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Abstract An approach for obtaining a Schrödinger equation for a spinless nonrelativistic particle with a position-
dependent mass is proposed. Rather than starting with the nonrelativistic hamiltonian for a free particle, we begin
with its relativistic completion in the form of aKlein–Gordon equation and then reduce it to obtain the nonrelativistic
limit. This type of procedure avoids the usual ordering ambiguities that commonly arise in obtaining a Schrödinger
equation for a particle with position-dependent mass.
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1 Introduction

Various ideas and approaches exist for generating a hamiltonian for a particle with a position-dependent massm(x)

[1–7]. These approaches typically involve writing a classical particle lagrangian with a kinetic term 1
2m(x)u · u =

1
2 p · p/m(x) and then introducing a canonical quantization prescription where p → −i h̄∇ is used. However, there
is an ordering ambiguity that arises due to the mass m(x). The ambiguity results in different possible quantum
hamiltonians, which, in general, are not equivalent (see, for example, [3,5,7]). A few examples of inequivalent
forms of the quantum kinetic energy operator are (see [7] and references therein) as follows:

T̂ = −1

4

(
m−1∇2 + ∇2m−1

)

T̂ = −1

2
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T̂ = −1
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)

T̂ = −1

4

(
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)α ∇(m−1)β∇(m−1)γ + H.c.

with α + β + γ = 1.
Here, a different type of procedure is proposed which avoids these ambiguities. Rather than starting with the

nonrelativistic classical kinetic energy E = 1
2m(x)u · u = 1

2 p · p/m(x) and proceeding with quantization, we
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begin using the relativistic extension for a spinless “free” boson obeying pμ pμ−m2(x) = 0, i.e., E2− p2−m2(x) =
0. Here, we use a flat spacetime metric with signature (+,−,−,−) and natural units with h̄ = c = 1. We also
note that a position dependence of the mass can arise from different types of interactions; see [8–11] and references
therein. The quantization prescription pμ → i∂μ, i.e., p → −i∇, E → i∂t , then yields a Klein–Gordon equation
�φ +m2(x)φ = 0 for a complex-valued boson field φ(xμ), where � = ∂2t −∇2. A reduction to the nonrelativistic
limit will then yield a Schrödinger equation for the position-dependent mass, without the ordering ambiguities.

We presently specialize to the case where the massm(x) is a mildly varying function which can be characterized
by a constant mass parameter m0 with m(x) = m0 + δm(x) = μ(x)m0, where μ = m/m0 and |δm/m0| � 1,
so that m(x) never wanders far from the characteristic mass m0. A Klein–Gordon equation �φ + m2

0φ for a field
with constant mass m0 can be reduced to a Schrödinger equation form using a technique illustrated by Bjorken and
Drell [12], or by one that has been introduced by Adler and Chen [13]. Here, we employ the Adler–Chen method
for its relative simplicity, and apply this to the case where the mass is position-dependent, with |δm| � m0.

2 Schrödinger equation

Constant mass We begin with the Klein–Gordon equation for a complex scalar field:

φ̈ − ∇2φ + m2(x)φ = 0 (1)

where m(x) = m0 + δm(x) = μ(x)m0, and |δm/m0| � 1. We can also write μ = m/m0 = 1+ δm/m0. We now
split out the rapid time variation of φ due to the rest mass by writing

φ(x, t) = e−im0tψ(x, t). (2)

Now, in the limit that the mass variation vanishes, δm → 0, insertion of (2) into (1) yields

− 1

2m0
∇2ψ = iψ̇ − 1

2m0
ψ̈. (3)

This looks like the Schrödinger equation for a free particle, except with the extra term ψ̈/2m0, and is, therefore,
referred to as the Schrödinger equation form, or SEF, by Adler and Chen [13]. This equation has an exact solution
ψ = exp(−i Et + ip · x), where E = Erel − m0 is the nonrelativistic energy, i.e., the relativistic energy of the
free particle with the rest energy subtracted off. In the low-energy limit, the ψ̈/2m0 term becomes negligible
in comparison to the iψ̇ term. If the ψ̈ term is dropped, we have the ordinary Schrödinger equation for a free
nonrelativistic particle. In this limit, we have an approximate quantum mechanical description for a single free
particle.

Let us look further at the probability interpretation for thewave functionψ . The (normalized) current density jμ =
i

2m0
φ∗←→∂μ φ for the Klein–Gordon field is conserved,∇μ jμ = 0. We use the notation φ∗←→∂μ φ = φ∗∂μφ − (∂μφ∗)φ

and ∂0 = ∂0 = ∂t , ∂k = −∂k . Now, using (2), we have

j0 = ψ∗ψ + i

2m0
ψ∗←→∂0 ψ

j k = i

2m0
ψ∗←→∂k ψ. (4)

The current density component j0 contains the extra term i
2m0

ψ∗←→∂0 ψ , so that the charge density j0 does not
coincide with the Schrödinger probability density ρ = ψ∗ψ . However, in the low-energy limit E/m0 � 1,
dropping this extra term leaves us with j0 = ρ = ψ∗ψ . Therefore, in the low-energy limit E � m0, we have the
Schrödinger equation with the usual probability density and the nonrelativistic single particle quantum mechanical
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interpretation. This interpretation breaks down near an energy scale Eviol � m0, and we must then use the UV
completion, i.e., theKlein–Gordon equation, but for E � Eviol � m0, the Schrödinger equation is valid. Relativistic
corrections can then be computed with standard quantum mechanical perturbation theory, as long as we stay in an
energy domain where E � Eviol � m0.
Position-dependent mass For δm �= 0 but |δm|/m0 � 1, we expect the above to follow through with only minor
modification. We again insert (2) into (1) to obtain

− 1

2m0
∇2ψ + m0

2
(μ2 − 1)ψ = iψ̇ − 1

2m0
ψ̈. (5)

We again restrict ourselves to nonrelativistic energies E � m0 and drop the ψ̈/2m0 term. The result is a Schrödinger
equation for a particle with mass m0 with a potential

V (x) = m0

2
(μ2 − 1) = δm(x) (6)

where we have used μ2 = (1 + δm/m0)
2 = 1 + 2δm/m0. We, therefore, have an effective Schrödinger equation

for a wave function ψ(x, t) given by the following:

− 1

2m0
∇2ψ + δm(x)ψ = iψ̇ (7)

valid for energies E � m ≈ m0.
Probability and current densities The lagrangian for the Klein–Gordon field φ with position-dependent mass
m(x) is as follows:

L = ∂μφ∗∂μφ − m2φ∗φ (8)

which yields the equation of motion (1). We now wish to obtain the conserved current density Jμ for this system
and check the probability interpretation in the low-energy limit. The lagrangian L is invariant under a global phase
transformation:

φ → eiαφ = (1 + iα)φ

φ∗ → e−iαφ∗ = (1 − iα)φ∗ (9)

where α = const and we consider the infinitesimal transformation with

δφ = iαφ, δφ∗ = −iαφ∗. (10)

Under these transformations, δL = 0, and the Noether procedure provides a conserved current:

δL = ∂L
∂φ

δφ + ∂L
∂(∂μφ)

δ(∂μφ) + (
φ → φ∗)

=
[
∂L
∂φ

− ∂μ

(
∂L

∂(∂μφ)

)]
δφ

+∂μ

[
∂L

∂(∂μφ)
δφ

]
+ (

φ → φ∗) . (11)
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The first term ∂L
∂φ

− ∂μ

(
∂L

∂(∂μφ)

)
on the right-hand side vanishes by the equation of motion for φ∗, and by (10), we

have

iα∂μ

[
∂L

∂
(
∂μφ

)φ − ∂L
∂

(
∂μφ∗)φ∗

]
= 0 (12)

so that by (8), we can identify a conserved Klein–Gordon current density

Jμ = iφ∗←→∂μ φ (13)

with∇μ Jμ = 0.We then again employ (2) and multiply by the constant 1/2m0 to obtain the normalized probability
and current densities jμ = Jμ/2m0 given by (4), which again, reduce to

j0 = ρ = ψ∗ψ, j k = i

2m0
ψ∗←→∂k ψ (14)

in the low-energy limit E � m0, i.e., the usual nonrelativistic quantummechanical probability and current densities.

3 Discussion

A particle can obtain an effective position-dependent mass in different types of settings, for example in a condensed
matter setting (see [7]) or in a setting involving gravitation with a conformal transformation of the action (see [8,9]).
Starting with a nonrelativistic expression for the energy of a “free” particle E = p · p/2m(x) for a particle with
a position-dependent mass, followed by a quantization using canonical replacements for energy and momentum
operators, p → −i∇ and E → i∂t , leads to ambiguities in the quantum hamiltonian, and can result in different,
inequivalent hamiltonian operators and Schrödinger equations. This difficulty is sidestepped here with the propo-
sition of starting with the relativistic quantum equation, the Klein–Gordon equation ∂2t φ − ∇2φ + m2(x)φ = 0
for a complex scalar field φ, and then taking the low-energy limit to obtain a Schrödinger equation. We have
specialized to the case where there exists a constant mass parameter m0 which serves to characterize the mass,
with δm = m − m0 � m0, in other words, the mass is a mildly varying function of position. The result of this
procedure is a Schrödinger equation, given by (7), for a particle with mass m0 which contains a potential of the
form V (x) = m0

2 (μ2 − 1) = δm(x) and is valid for energies E � m0. The usual probability interpretation remains
intact at low energy.
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