized estimate is error free. For this purpose, we
can reformulate (12) by using the spectral decomposition of the operator Â to arrive at a condition for error-free
measurements that relates two sums over a,

∑
a

Aa
P(a,m|ψ)

P(m|ψ)
=

∑
a

Aa
〈ψ | m〉〈m | a〉〈a | ψ〉

〈ψ | m〉〈m | ψ〉 . (19)

This condition is both necessary and sufficient for error-free measurements. However, it may be worth noting that a
sufficient condition can be obtained by demanding equality for every element of the sum. In this case, the conditions
for error-free measurements do not depend on the eigenvalues Aa , so it applies equally to measurements of any
non-linear function of Â. This condition is given by

P(a,m|ψ) = 〈ψ | m〉〈m | a〉〈a | ψ〉. (20)

Comparison with Eq. (7) shows that this equality is satisfied whenever the right hand side is a real number,

Im (〈ψ | m〉〈m | a〉〈a | ψ〉) = 0. (21)

Whenever Eq. (21) is satisfied for all combinations of a andm, the measurement is error free and Eq. (18) expresses
the relation between the values of Â obtained in the measurement m and the values of Â obtained in a measurement
of a. In general, this condition restricts the possible choices of | ψ〉 for which joint error-free measurements of
Â and M̂ are possible. However, a large number of non-trivial solutions can be obtained by finding pairs of basis
systems where all inner products 〈m | a〉 are real numbers. In that case, | ψ〉 can be any superposition of | a〉 or
| m〉 with real-valued coefficients, as suggested below Eq. (13). It may also be interesting to note that the right hand
side of Eq. (20) is the Dirac distribution of the state | ψ〉. We thus find that a measurement is error free whenever
the Dirac distribution of the measurement outcomes m and the outcomes of a projective measurement a take only
real values.

We have now confirmed that Eq. (18) describes the relation between an error-free estimate Ãm and the eigenvalues
Aa in terms of the corresponding joint statistical weights P(a,m|ψ). We also know from the discussion in Sect. 4
that Ãm is error free because it can be obtained from the operator relation Â = M̂ + B̂ as a sum of eigenvalues of
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M̂ and B̂,

Ãm = Mm + Bψ. (22)

We can now address the problem that the quantitative relation between the operators Â and M̂ , B̂ does not correspond
to any quantitative relation between the eigenvalues Aa and Mm , Bψ . According to Eqs. (18) and (22), the relation
between the eigenvalues of the operators is given by

Mm =
∑
a

(Aa − Bψ)
P(a,m|ψ)

P(m|ψ)
. (23)

Here, the joint statistical weights P(a,m|ψ) describe a transformation procedure by which the differences of the
eigenvalues of Â and B̂ are converted into an eigenvalue of M̂ . This transformation highlights the fact that the
measurement ofm and the measurement of a are incompatible contexts, whereas the operator relations are context-
independent descriptions of the physical object. Therefore, the quantitative relation between eigenvalues observed
in the different contexts need to be described by transormations between these different measurement contexts.

It is important to realize that we can only identify a physical object if its properties are independent of the
context—otherwise, we would not be able to tell whether we are really observing the same system in different
experimental situations. It seems that most arguments about incompatibilities of measurement contexts in quantum
mechanics overlook this important requirement. Contextuality is only acceptable if we know precisely how the
relation between the contexts can be explained in terms of objective physical properties. The discussion above
shows that the Hilbert space formalism offers a solution to this problem once we realize that the operators provide
a context-independent definition of quantities that includes a precise prescription for the transformation between
different contexts.

It should also be noted that the introduction of M̂ establishes a completely symmetric relation between a mea-
surement of m and a measurement of a. This means that a measurement of a is not only error free in Â, but also
error free in M̂ , with the error-free estimate of M̂ given by

M̃a =
∑
m

Mm
P(a,m|ψ)

P(a|ψ)
. (24)

From this relation, we can derive the reverse transformation that converts the eigenvalues Mm of M̂ back into
eigenvalues Aa of Â,

Aa =
∑
m

(Mm + Bψ)
P(a,m|ψ)

P(a|ψ)
. (25)

Here, the eigenvalues represent the quantitative outcomes obtained in the specific context of a fully resolved
measurement of the corresponding quantity. To explain the quantitative relation between the values Aa obtained in
the context of outcomes a and the values Mm obtained in the context of outcomes m, non-positive joint statistical
weights can be used to convert the two sets of values into each other.

Although there is a formal analogy between this transformation and the calculation of conditional averages, it
is important to remember that ψ represents the physical property B̂ in the operator relation given by Eq. (15).
Therefore, the joint statistical weight is a relation between physical properties that do not involve any specific
physical situation. Likewise, the quantities related to each other by the joint statistical weights are eigenvalues and
not conditional averages. It needs to be emphasized that the non-positive statistical weights are an expression of
deterministic relations between the physical properties, equivalent in meaning to the original operator relation in Eq.
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(15), but more specific in their identification of the measurement contexts associated with the respective eigenvalues
of the operators.

The transformations discussed in this section show that the deterministic relations between the physical quantities
Â, M̂ and B̂ can only be expressed in terms of their eigenvalues if the faulty notion of a joint reality is replaced by
the more appropriate transformation between the measurement contexts described by the joint statistical weights
derived in Sect. 3. Our analysis therefore clarifies the role of the measurement context in quantum measurements.
Importantly, the measurement context can be defined by objective physical properties without any direct reference
to the state of the environment or the measurement setup. The absence of a joint reality for the different contexts
can then be explained completely in terms of the non-classical relations between the physical quantities of quantum
systems.

6 The origin of non-classical correlations

Perhaps, the most confusing aspect of quantum mechanics is the rather peculiar combination of statistical concepts
and deterministic quantitative relation in the mathematical formalism. As we have shown in the previous section,
this results in the definition of joint statistical weights that appear to be similar to probability distributions but
describe reversible transformations between two different measurement contexts. A direct statistical interpretation
is impossible, since some of the joint statistical weights are necessarily negative. However, the error-free assignment
of measurement values ( Ãm, Mm) to an outcome m, and of (Aa, M̃a) to an outcome a indicates that statistical
correlation between the quantities Â and M̂ in the initial state | ψ〉 can be determined from either one of the two
measurements. Specifically, we can express the correlations by the statistical average over the product of the two
error-free values. The reason why this average product is independent of the measurement context is that the two
averages are related by the transformation between contexts expressed by the joint statistical weight P(a,m|ψ).
It is therefore possible to express the average product using only the eigenvalues and the joint statistical weights.
This context-independent representation of non-classical correlations corresponds directly with the Hilbert space
expression of the expectation value of the operator product,

C(AM |ψ) =
∑
m

ÃmMmP(m|ψ)

=
∑
a

Aa M̃a P(a|ψ)

=
∑
a,m

AaMm P(a,m|ψ)

= 〈ψ | M̂ Â | ψ〉. (26)

We thus find that the correlation defined by the operator product of Â and M̂ can be evaluated as product of the
eigenvalues using the joint statistical weight, or as the statistical average of the product of error-free estimates
within any error-free measurement context. In effect, the operator product of the two non-commuting operators Â
and M̂ correctly describes the non-classical correlations observed in any measurement context that permits error-
free estimates of both Â and M̂ . Here too, the joint statistical weight provides the correct description of the relation
between the two contexts defined by the eigenstates.

The probability distributions P(m|ψ) and P(a|ψ) describe the randomness of the initial condition ψ , which
only determines the value of B̂, but not the values of Â or M̂ . The quantitative relation between the three properties
means that the product average can be expressed in terms of the statistics of Â or of M̂ using the fact that ψ

determines the value of B̂,

C(AM |ψ) = 〈ψ | Â2 | ψ〉 − Bψ 〈ψ | Â | ψ〉
= 〈ψ | M̂2 | ψ〉 + Bψ 〈ψ | M̂ | ψ〉. (27)
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Thus, the non-classical correlations between Â and M̂ are fully determined by the fluctuations of measurement
outcomes, whether the measurement is a measurement of a or a measurement of m.

For a specific measurement context, the correlations and the fluctuations are related by the appropriate quanti-
tative relations between the error-free estimate and the eigenvalues. For example, the statistics of correlations and
fluctuations for the measurement outcomes m is given by
C(AM |ψ) =

∑
m

ÃmMmP(m|ψ)

=
∑
m

(Mm + Bψ)MmP(m|ψ)

=
∑
m

Ãm( Ãm − Bψ)P(m|ψ). (28)

Thus, non-classical correlations can be traced back to the deterministic relations between the physical quantities
Â and M̂ obtained for a fixed value of the quantity B̂. The error-free values Ãm indicate that the fluctuations in Â
and the fluctuations in M̂ originate from the same source of randomness. The Hilbert space formalism describes
this source of randomness in terms of the state vector | ψ〉, but the physical meaning is better explained by the
transformation relations between the measurement contexts a and m.

In summary, the non-classical correlations expressed by products of non-commuting operators can be explained in
terms of the transformations betweenmeasurement contexts given by the joint statistical weights. These correlations
are directly observed in error-free measurements, where the known relations between target observable and the
measurement result provide a precise value of the target observable that is different from an eigenvalue.Nevertheless,
the same non-classical correlations can be observed in all measurement contexts, demonstrating that it is the
quantitative relations between physical properties and not the individual outcomes that are objectively real.

7 Conclusions

Our quantitative analysis of measurement errors shows that the mathematical description of physical quantities
by Hilbert space operators is justified by the causality relations between the physical properties that characterize
the initial state and the physical properties associated with the outcomes of the final measurement. The additivity
of physical quantities expressed by Eq. (15) has important consequences for the relations between different mea-
surement contexts, since it provides a precise description of the transformations of physical quantities between
the two contexts. Significantly, the relations between quantities and hence the relations between contexts are fully
deterministic and represent the universal relations between physical properties that define a physical object. It is
therefore possible to reconcile the different measurement concepts with the identification of objective properties as
the fundamental causes of measurement outcomes.

The results presented here suggest that a purely information theoretic or statistical approach to quantum physics
may be insufficient. The quantitative relations between physical properties cannot be described in terms of conven-
tional probability distributions, because the relations between the values observed in different measurement contexts
make it necessary to assign non-positive joint statistical weights. Contrarily, it is possible to derive a more detailed
description of non-classical correlations from the relations between the physical quantities. Quantitative relations
between physical properties are therefore more fundamental to quantum physics than the statistical properties
associated with quantum states.

Most importantly, this investigation into the relation between measurement outcomes and physical properties
shows that all different measurement contexts relate to the same set of physical properties, so that the complete
Hilbert space structure can be explained in terms of experimentally accessible physics. This kind of analysis should
be applied to all quantum experiments, since it may well be the only way to establish a proper empirical foundation
of quantum physics. At present, it is a weakness of quantum research that experimental results are only used to
verify one specific aspect of the theory, which means that we deprive ourselves of more general insights into the
actual physics. Here, we have shown that the quantitative relations between physical properties represent the actual
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physics of a quantum system, making it possible to relate different measurement contexts to each other. We believe
that this result will be absolutely essential for future progress toward a more complete understanding of quantum
physics.
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