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Abstract We present a simplified proof of the von Neumann’s Quantum Ergodic Theorem. This important result
was initially published in German by von Neumann in 1929. We are interested here in the time evolution ψt , t ≥ 0
(for large times) under the Schrodinger equation associated with a given fixed Hamiltonian H : H → H and a
general initial condition ψ0. The dimension of the Hilbert space H is finite.
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1 Introduction

Consider a fixedHamiltonian H (a complex self-adjoint operator) acting on a complexHilbert spaceH of dimension
D, where D ≥ 3. Then, H can be written as

H = V1 ⊕ ... ⊕ VK ,

where each Va , a = 1, 2, ..., K , is the subspace of eigenvectors associated with the eigenvalue λa , and λ1 < λ2 <

... < λK .

We fixed an initial condition ψ0 for the dynamic Schrodinger evolution. We consider the time evolution ψt =
e−i t H (ψ0), t ≥ 0, and we are interested in properties for most of the large times (not all large times).

Now, we consider another decomposition D of H (which has nothing to do with the previous one)

H = H1 ⊕ ... ⊕ HN , N ≥ 2.

We can consider a natural probability on the set � of possible decompositions D and we are interested here in
properties for most of the decompositions D. For small δ > 0, we are interested in the concept of a (1− δ) generic
decomposition D (in the probabilistic sense).

For a given fixed subspaceHν ofH, ν = 1, ..., N , the observable PHν
(the orthogonal projection onHν) is such

that the mean value of the state ψt , t ≥ 0, is given by Eψt (PHν
) =< PHν

(ψt ), ψt >= |PHν
(ψt ) |2.
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264 A. O. Lopes, M. Sebastiani

In the first part of the paper, following the basic guidelines of the original work by von Neumann, we present
lower bound conditions (in terms of δ, etc) on the dimensions dν , ν = 1, 2, .., N , of the different values ofHν of a
(1− δ)-generic orthogonal decomposition D of the formH = H1 ⊕ ... ⊕HN , in such way that the dynamic time
evolution ψt , t ≥ 0, of a given ψ0, for most of the large times t , has the property that the expected value Eψt (PHν

)

is almost dν

D . In this way, there is an approximately uniform spreading of ψt among the different values of Hν of
a generic decomposition D. In this part, the main result is Theorem 15. We point out that these estimates are for a
fixed initial condition ψ0.

The von Neumann’s Quantum Ergodic Theorem provides uniform estimates for all ψ0. This result is presented
in Theorem 19. This will be done in the second part of the paper which begins in Sect. 4. To get this theorem, it will
be necessary to assume hypothesis on the eigenvalues of the Hamiltonian H (see hypothesisN R just after Lemma
16).

Suppose, for instance, that A : H → H is an observable and this self-adjoint operator has spectral decomposition

H = H1 ⊕ ... ⊕ HN ,

whereHp, p = 1, ..., N is the subspace of eigenvectors associated with the eigenvalue βp and β1 < β2 < ... < βN .

The probability that the measurement of A on the state ψt is βp is given by < PHp (ψt ), ψt >. This shows the
relevance of the result. The point of view here is not to look for generic observables but for generic decompositions.

We stress a point raised on [3]. What is proved is a property of the kind: for most D, something is true for all
ψ0. In addition, not a property of the kind: for all ψ0, something is true for most D.

Of course, the main result can also be stated in terms of limits, when T → ∞, of means 1
T

∫
Eψt (PHν

)dt , which
is a more close expression to the one present in the classical Ergodic Theorem.

Wepresent here a simplified proof (with less hypothesis in some parts)when dimH is finite of this important result
which was initially published in German by von Neumann in 1929 (see [6]). The paper [5] presents a translation
from German to English of this work of von Neumann. This 1929 paper also considers the concept of Entropy for
such setting. We will not consider this topic in our note.

Several papers with interesting discussions about this work appeared recently (see, for instance, [1–3,5] and
other papers which mention these four)

Consider a general connected compact Riemannian manifold X and its volume form.When properly normalized,
this procedure defines a natural probability wX over X .

Given a compact Lie group (real) G, one can consider the associated bi-invariant Riemannian metric. If H is a
closed subset of G, this metric can be considered in the quotient space X = G

H , and in this way, we get a probability
on such manifold X . We will denote by π the projection.

When we consider expected values of a function f , this we will be taken with respect to the above-mentioned
probability.

Lemma 1 Given a continuous function f : X → C and π : G → X the canonical projection, then

(a) vol (S) = vol (π−1(S))

vol (H)

for every Borel set S ⊂ X, and

(b) EX ( f ) = EG( f ◦ π).

The first integral is taken with respect to the volume form wX and the second with respect to the volume form
wG .

Note that vol (G) = vol (X) vol (H).

The proof is left for the reader.
Suppose H is a complex Hilbert space of finite dimension D with an inner product <, > and a norm | |.
Suppose we fix a decomposition D, that is

D : H = H1 ⊕ ... ⊕ HN
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A detailed proof of the von Neumann’s Quantum 265

N > 1, is a orthogonal direct sum, where dimHν = dν > 0 for all ν = 1, 2, ..., N .

Denote Pν the orthogonal projection of H over Hν .
Moreover, S = {ψ ∈ H | |ψ | = 1} denotes the unitary sphere. S has a Riemannian structure with a metric

induced by the norm in H. In the same way as before, there is an associated probability wS is S.

Lemma 2 For any ν = 1, 2..., N,

ES(|Pν ( . )|2) =
∫

S
|Pν (φ) |2 d wS(φ) = dν

D
.

Proof Suppose ν is fixed, then take ψ1, ψ2, ..., ψD , and orthogonal basis of H, such that ψ1, ψ2, ..., ψdν is an
orthogonal basis of Hν .

Given φ = ∑D
j=1 x j ψ j ∈ S, where

∑D
j=1 |x j |2 = 1, then

∫

S
|Pν (φ) |2 d wS(φ) =

∫

S

dν∑

j=1

|x j |2d wS(x).

Note that the integral
∫
S |x j |2d wS(x) is independent of j and

∫

S

D∑

j=1

|x j |2d wS(x) = vol (S) = 1.

Therefore, for any j
∫

S
|x j |2d wS(x) = 1

D
.

Therefore, it follows that
∫

S

dν∑

j=1

|x j |2d wS(x) = dν

D
.

	

Lemma 3 For any ν = 1, 2..., N,

VarS(|Pν ( . ) |2) =
∫

S

(

|Pν (φ)|2 − dν

D

)2

d wS(φ) = dν (D − dν)

D2 (D + 1)
.

Proof To simplify the notation we take ν = 1. Then, we denote d = d1 and P = P1.
Take ψ1, ψ2, ..., ψD , and orthogonal basis ofH, such that, ψ1, ψ2, ..., ψd is an orthogonal basis of H1.

By last Lemma, we have
∫

S

(

|P (φ)|2 − d

D

)2

d wS(φ) =
∫

S
|P (φ)|4 d wS(φ) − 2

d

D

∫

S
|P (φ)|2 d wS(φ) +

(
d

D

)2

=
∫

S
|P (φ)|4 d wS(φ) −

(
d

D

)2

.

If φ = ∑D
j=1 x j ψ j ∈ S, then P(φ) = ∑d

j=1 x j ψ j .

Therefore
∫

S
|P (φ)|4 d wS(φ) = 1

vol (S)

∫

S
(

d∑

j=1

|x j |2)2 dS(x) = d2 + d

D (D + 1)
.

The last equality follows from a standard computation (see “Appendix 1”).
From this follows the claim. 	
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266 A. O. Lopes, M. Sebastiani

2 Changing the decomposition

H is fixed for the rest of the paper.
Now, we change our point of view. We fix φ ∈ H and we consider different decompositions ofH in direct sum.

More precisely, we fix D = dimH and N and we consider fixed natural positive numbers dν , ν = 1, 2, ..., N , such
that d1 + d2 + ... + dN = D, and then, all possible choices of orthogonal decompositions with this data.

We denote by �(d1, d2, ..., dN ,H) = � the set of all possible D, that is, all possible orthogonal direct sum
decompositions:

D : H = H1 ⊕ ... ⊕ HN .

For fixed ν = 1, 2, ..., N , then Pν(D) denotes the projection on Hν associated with the decomposition D.
Each choice of orthogonal basis ψ1, ψ2, ..., ψD ofH defines a possible choice of direct orthogonal sum decom-

position:

H1 is generated by {ψ1, ..., ψd1 }, H2 is generated by {ψd1+1, ..., ψd1+d2 },
and so on.

The set of all orthogonal basis is identified with the set of unitary operators U (D) which defines a compact Lie
group and a Haar probability structure.

In this way,

� = U (D)

U (d1) ×U (d2) × ... ×U (dN )
.

In the same way as before, we get a probability w� over �. Therefore, it has a meaning the probability w�(B) of
a Borel set B ⊂ � of decompositions.

Lemma 4 Consider a continuous function f : R → R. Then, for fixed ν = 1, 2..., N, and fixed φ̃ and D̃
∫

S
f (|Pν(D̃) φ |) d wS(φ) =

∫

�

f (|Pν(D) φ̃ |) d w�(D).

This constant value is independent of φ̃ and D̃.

Proof If U : H → H, is unitary, then U D denotes

U (H1) ⊕ ... ⊕U (HN ).

Then, for fixed φ and D, we have

Pν(U D)U (φ) = U Pν(D)φ.

We prove the claim for P1. Suppose ψ1, ψ2, ..., ψD , is an orthogonal basis of H, such that ψ1, ψ2, ..., ψd1 is an
orthogonal basis of H1.

We can express φ = ∑D
j=1 x j ψ j , and moreover, U (φ) = ∑D

j=1 x j U (ψ j ).
U (ψ1),U (ψ2), ...,U (ψD) is an orthogonal basis of H associated with U D and U (ψ1),U (ψ2), ...,U (ψd1) is

an orthogonal basis of U (H1).
Then,

P1(U D)U (φ) = P1(U D)

⎛

⎝
D∑

j=1

x j U (ψ j )

⎞

⎠ =
d1∑

j=1

x j U (ψ j ).

By the other hand

U P1(D)φ = U P1(D)

⎛

⎝
D∑

j=1

x j ψ j

⎞

⎠ = U

⎛

⎝
d1∑

j=1

x j ψ j

⎞

⎠ =
d1∑

j=1

x j U (ψ j ),

and this shows the claim.
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A detailed proof of the von Neumann’s Quantum 267

Therefore, we get

| Pν(U D)U (φ) | = |U−1 Pν(U D)U (φ) | = |U−1U Pν(D)φ| = | Pν(D)φ|.
Finally, for a fixed D and a variable U
∫

S
f (|Pν(D) φ |) d wS(φ) =

∫

S
f (| Pν(U D)U (φ) |) d wS(φ) =

∫

S
f (| Pν(U D) (φ) |) d wS(φ),

because wS is invariant by the action of U .
Then, the above integral on the variable φ is constant by the action of U in a given decomposition D.
Now, consider a fixed φ1 and another general φ2 = U (φ1), where U is unitary.
As w� is invariant by the action of U , the integral

∫

�

f (|Pν(D) φ2 |) d w�(D) =
∫

�

f (|Pν(U D)U (φ1) |) d w�(D) =
∫

�

f (|U Pν(D) φ1 |) d w�(D)

=
∫

�

f (| Pν(D) φ1 |) d w�(D)

is constant and independent of φ.
Remember that wS × w� is a probability.
Consider now

∫ ∫
f (|Pν(D) φ |) d wS(φ)d w�(D) =

∫ [ ∫
f (|Pν(D) φ |) d wS(φ)

]

d w�(D)

=
∫ [ ∫

f (|Pν(D) φ |) d w�(D)

]

d wS(φ),

then by Fubini, we get the claim of the Lemma (since the unitary group acts transitively on S and on �). 	

Corollary 5 Consider a fixed φ ∈ H, such that |φ| = 1.

Then, for ν = 1, 2..., N, we get that

E�(|Pν ( . )(φ) |2) = dν

D
,

and

Var�(|Pν ( . )(φ) |2) = dν (D − dν)

D2 (D + 1)
,

where . denotes integration with respect to D.

Proof This is consequence of Lemmas 2, 3, and 4. 	

Definition 6 Given δ > 0, a Hilbert spaceH and natural positive numbers d j , j = 1, 2, ..., N , such that d1 + d2 +
... + dN = D = dimH, we say that a property is true for D ∈ �(d1, .., dN ,H), in (1 − δ) sense, if the property is
not true only for elements D in a set of probability w� smaller than δ.

Corollary 7 Suppose ε > 0 and δ > 0 are given. Consider natural positive numbers dν, ν = 1, 2, ..., N, such that
d1 + d2 + ... + dN = D = dim H, and moreover, assume that for all ν = 1, 2..., N

dν > D − ε2 δD (D + 1)

N 2 .

Consider a fixed φ such that |φ| = 1. Then, for decompositions, D ∈ �(d1, .., dN ,H) in the (1 − δ) sense, and
ν = 1, 2..., N, we have

| |Pν (D)(φ) |2 − dν

D
| < ε

√
dν

D N
. (1)
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268 A. O. Lopes, M. Sebastiani

Proof By Corollary 5 and Markov inequality, we have

w�

( [

|Pν (D)(φ) |2 − dν

D

]2
≥ ε2

dν

D N

)

≤ dν (D − dν)

D2 (D + 1)

D N

ε2 dν

= N (D − dν)

ε2 D (D + 1)
.

Then, the probability that all N inequalities do not happen is

1 − N
N (D − dν)

ε2 D (D + 1)
> 1 − δ

by hypothesis. 	

Thecorollary abovemeans that for afixedφ, if thedν are all not very small, then for a big part of the decompositions

D, we have that

|Pν (D)(φ) |2
is close by the mean value dν

D .

Definition 8 Given a Hilbert space H and a fixed decomposition D (associated with natural positive numbers
d j , j = 1, 2, ..., N , such that d1 + d2 + ... + dN = D = dim H, we define a semi-norm in such a way that for a
linear operator ρ : H → H, by

| ρ |∞ = | ρ |D∞ = sup
1≤ν≤N

|Tr (ρ Pν(D) |

The above means that if | ρ |∞ is small, then all expected values EPν (ρ), ν = 1, 2, ..., N , are small
| φ >< φ | will denote the orthogonal projection on the unitary vector φ in the Hilbert space H.

Lemma 9 Consider a φ ∈ H = H1 ⊕ ... ⊕ HN , such that |φ| = 1. Denote ρmc = 1
D IH.

Then

| | φ >< φ | − ρmc |∞ = sup
1≤ν≤N

| |Pν(D) (φ) |2 − dν

D
|.

Proof Suppose ψ1, ψ2, ..., ψD is orthogonal basis ofH, such that ψ1, ψ2, ..., ψd1 is an orthogonal basis of H1.

If φ = ∑D
j=1 x jφ j , then for i = 1, 2, ..., d1

| φ >< φ | |P1(φi ) >= | φ >< φ | |φi >=
D∑

j=1

xi x j φ j

and

| φ >< φ | |P1(φi ) >= 0

for i > d1.
Therefore

Tr [ | φ >< φ | |P1 (.) > ] =
d1∑

j=1

|x j |2 = |P1(φ)|2.

In an analogous way, we have that for any ν

Tr [ | φ >< φ | |Pν (.) > ] = |Pν(φ)|2.
From this follows the claim. 	


From the above, it follows:

Corollary 10 Under the hypothesis of Corollary 7, we get that for decompositions D ∈ �(d1, .., dN ,H) in the
(1 − δ) sense

| | φ >< φ | − ρmc |∞ ≤ sup
1≤ν≤N

ε

√
dν

N D
.
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A detailed proof of the von Neumann’s Quantum 269

3 Estimations on time

Definition 11 Given δ > 0, we say that a property for the parameters t ∈ R is true for (1 − δ)-most of the large
times, if

lim inf
T→∞

1

T
μ(AT ) > 1 − δ,

where AT is the set of t ∈ [0, T ], where the property is verified and μ is the Lebesge measure on R.

Lemma 12 Suppose f : R → R is continuous and non- negative. Consider a certain γ > 0.
Suppose ρ is such that

lim sup
T→∞

1

T

∫ T

0
f (t) dt < ρ.

Then, f (t) < γ for 1 − ρ
γ
-most of the large times.

Proof

∫ T

0
f (t) dt ≥

∫ T

f (t)≥γ

f (t) dt ≥ γ μ({t ∈ [0, T ] | f (t) ≥ γ }).

Therefore

lim sup
T→∞

1

T
μ( { t ∈ [0, T ] f (t) ≥ γ } <

ρ

γ
,

and finally

lim inf
T→∞

1

T
μ( { t ∈ [0, T ] f (t) < γ } > 1 − ρ

γ
.

	

Suppose H is Hilbert space, and d j , j = 1, 2, ..., N are such that d1 + d2 + ... + dN = D = dim H, and

H : H → H a self-adjoint operator. Consider a fixed φ0 ∈ H, with |φ0| = 1, and ψt = e− i t H φ0, t ≥ 0, a solution
of the associated Schrodinger equation.

Lemma 13 For fixed T and ν = 1, 2, ..., N, consider the function

fν,T : �(d1, d2, ..., dN ,H) × S → R,

given by

fν,T (D, φ) = 1

T

∫ T

0

(

|Pν(D) ψt |2 − dν

D

)2

dt.

Then, fν,T converges uniformly on (D, φ) ∈ �(d1, d2, ..., dN ,H) × S when T → ∞, for any ν = 1, 2, ..., N.

Proof Suppose φ1, φ2, ..., φD is a set of eigenvectors of H which is an orthonormal basis ofH.
Assume that φ0 = ∑D

j=1 x jφ j . Then

ψt =
D∑

j=1

x j e
−i t E j φ j ,

where E j , j = 1, 2, .., D are the corresponding eigenvalues.
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270 A. O. Lopes, M. Sebastiani

Then, for a given ν

|Pν(D) ψt |2 =< ψt , Pν(D) (ψt ) >=
∑

α,β

xαxβe
−i t (Eα−Eβ)φ j < φα, Pν(D) (φβ) > .

Therefore
(

|Pν(D) ψt |2 − dν

D

)2

=
M∑

w=1

Lw,ν(D, φ) ei uw t ,

where M ∈ N, u1, .., uM are real constants and | Lw,ν(D, φ) | ≤ 2.
Then

fν,T (D, φ) =
M∑

uw=0

Lw,ν(D, φ) + 1

T

M∑

uw �=0

Lw,ν(D, φ)

(
ei uw T

i uw

− 1

i uw

)

.

Finally, we get

| fν,T (D, φ) −
M∑

uw=0

Lw,ν(D, φ) | ≤ 1

T

4M

infuw �=0 |uw| .

As M is fixed, the claim follows from this. 	

Corollary 14

∫

�

(

lim
T→∞

1

T

∫ T

0

(

|Pν(D) ψt |2 − dν

D

)2

dt

)

dw�(D) = dν (D − dν)

D2 (D + 1)
,

for any ν = 1, 2, .., N.

Proof By Lemma 13 and Corollary 5, we have that
∫

�

[

lim
T→∞

1

T

∫ T

0

(

|Pν(D) ψt |2 − dν

D

)2

dt

]

dw�(D)

= lim
T→∞

1

T

∫

�

dw�(D)

(∫ T

0

(

|Pν(D) ψt |2 − dν

D

)2

dt

)

lim
T→∞

1

T

∫ T

0
dt

∫

�

(

|Pν(D) ψt |2 − dν

D

)2

dw�(D) = dν (D − dν)

D2 (D + 1)
.

	

Theorem 15 Suppose ε > 0, δ > 0 and δ ′ > 0 are given. Consider natural positive numbers dν, ν = 1, 2, ..., N,
such that d1 + d2 + ... + dN = D = dim H, and, moreover, assume that, for all ν = 1, 2..., N,

dν > D − ε2 δ δ′ D (D + 1)

N 3 .

Suppose H : H → H is self-adjoint, the unitary vector ψ0 ∈ H is fixed, and ψt = e− i t H (ψ0), t ≥ 0.
Then, for (1 − δ)-most of the decompositions D ∈ �(d1, d2, ..., dN ,H), the inequalities

| |Eψt (PHν
) − dν

D
| = | |Pν(D) ψt |2 − dν

D
| < ε

√
dν

N D
(ν = 1, 2, ..., N )

are true for (1 − δ ′)-most of the large times.
The estimates depend on the initial condition ψ0.
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A detailed proof of the von Neumann’s Quantum 271

Proof We denote

fν(D) = lim
T→∞

1

T

∫ T

0

(

|Pν(D) ψt |2 − dν

D

)2

dt.

From Corollary 14, for each ν

w�

({

D ∈ � : fν(D) ≥ ε2 δ ′ dν

D N 2

})

≤ dν (D − dν)

D2 (D + 1)

D N 2

ε2δ ′ dν

= N 2 (D − dν)

D (D + 1) ε2 δ ′ .

Therefore, there exists a set S ⊂ �, such that

w�(S) ≥ 1 − N 3 (D − dν)

D (D + 1) ε2 δ ′ > 1 − δ,

and, at the same time fν(D) < ε2 δ ′ dν

D N2 , for all D ∈ S and all ν = 1, 2..., N .

Now, taking in Lemma 12 ρ = ε2 δ ′ dν

D N2 , and γ = ε2 dν

D N , we get for all D ∈ S and all ν = 1, 2, ..., N

| |Pν(D) ψt |2 − dν

D
| < ε

√
dν

N D
(ν = 1, 2, ..., N ),

for (1 − δ ′
N )-most of the large times.

Therefore, the above inequalities for all ν = 1, 2, .., N are true for (1 − δ ′) most of the large times. 	

Note that the mean value fν(D) depends of the Hamiltonian H but the bounds of last theorem does not depend

on H .

4 Uniform estimates

In this section, we will refine the last result considering uniform estimates which are independent of the initial
condition ψ0 (for the time evolution associated with the fixed Hamiltonian H : H → H).

Suppose ε > 0, δ > 0, and δ ′ > 0 are given. Consider natural positive numbers dν, ν = 1, 2, ..., N , such that
d1 + d2 + ... + dN = D = dim H

We denote for each ψ0 ∈ H, where |ψ0| = 1, and D ∈ � = �(d1, ..., dN ;H)

fν(ψ0,D) = lim
T→∞

1

T

∫ T

0

(

|Pν(D) ψt |2 − dν

D

)2

dt,

where ψt = e−i t H (ψ0) (see Lemma 13).

Lemma 16 Suppose are given ε > 0 and δ′ > 0. Assume that there exists non-negative continuous functions
gν : � → R, ν = 1, 2, .., N, and K > 0, such that

(a) fν(ψ0,D) ≤ gν, for all D ∈ � and for all ψ0 ∈ H with |ψ0| = 1, (2)

(b)
∫

�

gν(D) dw�(D) < K . (3)

Suppose δ is such that

1 > δ ≥ K D N 3

ε2 δ′ dν

, ν = 1, 2, .., N . (4)
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272 A. O. Lopes, M. Sebastiani

Then, for (1 − δ)-most of the D ∈ �, we have

| |Pν(D) ψt |2 − dν

D
| ≤ ε

√
dν

N D
, ν = 1, 2, .., N , (5)

for (1 − δ′)-most of the large times and for any ψ0 ∈ H with |ψ0| = 1.

Proof Note that

w�({D ∈ � : gν(�) ≥ δ′ ε2 dν

N 2 D
} < K

N 2 D

δ′ ε2dν

<
δ

N
, ν = 1, 2, .., N .

Therefore, there exists a subset E ⊂ �, such that w�(E) < 1 − δ and gν(�) < δ′ ε2 dν

N2 D
, for all � ∈ E and all

ν = 1, 2..., N .

The conclusion is: if � ∈ E , then fν(ψ0,D) < δ′ ε2 dν

N2 D
, for all ν = 1, 2..., N , and all ψ0 with norm 1.

The proof of the claim now follows from the reasoning of Theorem 15 and Lemma 12. 	

Note that to have δ in expression (4) small, it is necessary that all dν are large.
We assume now several hypothesis on H . Consider a certain orthogonal basis of eigenvectors φ1, φ2, ..., φD of

H . We denote by E j , j = 1, 2, .., D the corresponding eigenvalues.
We assume hypothesis N R which says

a) H is not degenerate, that is, Eα �= Eβ , for α �= β,
and

b) H has no resonances, that is, Eα − Eβ �= Eα′ − Eβ ′ , unless α = α′ and β = β ′, or, α = β and α′ = β ′.

Lemma 17

fν(ψ0,D) ≤ max
1≤α �=β≤D

| < φα, Pν(D)φβ > |2 + max
1≤α≤D

(

< φα, Pν(D) φα > −dν

D

)2

,

for all ψ0 ∈ H, such that |ψ0| = 1, and for all D ∈ �(d1, ..., dN ;H) and all ν = 1, 2..., N .

Proof Suppose ψ0 = ∑D
α=1 cα φα . Then

ψt =
D∑

α=1

cα e
−i t Eαφα, t ≥ 0,

and

| Pν(D)ψt |2 =< ψt , Pν(D)ψt >=
∑

1≤α,β≤D

cα cβe
−i t (Eα−Eβ) < φα, Pν(D)φβ > .

Therefore
(

| Pν(D)ψt |2 − dν

D

)2

=
D∑

1≤α,β,γ,δ≤D

cα cβ cγ cδ e
−i t [ (Eα−Eβ) −(Eδ−Eγ ) ] < φα, Pν(D)φβ >< φγ , Pν(D)φδ >

−2
dν

D

∑

1≤α,β≤D

cα cβe
−i t (Eα−Eβ) < φα, Pν(D)φβ > + d2ν

D2 .

Using the above expression in the computation of integral fν(ψ0,D)will remain just the terms, where the coefficient
of t is zero. By hypothesis, this will happen just when α = δ and β = γ , or, α = β and γ = δ.

Note that the case α = β = γ = δ is counted twice in the estimation.
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Therefore

fν(ψ0,D) =
∑

1≤α,β≤D

|cα|2 |cβ |2 | < φα, Pν(D)φβ > |2

+
∑

1≤α,γ≤D

|cα|2 |cγ |2 < φα, Pν(D)φα >< φγ , Pν(D)φγ >

−
∑

1≤α≤D

|cα|4 | < φα, Pν(D)φα > |2 − 2
dν

D

∑

1≤α≤D

|cα|2 < φα, Pν(D)φα > + d2ν
D2 ,

because < φγ , Pν(D)φδ >= < φδ, Pν(D)φγ >.
Finally, putting together the first and third terms:

fν(ψ0,D) =
∑

1≤α �=β≤D

|cα|2 |cβ |2 | < φα, Pν(D)φβ > |2 +
⎛

⎝
∑

1≤α≤D

|cα|2 < φα, Pν(D)φα > − dν

D

⎞

⎠

2

.

By the other hand
∑

1≤α �=β≤D

|cα|2 |cβ |2 | < φα, Pν(D)φβ > |2 ≤ max
1≤α �=β≤D

| < φα, Pν(D)φβ > |2
∑

1≤α,β≤D

|cα|2 |cβ |2

= max
1≤α �=β≤D

| < φα, Pν(D)φβ > |2
⎛

⎝
∑

1≤α≤D

|cα|2
⎞

⎠

2

= max
1≤α �=β≤D

| < φα, Pν(D)φβ > |2,

because |ψ0| = 1.
By the same reason

|
∑

1≤α≤D

|cα|2 < φα, Pν(D)φα > − dν

D
| =

∣
∣
∣
∣
∣
∣

∑

1≤α≤D

|cα|2
(

< φα, Pν(D)φα > − dν

D

)
∣
∣
∣
∣
∣
∣

≤ max
1≤α≤D

∣
∣
∣
∣ < φα, Pν(D)φα > − dν

D

∣
∣
∣
∣ .

	

Now, we define for each ν = 1, 2, ..., N , the continuous function gν(D) : �(d1, ..., dN ;H) = � → R given by

gν(D) = max
1≤α �=β≤D

| < φα, Pν(D)φβ > |2 + max
1≤α≤D

∣
∣
∣
∣ < φα, Pν(D)φα > − dν

D

∣
∣
∣
∣

2

. (6)

We point out that for eachD, the expression gν(D) depends just on H because as Eα are all different, the eigenvector
basis is unique up to a changing in order and multiplication by scalar of modulus one.

Now, we need a fundamental technical Lemma.

Lemma 18 There exist a constant C1 > 0, such that
∫

�

gν(D)w�(D) <
10 log D

D
, ν = 1, 2, ..., N ,

if, C1 log D < dν < D
C1

.
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Note that if D is large, there is a lot of room for the values dν to be able to satisfy last inequality. We will prove
this fundamental lemma in the next sections.

If we assume the Lemma is true, then:

Theorem 19 Given ε, δ > 0 and δ′ > 0, take d1, d2, ..., dN , such that, if D = d1 + ... + dN , N > 0, then the
following inequalities are true

max (C1,
10N 3

ε δ δ′ ) log D < dν <
D

C1
, ν = 1, 2, .., N ,

where C1 comes from Lemma 18.
Assume that H is a Hilbert space of dimension D and H : H → H is a self-adjoint Hamiltonian without

resonances and degeneracies, then for (1 − δ) most of the decompositions D ∈ �(d1, ..., dN ;H) the system of
inequalities

| | Pν(D)ψt |2 − dν

D
| < ε

√
dν

N D
, ν = 1, 2, ..., N

are true for most of the (1 − δ′) large times and for any initial condition, ψ0 ∈ H, |ψ0| = 1.

Proof By hypothesis and Lemma 18, we get
∫

�

gν(D)w�(D) <
10 log D

D
, ν = 1, 2, ..., N .

The claim follows from Lemma 16 by taking K = 10 log D
D . 	


Main conclusion:
As we said before, for a given fixed subspace Hν of H, the observable PHν

(the orthogonal projection on Hν) is
such that the mean value Eψt (PHν

) of the state ψt is < PHν
(ψt ), ψt >= |PHν

(ψt ) |2.
For a fixed Hamiltonian H acting on a Hilbert space H of dimension D, the main theorem gives lower bound

conditions on the dimensions dν , ν = 1, 2, .., N , of the different Hν values of a (1 − δ)-generic orthogonal
decomposition D of the form H = H1 ⊕ ... ⊕ HN , in such a way that the dynamic time evolution ψt , obtained
from any fixed initial condition ψ0, for most of the large times t , has the property that the projected component
Pν(D) (ψt ) = PHν

(ψt ) is almost uniformly distributed (in terms of expected value) with respect to the relative
dimension size dν

D ofHν . In this way, there is an approximately uniform spreading of ψt among the different values
of Hν of the decomposition D.

5 Proof of Lemma 18

The Lemmas 22 and 23 will permit to reduce the integration problem from the unitary group to a problem in the
real line.

We will need first an auxiliary lemma. We denote by Sk the unitary sphere in R
k+1 and Skr the sphere of radius

r > 0 in Rk+1. We consider the usual metric on them.
The next lemma is a classical result on Integral Geometry (see [4]). We will provide a simple proof in

“Appendix 2”.

Lemma 20 Suppose X is a Riemannian compact manifold, f : X → R a C∞-function and g : R → R a
continuous function. We define

G(v) =
∫

f ≤v

(g ◦ f ) λ,
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where λ is the volume form on X. Suppose that a ∈ R is a regular value of f . Then, G is differentiable at v = a
and

dG

dv
(a) = g(a)

∫

Xa

λa

| grad f | ,

where Xa is the level manifold f = a and λa is the induced volume form in Xa.

Corollary 21 Given positive integers d, D, where 1 < d < D − 1, denote by S the unitary sphere on R
2 D with

the usual metric. Define

f (x) = x21 + ... + x22 d , where x ∈ S and g : R → R is a continuous function.

Suppose

G(v) =
∫

f ≤v

(g ◦ f ) dλ,

then G is of class C1 and

dG

dv
(v) = 2πD

(d − 1) ! (D − d − 1) ! g(v) vd−1 (1 − v)D−d−1, if 0 ≤ v ≤ 1,

and dG
dv (v) = 0, if v < 0 or v > 1.

Proof For x21 + ... + x22 d = v, we have

grad f (x) = 2 ( (1 − v)x1, ..., (1 − v)x2d ,−v x2d+1, ...,−v x2 D).

Then, |grad f (x)| = 2
√

v (v − 1), which is constant over Sv = { f = v}. Note that
Sv = S2d−1√

v
× S2 (D−d) −1√

1−v
, 0 < v < 1.

From last Lemma and from the above expression, it follows that (remember that vol (S2n−1
r ) = 2πn

(n−1) ! r
2n−1)

dG

dv
(v) = g(v)

1

2
√

v (1 − v)

2πd (
√

v)2 d−1

(d − 1) !
2πD−d(

√
(1 − v))2 (D−d) −1

(D − d − 1) !
= 2πD vd−1 (1 − v)D−d−1

(d − 1) ! (D − d − 1) ! , 0 < v < 1.

In the case v < 0 or v > 1, we have that G is constant. Finally, as S0 and S1 are submanifolds of S, we have that
G is continuous for v = 0 and v = 1. 	


From now on, we fix ν, where 1 ≤ ν ≤ N , and we define

eα,β(D) =< φα, Pν(D) φβ >, D ∈ �, 1 ≤ α, β ≤ D, eα,β : � → C,

where φ1, ..., φD is the orthonormal basis for H which were fixed in Sect. 4.

Lemma 22 Suppose 1 < dν < D − 1. Let a ≥ 0 be such
√
a < dν

D and
√
a + dν

D < 1. Then, the probability, such

that (eα,β − dν

D )2 ≥ α is

(D − 1) !
(dν − 1) ! (D − dν − 1) !

∫

[0, dν
D −√

a]∪[ dνD +√
a, 1]

udν−1 (1 − u)D−dν−1 du.

Lemma 23 Suppose 1 < dν < D− 1. Let α �= β and 0 ≤ a ≤ 1/4. Then, the probability such that | eα,β |2 ≥ a is

(D − 1) !
(dν − 1) ! (D − dν − 1) !

∫ 1/2+√
1/4−a

1/2−√
1/4−a

(w (1 − w) − a)D−2

wD−dν−1 (1 − w)dν−1 dw.
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Proof of Lemma 22 We just have to consider the case ν = 1. We write d = d1 and denote by P the orthogonal
projection of H over Cφ1 + ... + Cφd .

We denote by p : U → � the projection defined in the beginning of Sect. 2, where U denotes the group of
unitary transformations of H.

If U ∈ U, then
eα,α(p(U )) =< φα, orthogonal projection of φα in CU (φ1) + ... + CU (φd) >=

< U−1(φα), P(U−1φα) > .

Denote q : U → S, where q(U ) = U (φα), U ∈ U and σ : S → R, where σ(φ) =< φ, P(φ) >, φ ∈ S, and
where S is the unitary sphere ofH.

Then, we get the following commutative diagram:

inverse

U → U

p ↓ ↓ q

� S

eα,α ↘ ↙ σ

R

As the inverse preserves the metric, it follows from Lemma 1 a) that the probability of eα,α ≤ b is equal to the
probability that σ ≤ b. Note that the metric on S as quotient of U is the same as the induced byH, because U acts
transitively on S.

It will be more easy to make the computations via the right hand side of the diagram.
We identify H with C

D = R
2 D , via φ1, φ2, ..., φD . Then, S is identified with the unitary sphere in R

2 D , also
denoted by S, and

σ : S → R, σ (x) = x21 + ... + x22 d , x ∈ S.

Therefore, by Corollary 21 with g = 1, we get

d (Vol (σ ≤ v))

d v
= 2πD

(d − 1) ! (D − d − 1) ! vd−1 (1 − v)D−d−1, if 0 ≤ v ≤ 1,

and
d (Vol (σ ≤ v))

d v
= 0,

if v < 0 or v > 1.
Now, we normalize dividing by vol S = 2πD

(D−1) ! and we get

d (prob (σ ≤ v))

d v
= (D − 1) !

(d − 1) ! (D − d − 1) ! vd−1 (1 − v)D−d−1, if 0 ≤ v ≤ 1.

As (eα,α − d
D )2 ≥ a is equivalent to

eα,α ≥ d

D
+ √

a, or eα,α ≤ d

D
− √

a,

we get that the probability of (eα,α − d
D )2 ≥ a is equal to the probability of σ ≥ d

D + √
a or σ ≤ d

D − √
a. From

this follows that the probability of (eα,α − d
D )2 ≥ a is equal to

(D − 1) !
(d − 1) ! (D − d − 1) !

[ ∫ 1

d
D +√

a
vd−1 (1 − v)D−d−1dv +

∫ d
D −√

a

0
vd−1 (1 − v)D−d−1dv

]

.

Observe that σ = constant is an analytic subset of S, and therefore, the associated probability is zero. The case
a = 0 is trivial. 	
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Proof of Lemma 23 We just have to consider the case ν = 1. Take d = d1 and as before, we denote by P the
orthogonal projection of H over Cφ1 + ... + Cφd . Once more we denote by p : U → � the projection defined in
the beginning of Sect. 2.

If U ∈ U, then
eα,β(p(U )) =< φα, orthogonal projection of φβ in CU (φ1) + ... + CU (φd) >=

< U−1(φα), P(U−1φβ) > .

Denote qα,β : U → S × S, where qα,β(U ) = (U (φα),U (φβ)), U ∈ U, and S is the unitary sphere ofH.

Denote by M = qα,β(U) = {(φ,ψ) ∈ S × S | φ is orthogonal to ψ }.
Let Hα,β ⊂ U the closed subgroup of the U , such that U (φα) = φα and U (φβ) = φβ .
Then, M = U/Hα,β and qα,β : U → M is the canonical projection.
The quotient metric on M is the induced by S × S, because U acts transitively on M .
Let f : M → C given by f (φ,ψ) =< φ, P(ψ) > . Then, we get the following commutative diagram:

inverse

U → U

p ↓ ↓ qα,β

� M

eα,β ↘ ↙ f

C

As the inverse preserves the metric of U, it follows that the probability of |eα,α|2 ≤ a is equal to the probability that
| f |2 ≤ a by Lemma 1 a).

Now, consider ϕ : M → S, such that ϕ(φ,ψ) = ψ . This defines a C∞ locally trivial fiber bundle with fiber
S2 D−3. Indeed, Eψ = ϕ−1(ψ) is the unitary sphere of the subspace Hψ which is the orthogonal set to ψ inH.

Given u ∈ R denote:

Fu(ψ) = Eψ ∩ {| f |2 ≤ u}, ψ ∈ S.

Then

Vol ({| f |2 ≤ u}) =
∫

S
volEψ (Fu(ψ)) dS (ψ).

For each ψ , we get ψ ′ ∈ H via

P(ψ) = cψ + ψ ′, where c ∈ C and ψ ′ is orthogonal to ψ.

Note that ψ ′ ∈ Hψ . Then

f (φ,ψ) =< φ, P(ψ) >=< φ,ψ ′ >,

and it follows that

Fu(ψ) = {φ ∈ Eψ : | < φ,ψ ′ > |2 ≤ u}, u ∈ R, ψ ∈ S.

There exist an isomorphism identifying Hψ = C
D−1 = R

2 D−2 between Hilbert spaces which transform ψ ′ in
(|ψ ′|, 0, ..., 0). This isomorphism identifies Eψ with the unitary sphere E on R

2 D−2 and Fu(ψ) with the set:

{x ∈ E : |ψ ′|2(x21 + x22 ) ≤ u}.
Now, applying Corollary 21 with D − 1 instead of D, d = 1, g = 1, and v = u

|ψ ′|2 , we get

d VolEψ Fu(ψ)

du
= 2πD−1

(D − 3) ! (1 − u

|ψ ′|2 )D−3 1

|ψ ′|2 = 2πD−1

(D − 3) !
(| ψ ′|2 − u)D−3

|ψ ′|2 (D−2)
,
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for all ψ ∈ S and 0 < u ≤ |ψ ′|2, and
d VolEψ Fu(ψ)

du
= 0

if |ψ ′|2 ≤ u ≤ 1, for any ψ ∈ S.

Then, we get that
d VolEψ

Fu(ψ)

du is a continuous function of (u, ψ) for 0 < u ≤ 1 and ψ ∈ S. As S is compact, we
can take derivative inside the integral and we get

d Vol(| f |2 ≤ u)

du
=

∫

S

d VolEψ Fu(ψ)

du
dS(ψ)

for any 0 < u ≤ 1.
By the definition of ψ ′, it is easy to see that |ψ ′|2 = |P(ψ)|2 (1 − |P(ψ)|2).
Now, we consider gu : R → R, where

gu(w) = (w (1 − w) − u)D−3

(w (1 − w))D−2

if u ≤ w (1 − w), and gu(w) = 0 in the other case.
gu(w) is a continuous function of u and w when 0 < u ≤ 1, 0 ≤ w ≤ 1.
From this follows that

d Vol(| f |2 ≤ u)

du
= 2πD−1

(D − 3) !
∫

S
(gu ◦ |P(ψ)|2) dS(ψ)

for any 0 < u ≤ 1.

Now, we normalize dividing by Vol (M) = 2πD−1

(D−2) !
2πD

(D−1) ! and we get

d Prob(| f |2 ≤ u)

du
= (D − 1) ! (D − 2)

(2πD)

∫

S
(gu ◦ |P(ψ)|2) dS(ψ) (7)

for any 0 < u ≤ 1.
Denote

A(u, w) =
∫

|P(ψ)|2≤w

(gu ◦ |P(ψ)|2) dS(ψ),

for any 0 < u ≤ 1, 0 ≤ w ≤ 1.
By Corollary 21, we get

∫

S
( gu ◦ |P(ψ)|2) dS(ψ) = A(u, 1) = A(u, 1) − A(u, 0) =

∫ 1

0

∂A

∂w
(u, w) dw,

for any 0 < u ≤ 1.
Estimating ∂A

∂w
by Corollary 21 and substituting in (7), we finally get

d Prob(| f |2 ≤ u)

du
= (D − 1) ! (D − 2)

(d − 1) ! (D − d − 1) !
∫

u≤w (1−w)

(w (1 − w) − u)D−3

wD−d−1 (1 − w)d−1 dw

for any 0 < u ≤ 1.
If u > 1/4, w (1 − w) < u for all w and the integral is zero.
If 0 < u ≤ 1/4, u ≤ w(1 − w) is equivalent to

1/2 − √
1/4 − u ≤ w ≤ 1/2 + √

1/4 − u.

Then

d Prob(| f |2 ≤ u)

du
= (D − 1) ! (D − 2)

(d − 1) ! (D − d − 1) !
∫ 1/2+√

1/4−u

1/2−√
1/4−u

(w (1 − w) − u)D−3

wD−d−1 (1 − w)d−1 dw,
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if 0 < u ≤ 1/4, and

d Prob(| f |2 ≤ u)

du
= 0

if 1/4 ≤ u ≤ 1.
Finally, for 0 < a ≤ 1/4

Prob(| f |2 ≥ a) = (D − 1) ! (D − 2)

(d − 1) ! (D − d − 1) !
∫ 1/4

a
du

∫ 1/2+√
1/4−u

1/2−√
1/4−u

(w (1 − w) − u)D−3

wD−d−1 (1 − w)d−1 dw.

Considering the double integral in the region a ≤ u ≤ w (1 − w), we get

Prob(| f |2 ≥ a) = (D − 1) ! (D − 2)

(d − 1) ! (D − d − 1) !
∫ 1/2+√

1/4−a

1/2−√
1/4−u

dw
∫ w (1−w)

a

(w (1 − w) − u)D−3

wD−d−1 (1 − w)d−1 du

= (D − 1) !
(d − 1) ! (D − d − 1) !

∫ 1/2+√
1/4−a

1/2−√
1/4−a

(w (1 − w) − a)D−2

wD−d−1 (1 − w)d−1 dw.

The case a = 0 is trivial. 	

Remark Note that if g : � → R is a continuous function such that 0 ≤ g(D) ≤ r , for all D ∈ �, then we get the
estimate
∫

�

g(D) w�(D) =
∫

g≥a
g(D) w�(D) +

∫

g<a
g(D) w�(D) ≤ r Prob (g ≥ a) + a,

for 0 ≤ a ≤ 1.
Given positive integer numbers d, D and a ∈ R, such that

1 < d < D − 1, 0 ≤ a ≤ d2

D2 and
d

D
+ √

a ≤ 1

we define

I (d, D, a) = (D − 1) !
(d − 1) ! (D − d − 1) !

∫

[0, d
D −√

a]∪[ d
D +√

a, 1]
ud−1 (1 − u)D−d−1 du.

In the following, we will use the estimate θ = 11/12.

Lemma 24 There exists a constant C > 4, such that if a ≥ 0, d ≥ 1 C log D < d < D
C and 1

D <
√
a < d

8 D , then

I (d, D, a) <
D√
d
e− θ a D2

2 d .

Proof Note that our hypothesis implies that 1 < d < D − 1, a2 < d2

D2 and d
D + √

a < 1.

a) By Stirling formula, when D → ∞, d → ∞, D/d → ∞, we get that

(D − 1) !
(d − 1) ! (D − d − 1) ! ∼ 1

e

√
d

2π

(
d

D

)−d (

1 − d

D

)d−D

.

As
√

1
2π < 1, there exists a constant A such that if D > A, d > A and D/d > A, we get

(D − 1) !
(d − 1) ! (D − d − 1) ! <

√
d

2

(
d

D

)−d (

1 − d

D

)d−D

.

If we takeC > A+1, it follows from the hypothesis of the Lemma that D > d C > d A, d > C log D > C > A
and D − d > d C − d = d(C − 1) > d A > A.
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b) The derivative of ud−1 (1 − u)D−d−1 with respect to u in (0, 1) is zero only on the point u = d−1
D−1 which is

smaller than d/D.
Moreover
d

D
− √

a <
d

D
− 1

D
= d − 1

D
<

d − 1

D − 1
.

Then, d−1
D−1 ∈ ( d

D − √
a, d

D ) ⊂ ( d
D − √

a, d
D + √

a).

From this it follows that ud−1 (1 − u)D−d−1 takes its maximal values on the set [0, d
D − √

a] ∪ [ dD + √
a, 1]

on the point d
D − √

a or on the point d
D + √

a.

Under our hypothesis, if C > A + 1, we get that for ε = 1 or −1:

I (d, D, a) <

√
d

2

(
d

D

)−d (

1 − d

D

)d−D (
d

D
+ ε

√
a

)d−1

(1 − d

D
− ε

√
a)D−d−1

=
√
d

2

(1 + ε D
d

√
a)d (1 − ε D

D−d

√
a)D−d

( d
D + ε

√
a)

(
1 − d

D − ε
√
a
) .

c) If ε = 1 with C > 4, C > A + 1, we get

(
d

D
+ ε

√
a)

(

1 − d

D
− ε

√
a

)

= d

D
+ √

a − d2

D2 − 2
d

D

√
a − a >

d

D
− d2

D2 − 2
d

D

√
a >

d

D
− d2

D2 − 2
d2

8 D2 = d

D
− 5 d2

4 D2 >
d

D

(

1 − 5 d

4 D

)

>
d

2 D
.

If ε = 1 with C > 4, C > A + 1, one can show in the same way that
(
d

D
+ ε

√
a

) (

1 − d

D
− ε

√
a

)

>
d

2 D
.

In this way, we finally get that for ε = 1 or ε = −1

I (d, D, a) <

√
d

2

2 D

d

(

1 + ε
D

d

√
a

)d

(1 − ε
D

D − d

√
a)D−d

= D√
d

(

1 + ε
D

d

√
a

)d (

1 − ε
D

D − d

√
a

)D−d

.

Note that

D√
d

(1 + ε
D

d

√
a)d

(

1 − ε
D

D − d

√
a

)D−d

= D√
d

exp

[

d log(1 + ε
D

d

√
a) + (D − d) log

(

1 − ε
D

D − d

√
a

)]

<
D√
d

exp

[

d

(

ε
D

d

√
a − 1

2

D2

d2
a + ε

3

D3

d3
a3/2

)

+ (D − d)

(

−ε
D

D − d

√
a

)]

.

This is so because log(1 + x) = x − x2
2 + x3

3 + ..., for |x | < 1, D
d

√
a < 1/8, and D

D−d

√
a < 1

24 .

Therefore, if C > 4 and C > A + 1, then

I (d, D, a) <
D√
d
exp

[

−1

2

D2

d
a + ε

3

D3

d2
a3/2

]

,

for ε = 1 or ε = −1.
Note that

| ε
3

D3

d2
a3/2|

| − 1
2

D2

d a|
= 2

3

D

d
a1/2 <

2

3

D

d

d

8 D
= 1

12
.
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Therefore, if C > 4 and C > A + 1, we finally get

I (d, D, a) <
D√
d
e− θ

2
D2
d a .

	

Motivated by the Remark before Lemma 24, we will choose a convenient choice of a.

Corollary 25 There exist C0 > 4, such that if d and D are such that C0 log D < d < D
C0

, then

I (d, D, a) <
1

D3
√
d

,

where a = 8 d log D
θ D2 .

Proof Take C0 > C (of Lemma 24) and C0 > 242. Then

√
a =

√
8

θ

√
d log D

D
< 3

√
d d

C0

D
= 3 d

D
√
C0

<
3 d

D 24
= d

8 D
,

because 8
θ

< 9.

Moreover,
√
a >

√
d log D
D > 1

D .

By Lemma 24, we get that

I (d, D, a) <
D√
d
e− 8 θ D2

2 d
8
θ

d log D
D2 = D√

d
e− 4 log D = 1

D3
√
d

.

	

Lemma 26 Suppose C0 is the constant of Corollary 25. Given 1 ≤ ν ≤ N , suppose that C0 log D < dν < D

C0
,

then
∫

�

max
1≤α≤D

(

< φα, Pν(D) φα > −dν

D

)2

w�(D) <
9 dν log D

D2 .

Proof Suppose a = 8 dν log D
θ D2 .

By Corollary 25 and Lemma 22 (see also the beginning of the proof of Lemma 24), we get that the probability
of the above integrand to be great or equal to a is smaller than D 1

D3
√
dν

= 1
D2

√
dν
.

As we point out in the Remark before Lemma 24, the integral is smaller than

1

D2
√
dν

+ 8

θ

dν log D

D2 .

Note that
1

D2
√
dν

dν log D
D2

= 1

d3/2ν log D
< 9 − 8

θ
= 3

11
,

because d3/2ν log D > C3/2
0 (log D)5/2 > C3/2

0 > 8 > 11
3 .

Therefore

1

D2
√
dν

+ 8

θ

dν log D

D2 < (9 − 8

θ
)
dν log D

D2 + 8

θ

dν log D

D2 = 9 dν log D

D2 .
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In Lemma 18, the function gν is defined as the sum of two terms (see expression (6). The Lemma 26 takes care of
the upper bound of the integral of the second term. Now, we will estimate the upper bound for the first term (using
the Remark done before Lemma 24). First, we need two lemmas.

Lemma 27 Suppose φ and ψ are orthonormal and E ⊂ H is a subspace. Denote by P the orthogonal projection
of H over E.

Then, | < φ, P(ψ) > |2 ≤ 1/4.

Proof If ψ is orthogonal to E or ψ ∈ E , we have that < φ, P(ψ) >= 0.
Suppose ψ is not on E and is also not orthogonal to E . Suppose ψ = ψ1 + ψ2, where ψ1 is orthogonal to E

and ψ2 ∈ E .
Let λ = |ψ1| and μ = |ψ2|, then ψ1 = λe1, ψ2 = μ e2, where e1 and e2 are orthonormal.
Denote by θ the orthogonal projection of φ over C e1 + C e2. Then

|θ | ≤ 1 and α =< φ, P(ψ) >=< φ,ψ2 >=< θ,ψ2 > .

Now, < φ, ψ >= 0 implies that

0 =< φ,ψ1 > + < φ,ψ2 >=< θ,ψ1 > + < θ,ψ2 > .

Suppose θ = a e1 + b e2, then |a|2 + |b|2 ≤ 1. By the other hand, 1 = |ψ | = |ψ1 + ψ2| = |λ|2 + |μ|2 and
α =< θ,ψ2 >= bμ, < θ,ψ1 >= a λ, a λ = − bμ = −α.

From this, it follows that |−α
a |2 + |α

b |2 = 1, that is, |α|2 = |a|2‖b|2
|a|2+|b|2 < 1

4 .

Note that if a b = 0, then α = 0. 	

Lemma 28 Given positive integers d, D, where 1 < d and D > 2d + 2 denote

f (t) = (1 − t)d+1−D (1 + t)1−d + (1 + t)d+1−D (1 − t)1−d .

then, f (t) is increasing on the interval (0, 1).

Proof For any t ∈ (0, 1), we have

f ′(t) = (1 − t)d+1−D (1 + t)1−d
[
1 − d

1 + t
− d + 1 − D

1 − t

]

+ (1 + t)d+1−D (1 − t)1−d
[
d + 1 − D

1 + t
− 1 − d

1 − t

]

.

Taking z = 1+t
1−t > 1, we get

(1 + t)D−1 f ′(t) = zD−d−1 [(D − d − 1) z − (d − 1)] + zd−1 [(d − 1) z − (D − d − 1)] >

zD−d−1 [(D − d − 1) − (d − 1)] + zd−1 [ (d − 1) − (D − d − 1)] =

(zD−d−1 − zd−1) (D − 2 d) > 0,

because z > 1, 	

Suppose 0 ≤ a < 1/4 and d, D positive integers, such that 1 < d < D − 1. Define

J (d, D, a) = (D − 1) !
(d − 1) ! (D − d − 1) !

∫ 1/2+√
1/4−a

1/2−√
1/4−a

(w (1 − w) − a)D−2

wD−d−1 (1 − w)d−1 dw.

Lemma 29 Suppose d, D are positive integers 1 < d, 2 d + 2 < D. Then

0 ≤ J (d, D, a) < e−4 a(D−3/2), where 0 ≤ a < 1/4.
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Proof Note that J (d, D, a) is positive.
In the integration, we divide the integral in two parts: [1/2 − √

1/4 − a, 1/2] and [1/2, 1/2 + √
1/4 − a].

We make a change of variable w = 1/2 − √
1/4 − x on the first interval and w = 1/2 + √

1/4 − x on the
second interval. On both cases, we get x = w (1 − w) and a ≤ x ≤ 1/4.

From this, it follows

J (d, D, a) = (D − 1) !
(d − 1) ! (D − d − 1) !

∫ 1/4

a
(x − a)D−2

⎡

⎣

(
1

2
−

√
1

4
− x

)d+1−D (
1

2
+

√
1

4
− x

)1−d

+
⎛

⎝ 1

2
+

√
1

4
− x

)d+1−D (
1

2
−

√
1

4
− x

)1−d
⎤

⎦ 1

2
√
1/4 − x

dx

= 2D−2 (D − 1) !
(d − 1) ! (D − d − 1) !

∫ 1/4

a
(x − a)D−2[(1 − √

1 − 4 x)d+1−D (1 + √
1 − 4 x)1−d

+(1 + √
1 − 4 x)d+1−D (1 − √

1 − 4 x)1−d ] 1√
1 − 4 x

dx .

Now, we consider y = x−a
1/4−a . In this case (1 − 4x) = (1 − 4a)(1 − y).

Then

J (d, D, a) =

(1 − 4a)3/2 (D − 1) !
2D (d − 1) ! (D − d − 1) !

∫ 1

0
yD−2[ (1 − √

1 − 4a
√
1 − y)d+1−D

(1 + √
1 − 4a

√
1 − y)1−d + (1 + √

1 − 4a
√
1 − y)d+1−D

(1 − √
1 − 4a

√
1 − y)1−d ] 1√

1 − y
dy.

Note that just the expression under [ ] depends on a. For each y ∈ (0, 1), we have
√
1 − 4a

√
1 − y ∈ (0, 1) is an

decreasing function of a. It follows from Lemma 28 that for each y ∈ (0, 1), the integrand is a decreasing function
of a.

Therefore, J (d,D,a)

(1−4a)D−3/2 is a decreasing function of a. As J (d, D, 0) = 1 (see Lemma 23), it follows that

J (d, D, a) ≤ (1 − 4 a)D−3/2, 0 ≤ a < 4.

Finally, note that (1 − 4 a)D−3/2 ≤ e−4 a (D−3/2) 	

Corollary 30 If 1 < d, D > 2 d + 2 and log D

D < 1
3 , then

J (d, D, a) < D−3e
9 log D
2 D , where a = 3

4

log D

D
.

Proof It follows from Lemma 29, because 0 < 3
4
log D
D < 1

4 . 	

Lemma 31 Suppose 1 ≤ ν ≤ N, 3 < dν , D > 2 dν + 2, and log D

D < 1
5 .

Then
∫

�

max
1≤α �=β≤D

| < φα, Pν(D)φβ > |2 w�(D) <
log D

D
(8)

where φ1, .., φD is an orthonormal basis of eigenvectors for H (without resonances).
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Proof By Lemma 23 and Corollary 30, the probability that the integrand is bigger than a is smaller than

D (D − 1)

2
D−3e

9 log D
2 D , a = 3 log D

4 D
,

because as eα,β = eβ,α , we just have to take α < β.
By the Remark before Lemma 24, the integral is smaller than

3

4

log D

D
+ D (D − 1)

8
D−3 e

9 log D
2 D ,

because by Lemma 27 |eα,β | < 1/4.
As D − 1 < D, we have

D (D−1)
8 D−3 e

9 log D
2 D

log D
D

<
1

8 D
e
9 log D
2 D

D

log D
= e

9 log D
2 D

1

8 log D
.

Now, as D ≥ 9, log D ≥ 2, we get

1

8 log D
e
9 log D
2 D <

1

16
e9/10 <

e

16
< 1/4.

Now, we put the two estimates together 3
4

log D
D + 1

4
log D
D and we get the claim of the Lemma. 	


The Lemma 18 follows from Lemmas 26 and 31. In this way, we get the claim of the Quantum Ergodic Theorem
of von Neumann.

Appendix 1

In this Appendix, we will show that

1

vol (S)

∫

S

⎛

⎝
d∑

j=1

|x j |2
⎞

⎠

2

dS(x) = d2 + d

D (D + 1)
. (9)

First, we will show that when S is the unitary sphere in Rn , m ≥ 1, and n ≥ m, then

∫

S

⎛

⎝
m∑

j=1

|x j |2
⎞

⎠

2

dS(x) = vol (S)
m2 + 2m

n (n + 2)
. (10)

It is easy to see that (9) follows from (10).

1)
∫
x2j dS(x) = vol(S)

n for j = 1, 2, ..., n, because the integral does not depend of j .
2) Suppose B is the unitary ball in Rn . Consider in polar coordinates

T : S × [0, 1] → B,

where T (x, ρ) = ρ x .
Then, T ∗(dx1 ∧ ... ∧ dxn) = ρn−1dS(x) ∧ dρ.
Therefore∫

B
(x21 + .. + x2n )dx1...dxn =

∫

S×[0,1]
T ∗((x21 + .. + x2n )dx1 ∧ ... ∧ dxn) =

∫

S×[0,1]
ρn+1dS(x) ∧ dρ = vol(S)

∫ 1

0
ρn+1dρ = vol(S)

n + 2
.

Finally,
∫
B x2j dx1...dxn = vol(S)

n (n+2) , because it is independent of j = 1, 2..., n.
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3) For j = 1, 2..., n, we have
∫

S
x4j dS(x) = 3

∫

B
x2j dx1...dxn = 3vol(S)

n (n + 2)

by the divergent theorem and by 2) above.
4) If ≤ i < j ≤ n, then

∫

S
x2i x

2
j dS(x) =

∫

B
x2j dx1...dxn = vol(S)

n (n + 2)
.

by the divergent theorem and by 2) above.

The integral

∫

S

⎛

⎝
d∑

j=1

|x j |2
⎞

⎠

2

dS(x)

is a sum of terms of the kind
∫
S x

2
i x

2
j dS(x), i �= j , and

∫
S x

4
j dS(x), j = 1, 2, ..n.

Just collecting the different terms and using the estimates above, we get the initial claim (10).

Appendix 2: Proof of Lemma 20

Suppose ε > 0 is small enough, consider

f | f −1(a−ε, a+ε) : f −1(a − ε, a + ε) → (a − ε, a + ε).

Given h ∈ R, 0 < |h| < ε, then integrating (g ◦ f ) λ, we get

G(a + h) − G(a) =
∫ h

0
g(a + t) dt

∫

Xa+t

λa+t

| grad f | .

(where λv is the volume form on Xv = f −1(v) for v ∈ (a − ε, a + ε)), because d f (grad f ) = | grad f |2. From
this follows that for some 0 ≤ θ ≤ 1, we have

G(a + h) − G(a) = h g(a + θ h)

∫

Xa+ θ h

λa+ θ h

| grad f | ,

Now, we divide the above expression by h and we take the limit when h → 0 	
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