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Abstract There are contextual sets of multiple qubits whose commutation is parametrized thanks to the coset
geometry G of a subgroup H of the two-generator free group G = 〈x, y〉. One defines geometric contextuality from
the discrepancy between the commutativity of cosets on G and that of quantum observables. It is shown in this paper
that Kleinian subgroups K = 〈 f, g〉 that are non-compact, arithmetic, and generated by two elliptic isometries f
and g (the Martin-Maclachlan classification), are appropriate contextuality filters. Standard contextual geometries
such as some thin generalized polygons (starting with Mermin’s 3 × 3 grid) belong to this frame. The Bianchi
groups PSL(2, Od), d ∈ {1, 3} defined over the imaginary quadratic field Od = Q(

√−d) play a special role.
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1 Introduction

In a previous work, a concept of ‘geometric contextuality’ fitting that of ‘quantum contextuality’ of a set of
observables has been identified for the first time [1]. Impossible assignments—a laKochen–Specker—of eigenvalues
ν for observables A happen in a finite geometry G whose points are the observables and lines are commuting sets of
them. For two and three qubits, Mermin’s 3× 3 grid and pentagram are the smallest such contextual configurations
[2]which are also present in the quantumpigeonhole effect [3]. In quantum contextuality, a geometry is parametrized
by the observables whilst in geometric contextuality the points ofG are representatives of coset classes of a subgroup
H of the free groupG = 〈x, y〉 on two generators. The geometryG itself is stabilized under the action of cosets—the
latter action is known as a Grothendieck’s ‘dessin d’enfant’ [4]. Geometric contextuality arises when it becomes
impossible to find all lines of G with commuting cosets, i.e., not all lines have their points/cosets satisfying the coset
commutation law [x1, x2, . . . , xp] = e whatever the ordering of the p points.
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180 M. Planat

Table 1 Parameters of a few classes of Kleinian groups in the MM-census

Group p q d γ Covolume G Sec.

K (4) 2 4 1 −1 + i 0.45798 Hesse, Petersen 2

K (19) 4 6 3 −1 0.21145 GQ(2, 1) (Mermin square) 3

K (1) 2 3 3 (−3 + √
3i)/2) 0.33831 Mermin pentagram, GH(2, 1) 4

K (5) 2 4 1 −2 + i 0.91596 GO(2, 1), “GO(2, 4)” 5

K (2) 2 3 3 (−1 + √
3i)/2 0.67664 GH(2, 1), “J2” 5

The group K = K (i) means the Kleinian group in class i of the MM-census, p and q are degrees of the elliptic isometries f and g
generating K , −d is the discriminant of the Bianchi group to which K is commensurable, γ = tr[ f, g] − 2, the notation G means a
geometry occurring in the relevant finite index subgroup of K and Sec. is the section of our paper where K occurs

1.1 Kleinian groups of the MM-census

With this new coset approach in hands,what basic features should possess a subgroup H ofG to generate a contextual
G? In this paper, we show that the generic ‘contextual subgroups’ are Kleinian, non-compact, arithmetic and arise
from two elliptic generators. The work of Maclachlan and Martin establishes that there are 21 such Kleinian groups
K (hereafter denoted the MM-census) [5]. We examine the small index subgroups of K in a few classes of the
MM-census and how they help to clarify our topic within the new frame of 3-orbifolds H3/K .

A Kleinian group K is a discrete subgroup of PSL(2,C), the group of all orientation-preserving isometries of
the 3-dimensional spaceH3. A non-compact group K is such that the corresponding orbifoldH3/K is non-compact.
A Kleinian group K is called arithmetic if it is commensurable with the group of units of an order of quaternion
algebra A ramified at all real places over a number field k with exactly one complex place. Arithmetic Kleinian
groups have finite covolume [6, Sec. 8.2]. There are finitely many two-generator Kleinian groups K = 〈 f, g〉 that
are non-compact and arithmetic provided the isometries f and g are elliptic, with degrees p and q, respectively,
satisfying tr2( f ) = 4 cos2(π/p), tr2(g) = 4 cos2(π/q) with parameter γ = tr[ f, g] − 2.

It is known that a quadratic imaginary number field kK = Q(
√−d and a quaternion algebra AK ≡

M2(Q(
√−d)) are associated to a non-compact arithmetic Kleinian group K . It is also known that K is com-

mensurable, up to conjugacy, with the Bianchi group PSL(2, Od), where Od is the ring of integers in Q(
√−d).

For groups K of the MM-census, d ∈ {1, 3} [5].
Table 1 summarizes the Kleinian groups that serve as models of geometric contextuality as described in the

subsequent Sects. 1–5.

1.2 Generalized polygons

It is noticeable that many of the generic contextual configurations filtered in the MM-census are ‘thin’ generalized
polygons. A generalized polygon (or generalized n-gon) is an incidence structure between a discrete set of points
and lines whose incidence graph has diameter n and girth 2n [7]. The definition implies that a generalized n-gon
cannot contain i-gons for 2 ≤ i < n but can contain ordinary n-gons. A generalized polygon of order (s, t) is such
that every line contains s+1 points and every point lies on t +1 lines. A projective plane of order n is a generalized
3-gon. The generalized 4-gons are the generalized quadrangles. Generalized 5-gons, 6-gons, etc are also called
generalized pentagons, hexagons, octagons, etc. According to Feit–Higman theorem, finite generalized n-gons with
s > 1, t > 1 may exist only for n ∈ {2, 3, 4, 6, 8} [8]. Such structures are relevant for quantum contextuality as
shown in [1]. A ‘thin’ generalized polygon is such that s = 1 or t = 1. Below we will meet the thin generalized
quadrangle GQ(2, 1) (i.e., the 3 × 3 grid, also named Mermin’s square), the hexagon GH(2, 1) and the octagon
GO(2, 1). These thin polygons have three points on their lines and valency two for their points.

123



Geometric contextuality from the Maclachlan–Martin Kleinian groups 181

(a) (b)
Fig. 1 The dessin d’enfant (a) arising from the first subgroup of index 9 of the Kleinan group K (4) and the Hesse configuration (b)
that it stabilizes. The configuration consists of the union of a 3× 3 grid (plain lines) and another one that is skewed to it (dotted lines).
Non-straight lines are not all drawn. The coordinatization is in terms of coset representatives of the subgroup K (4) in the free group G
as follows: 1 = e, 2 = y, 3 = yx, 4 = yx−1, 5 = yx2, 6 = yx−1y, 7 = yx−1yx, 8 = (yx−1)2, 9 = yx−1yx2. Only the thin lines
(passing through e) have their cosets mutually commuting

2 Bell’s quadrangle, the Hesse configuration and the Petersen graph

Even the unprejudiced reader may find our language esoteric before we settle that the smallest non-trivial G is
the ordinary quadrangle (or square graph) and that it is relevant to Bell’s theorem, a basic component of quantum
contextuality, as was repetitively justified in our recent papers [4, Sec. 3], [9, Sec. 2].

A finite representation of the Kleinian group leading to the dihedral group D4 of the quadrangle may be taken
as that of class 4 (the same results for the class 6) in the MM-census (from now the identity element e is denoted 1)

K (4) = 〈x, y|y2 = x4 = [(yx−1)2(y−1x)2]2 = 1〉.
There are just four subgroups of index 4 of K (4), of permutation representation P1 = 〈(2, 3), (1, 2)(3, 4)〉,
P2 = 〈(1, 2)(3, 4), (2, 3)〉, P3 = 〈(1, 2, 4, 3), (1, 2)(3, 4)〉 and P4 = 〈(1, 2, 4, 3), (2, 3)〉. These groups are the
ones calculated in [4, Sec. 3] (where all details: the signature, the cycle structure and the Belyi function of the
corresponding dessin d’enfant are made explicit). The MM-filtering is ineffective here since the free group G only
leads to these four cases. Denoting H3 the upper-half space, what we learn is that the physics of Bell’s theorem
relates to the orbifold H3/K (4) whose graph contains four crossings, see [5, Fig. 3].

There are two subgroups of index 9 of K (4) that stabilize the Hesse configuration, already found to be important
in the context of the Kochen–Specker theorem [10]. The permutation representation of the first case is illustrated
as the dessin d’enfant in Fig. 1a, that is P = 〈(2, 3, 5, 4)(6, 7, 8, 9), (1, 2)(4, 6)(8, 9)〉 of order 144. The attached
Hesse configuration is shown in Fig. 1b. Following the definition in our paper [1], it is maximally contextual since
all lines except the ones passing through the neutral element have non-commuting cosets. Incidentally, the Hesse
configuration consists of two Mermin squares skewed to each other, see also [4, Sec. 4.4 and Fig. 8].

There are two subgroups of index 10 of K (4) that are isomorphic to the symmetric group S5. They stabilize
the Petersen graph and simultaneously the Desargues configuration—the latter geometry is found to be maximally
contextual—see also [4, Fig. 10 and Fig. 11] for other generating dessins. Here we focus on the two subgroups of
index 15 of K (4) that stabilize the line graph of the Petersen graph. The permutation representation for the first case
is encoded in the dessin of Fig. 2a and the corresponding graph is on Fig. 2b. The coset labeling of the graph is
maximally contextual as before for the Hesse labeling.

3 Mermin’s square

As announced in the opening section, Mermin’s 3 × 3 grid is a critical prototype of quantum as well as geometric
contextuality [1, Fig. 3a]. Class 19 of the MM-census is the one used to recover this geometry (class 20 is an
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(a) (b)
Fig. 2 The dessin d’enfant (a) arising from the first subgroup of index 15 of the Kleinan group K (4) and the line graph of the Petersen
graph (b) that it stabilizes. The list of coset representatives corresponding to the labeling {1, 2, . . . , 15} is as follows [e, y, yx , yx−1,
yx2, yxy, yx−1y, (yx)2, yxyx−1, yx−1yx , (yx−1)2, yxyx2, yxyx−1y, yx−1yx2, yx−1yxy]. Only the thin triangles (passing through
e) have their cosets mutually commuting

(a)

(b)

(c)
Fig. 3 The dessin d’enfant (a) arising from the subgroup of index 9 and permutation group Z

2
3 � Z

2
2 in the Kleinian group K (19). This

dessin stabilizes the non-contextual grid (b) from the stabilizer subgroup Z1 and the contextual one (c) from the stabilizer subgroup Z2.
The list of coset representatives corresponding to the labeling [1, 2, . . . , 9] is as follows [e, x, x−1, x2, xy, x−1y, x−2, x3, xyx]. The
thick line corresponds to non-commuting cosets

alternative class). The finite representation of the corresponding Kleinian group is as follows (with the misprint in
[5, Tab. 1] corrected)

K (19) = 〈x, y|y4 = x6 = [x, y]3 = ([y, x] ∗ y)2 = (y−1 ∗ [y, x])2 = (x−1 ∗ [y, x] ∗ y)2 = 1〉.
The dessin leading to the 3 × 3 grid is shown in Fig. 3a and the resulting grids are in Fig. 3b (non-contextual) and
Fig. 3c (contextual).

Subgroups of finite index of the Kleinian group K (9) may also be used to stabilize most multipartite graphs of
size larger than 4 in a contextual way, starting with the octahedron (i.e., the graph K2,2,2), K3,3, K4,4, K2,2,2,2 (i.e.,
the 16-cell), K3,3,3 and the highest order ones, except for K5,5.

4 The congruence subgroup �(2), Mermin’s pentagram and the thin generalized hexagon GH(2, 1)

The first class of the MM-census is modular [i.e., a subgroup of � = PSL(2,Z)] with representation

K (1) = 〈x, y|y2 = x3 = [(yx−1)2(y−1x)2]3 = 1〉.
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(a)

(b)

(c)

Fig. 4 The dessin in a arising from the congruence subgroup of index 6 of type �(2) of the Kleinian group K (1). This dessin stabilizes
the (maximally contextual) complete graph K6 shown in b. The thick line corresponds to non-commuting cosets. The corresponding
polygon �(2) is shown in c

As for H3/K (4), the graph of the orbifold H3/K (1) contains four crossings, see [5, Fig. 3]. We examine a few
noticeable (and contextual) subgroups of K (1).

4.1 Subgroups of K (1) of index 6

There are five subgroups of index 6 of K (1), they are congruence subgroups of �, one of type �(2) (see below),
one of type �0(5) and the other two of level 6 named ‘6A0’ and ‘6A1’ in Cummins–Pauli classification [11].

The dessinD and the corresponding polygon of type �(2) are in Fig. 4a, c, respectively. The stabilized geometry
is a (maximally contextual) complete graph K6 shown in Fig. 4b. The Belyi function for D is f (x) = 4

27 j (x),

where j (x) = (1−x+x2)3

x2(x−1)2
is the modular invariant [12, p. 267].

4.2 Subgroups of K (1) of index 7

There are two subgroups of index 7 of K (1). They correspond to a permutation group isomorphic to PSL(2, 7)
(of order 168) and stabilize a (maximally contextual) Fano plane. The corresponding hyperbolic polygon is of type
‘7A0’ in Cummins–Pauli table [11]. The corresponding pictures are not drawn in this paper but the reader can refer
to [4, Fig. 4] for details.

4.3 Mermin’s pentagram

There is just one subgroup of index 10 of K (1) which is isomorphic to the alternating group A5. The generating
dessin, shown in Fig. 5a, stabilizes Mermin’s pentagram shown in Fig. 5b, see also [1, Fig. 3b]. As K (1) is a
subgroup of �, the dessin in Fig. 5a can alternatively be seen as a tiling of the upper-half plane, as shown in Fig. 5c.
The generators α = (2, 3, 4)(5, 7, 8)(6, 9, 10) of order three and β = (1, 2)(3, 5)(4, 6)(7, 10) of order two of the
permutation group P = 〈α, β〉 build a subgroup �′ of the modular group � which is a congruence subgroup of
level 5.

It is time to remind how to pass from the topological structure of a modular dessin D to that of a hyperbolic
polygon P [9, Sec. 3]. There are ν2 elliptic points of order two (resp. ν3 elliptic points of order three) of P , these
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(a)

(b)

(c)

Fig. 5 The dessin in a arises from the unique subgroup of index 10 of the Kleinian group K (1) isomorphic to S5. This dessin stabilizes
Mermin’s pentagram shown in b. As it is modular the dessin can also be seen as a tiling of the upper-half plane in c. The list of coset
representatives corresponding to the labeling [1, 2, . . . , 10] is [e, y, yx, yx−1, yxy, yx−1y, (yx)2, yxyx−1, yx−1yx, (yx−1)2]. The
thick lines of b correspond to non-commuting cosets

points are white points (resp. black points) of valency one ofD. For the dessin in Fig. 5a, one gets ν2 = 1 and ν3 = 2.
The genus of P equals that ofD, a cusp of P follows from a face ofD, the number B of black (resp. the numberW
of white) points ofD is given by the relation B = f +ν2−1 (resp.W = n+2−2g−B−c), where f is the number
of fractions and c the number of cusps in P . For the dessin in Fig. 5a of cycle structure [3311, 2412, 52] in which
the items from left to right are for black points, white points and faces, one has B = 3 + 1 = 4, W = 4 + 2 = 6,
g = 0, c = 2 and f = 4.

The set of cusps for �′ consists of the �′-orbits of {Q} ∪ {∞}, the cusps are at −3 and ∞ and they have width 3.
Here �′ is of type ‘5C0’ in Cummins–Pauli classification [11]. We used the software Sage to draw the fundamental
domain of �′ thanks to the Farey symbol methodology. Some details about the use of Sage on modular aspects of
dessins are given in an essay by Lieven le Bruyn [13].

4.4 The thin generalized hexagon GH(2, 1)

There is a single subgroup of index 21 of K (1) isomorphic to SL(2, 7). The generating dessin D is in Fig. 6a, it
stabilizes the thin generalized hexagonGH(2, 1)with 21 points and 14 lines as shown in Fig. 6b. The corresponding
hyperbolic polygon P in � is shown in Fig. 6c. Following the approach given at the previous subsection, the cycle
structure of D is [37, 2913, 824111] where B = 7 and W = 12 leads to ν2 = 0, ν3 = 3, c = 4 and f = 8. In
contrast to the previous case, the group �′ attached to P is not a congruence subgroup of �.

5 The thin generalized octagon GO(2, 1) and the Ree–Tits octagon GO(2, 4)

The fifth class of the MM-census has the finite representation

K (5) = 〈x, y|y2 = x4 = [yxy−1xyx−1]4 = 1〉.
The graph of the orbifold H3/K (5) contains three crossings [5, Fig. 3].

There is a single subgroup of index 45 of K (5) isomorphic to A6. The generating dessin in Fig. 7a stabilizes the
thin generalized octagon GO(2, 1) shown in Fig. 7b. The latter contains 45 points and 30 lines and it is maximally
contextual.

123



Geometric contextuality from the Maclachlan–Martin Kleinian groups 185

(a)

(b)

(c)

Fig. 6 The dessin in a arises from the unique subgroup of index 21 of the Kleinian group K (1) isomorphic to SL(2, 7) (white points
are implicit in the drawing). This dessin stabilizes the thin generalized hexagon GH(2, 1) shown in b. As it is modular, the dessin can
also be seen as a tiling of the upper-half plane in c. The list of coset representatives corresponding to the labeling 1 to 21 is [e, x , x−1,
xy, x−1y, xyx , xyx−1, yx , x−1yx−1, xyx−1y, x−1yxy, xyx−1yx , xyx−1yx−1, x−1(yx)2, x−1yxyx−1, xyx−1yxy, x−1yxyx−1y,
xyx−1(yx)2, xyx−1(yx)2y, xyx−1(yx)3, xyx−1(yx)2yx−1]. The thick lines of b correspond to non-commuting cosets

Fig. 7 The dessin in a arising from the unique subgroup of index 45 isomorphic to A6 of the Kleinian group K (5) (white points
are implicit in the drawing). This dessin stabilizes the thin generalized octagon GO(2, 1) shown in b. The vertices of the two
thicker triangles at the center of the picture b form lines (8, 14, 16) and (14, 21, 42). They share the point 14 (the big bul-
let) and the latter does not lie on either straight line around it. More precisely, there are three lines left along a straight seg-
ment going through the point 14 such as (6, 34, 27), (27, 35, 8) and (8, 40, 23). The list of coset representatives corresponding
to the labeling 1 to 45 is [e, y, yx , yx−1, yx2, yxy, yx−1y, yx2y, (yx)2, yxyx−1, yx−1yx , (yx−1)2, yx2yx , yx2yx−1, yxyx2,
yxyx−1y, yx−1yx2, yx−1yxy, (yx2)2, yx2yxy, yx2yx−1y, yxyx2y, yxyx−1yx , yxyx−1yx−1, yx−1yx2y, yx−1yxyx , yx−1yxyx−1,
yxyx2yx , yxyx2yx−1, yxyx−1yxy, yx−1yx2yx , yx−1yx2yx−1, yx−1yxyx−1y, yxyx2yx2, yxyx2yxy, yxyx2yx−1y, yxyx−1yxyx ,
yx−1yx2yx2, yx−1yx2yxy, yx−1yx2yx−1y, yx−1yxyx−1yx−1, yxyx2yxyx−1, yxyx2yx−1yx , yx−1yx2yxyx , yx−1yx2yx−1yx].
As in previous diagrams, thick lines have non-commuting cosets
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5.1 The Ree–Tits octagon

Thick generalized polygons are stabilized by appropriate dessins d’enfants, as for GQ(2, 2), GQ(2, 4), GH(2, 2)
and its dual (that reproduce the commutation structure of two- and three-qubit observables [1–4,14]) as well as the
Ree–Tits octagon GO(2, 4) [9]. But these thick polygons cannot be stabilized from subgroups of Kleinian groups
in the MM-census: only thin polygons can be recovered.

To illustrate this matter, let us consider the octagon GO(2, 4). Take the subgroup G1 of the modular group �

with representation

G1 = 〈x, y|x2 = y3 = (xy)13 = [x, y]5 = [x, yxy]4 = [(xy)4(xy−1)]6 = 1〉
and the subgroup H1 of G1 defined as

H1 = sub〈G1|x = y−1(xy)2xy−1(xy)3(xy−1)2 = 1〉.
The index of H1 in G1 is 1755 and the corresponding permutation group is the Tits group T of order 17, 971, 200
[15]. The signature of the dessin is (B,W, F, g) = (1846, 1170, 270, 113) with cycles [21664182, 31170, 13270], see
also [9, Table 2 and Fig. 5].

Finally, the stabilizer subgroup of order 210 of T is used to recover GO(2, 4) that has 1755 vertices, 2925
lines/triangles and a collinearity graph of spectrum [101, 5351, 1650,−3675,−578]. The subgroup H1 is found to
contain a ‘kernel’ which is the Kleinian group K (1) (with the switch from y to x compared to the definition in Sec.
4). The group K (1) has index 4,492,800 = 2560 × 1755 in G1. Schematically

G ⊃ G1 ⊃T from index 1755 H1 ⊃2560 K (1).

It is known that the thin octagon GO(2, 1) is embedded in GO(2, 4) in an essentially unique way [16]. But the
supset structure above does not reflect that GO(2, 4) ⊃ GO(2, 1) since GO(2, 1) follows from the Kleinian group
K (5) not K (1).

5.2 The Cohen–Tits near octagon

There exists 280 copies of the thin octagon GO(2, 1) within the Cohen–Tits near octagon on 315 points [17]. This
construction is related to that of the Hall–Janko group J2. Starting with the subgroup G2 of the modular group

G2 = 〈x, y|x2 = y3 = (xy)7 = [x, y]12 = [(xy)2xy−1xy(xy−1)2(xy)2(xy−1)2xyxy−1]3 = 1〉
and the subgroup H2 of G2 defined as

H2 = sub〈G2|y = (xy)2xy−1xyx = 1〉,
the permutation group associated to the coset structure of H2 in G2 is the Hall–Janko group J2 of order 604, 800.
One uses the stabilizer subgroup of H2 isomorphic to PSL(2, 7) to stabilize the Hall–Janko graph of spectrum
[361, 636, (−4)63]. The subgroup H2 contains a ‘kernel’ in the form of the Kleinian group K (2) defined as

K (2) = 〈x, y|y2 = x3 = [(yx−1)3(y−1x)3]3 = 1〉
so that

G ⊃ G2 ⊃J2 from index 100 H2 ⊃3024 K (2).

But the supset structure we are concerned with is that used to stabilize the Cohen–Tits near octagon

G ⊃ G2 ⊃J2.2 from index 315 H ′
2.

The permutation representation (isomorphic to J2.2) of the coset structure of H ′
2 in G2 is available in [15] (but not

the explicit representation of G2). The stabilizer subgroup of order 192 of J2.2 is used to recover the Cohen–Tits
near octagon on 315 points with 525 triangles and spectrum 101536390(−2)160(−5)28.
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6 Summary

The coset parametrization of quantum observables (from a subgroup H of the free group G = 〈x, y〉 and the dessin
d’enfant methodology) allowed us arrive at the result that geometric contextuality fits quantum contextuality [1].
Here we have shown that non-compact arithmetic Kleinian groups K = 〈 f, g〉 generated by two elliptic isometries
f and g act as ‘contextuality filters’. Thin generalized polygonsGQ(2, 1),GH(2, 1) andGO(2, 1) (and a few extra
cases) when stabilized thanks to the relevant finite index subgroups of Kleinian groups K (i) in the Maclachlan–
Martin census [5] have been shown to be maximally contextual. All hyperbolic orbifolds H3/K (i) are candidates
for a re-examination of geometric contextuality with the further remark that the K (i)’s are commensurable with
Bianchi groups PSL(2, Od), d ∈ {1, 3}, whose elements are in the ring of integers of Q(

√−d).
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