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Abstract
This study establishes two equilibrium existence results for large economies with
infinitely many commodities. The novel results allow for nontransitive, incomplete,
discontinuous, and price-dependent preferences and do not require an interiority condi-
tion on initial endowments. The first result is an existence result when the positive cone
of the commodity space has a nonempty interior. The second result is an existence result
under a nonsatiation condition, including the case of the empty interior of the positive
cone. The second result covers infinite-dimensional commodity spaces which could
not be covered before due to the interiority condition, such as the space of square inte-
grable functions. Specifically, we employ a saturatedmeasure space of agents to appeal
to the convexifying effect of aggregation. The notion of the continuous inclusion prop-
erty introduced for finite-agent economies is applied to large economies, enabling us
to dispense with the continuity assumption regarding preferences. In addition, we pro-
vide examples of Walrasian equilibrium and infinite-dimensional commodity spaces
newly covered by our results.

Keywords Infinite-dimensional commodity space · Measure space of agents ·
Discontinuous preference · Saturation property · Continuous inclusion property

JEL Classification C02 · C62 · D51

1 Introduction

Large economies were first introduced by Aumann (1964) as an exact model of per-
fect competition, and he proved the existence of a Walrasian equilibrium in a setting
with a finite-dimensional commodity space and an atomless finite measure space
of agents without any convexity assumption on preferences (Aumann 1966). In a
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finite-dimensional commodity space, the application of Lyapunov convexity theorem
ensures the convexity of the integrals ofmultifunctions defined on an atomlessmeasure
space. By appealing to this convexifying effect, Aumann (1966) demonstrated that the
convexity assumption on preferences is unnecessary for the convexity of aggregate
demand in an atomless measure space of agents.

Several attempts have been made to extend the result of Aumann (1966) to infinite-
dimensional commodity space. Because Lyapunov’s theorem does not generally hold
in infinite-dimensional topological vector spaces, it is necessary to assume convexity
of preferences to establish the existence of a Walrasian equilibrium. (see Khan and
Yannelis 1991). Rustichini and Yannelis (1991) suggest the “more agents than com-
modities” assumption and successfully dispense with the convexity assumption on
preferences in the setting of infinite-dimensional commodity spaces. Podczeck (1997)
similarly removes convexity of preferences by assuming that “there exist many agents
of every type." Recent studies have established that if the space of agents satisfies
the "saturation" condition, Lyapunov’s convexity theorem holds and, as a result, the
integrals of multifunctions are also convex even in infinite-dimensional Banach space.
Additionally, the saturation condition is both necessary and sufficient for the convexity
of integrals of multifunctions in infinite-dimensional Banach spaces. The Lebesgue
interval, which was initially adopted as a space of agents for large economies by
Aumann (1964), can be converted into a saturated measure space by extending the
σ -algebra of Lebesgue measurable sets and the Lebesgue measure (Podczeck 2008).
Therefore, it is natural to employ a saturated measure space as a space of agents
and attempt to extend Aumann’s result to infinite-dimensional commodity spaces.
Remarkable progress was made in this area in Lee (2013), Khan and Sagara (2016),
Khan and Suzuki (2016) and Jang and Lee (2020).

However, previous results for large economies with infinitely many commodities
and nonconvex preferences impose strong conditions on preferences, such as transitiv-
ity, completeness, and continuity. Lee (2013) imposes the transitivity and continuity
assumptions, while Khan and Sagara (2016) and Jang and Lee (2020) impose transitiv-
ity, completeness, and continuity. The need to drop the transitivity and completeness
assumptions is motivated by experimental economics and psychology, which show
that individuals do not always behave this way due to various factors such as errors in
decision making (Birnbaum and Schmidt 2008), variability of preferences over time
(Regenwetter 2011), and uncertainty (Cettolin 2019). Dasgupta and Maskin (1986)
and Reny (1999) emphasize the need to drop the continuity assumption in the game-
theoretical setting. Their research is driven by important economic problems modeled
as games with discontinuous payoffs, such as Hotelling models and Bertrand competi-
tion. Since then, much progress has been made regarding the existence of equilibrium
in games and economies with discontinuous preferences (see, Reny 2016; Carmona
and Podczeck 2014, 2016; He andYannelis 2015, 2016, 2017; Cornet 2020; Podczeck
and Yannelis 2022, 2024; Anderson et al. 2022).

This study establishes two existence results of economies with an infinite-
dimensional commodity space and a saturated measure space of agents whose
preferences are nontransitive, incomplete, discontinuous, and price-dependent as well
as nonconvex. The proofs proceed in the same manner for both theorems. We exploit
the "continuous inclusion property" condition on the intersection of the preference
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and budget correspondences, ensuring that each agent has a maximal point of the
preference in their budget set at any positive price (He and Yannelis 2016). Since
the demand correspondence of each agent is not necessarily upper hemicontinuous
in the weak topology of the commodity space, we consider the “enlarged” demand
correspondence, adopting the technique used in Podczeck (1997) and Lee (2013).
By applying the infinite-dimensional version of Gale-Nikaido-Debreu lemma, the
existence of Walrasian equilibrium is established.

The first result is an existence result when the positive cone of the commodity
space has a nonempty interior. This type of commodity space is employed in the exis-
tence results of Khan and Yannelis (1991), Rustichini and Yannelis (1991), Podczeck
(1997), Lee (2013), Khan and Sagara (2016) and Jang and Lee (2020). By contrast, the
first result allows for nontransitive, incomplete, discontinuous, and price-dependent
preferences. Additionally, it does not require an interiority condition under which
each agent has an available consumption bundle whose value is strictly smaller than
that of his/her initial endowment for any positive price. We provide an example of
Walrasian equilibrium covered by the first result, in contrast to these previous results.
Note that since the first result requires a stronger version of irreflexivity, referred to as
quasi-convexity by some authors, for preferences, it is not directly comparable with
the previous existence results.

The second result is an existence result under an additional condition that works
like the nonsatiation condition, including the case in which the positive cone of the
commodity space has an empty interior. The interiors of the positive cones are empty
inmany of themost important commodity spaces. For example, in allocation problems
under uncertainty, natural commodity bundles are consumption patterns that depend
on the state of theworld, that is, randomvariables in some probability space (�,�, P).

If, as in many financial applications, we require that consumption patterns have finite
means and variances, we consider the space L2(�,�, P),whose positive cone gener-
ally has an empty interior (For more details, see, Mas-Colell and Zame 1991). Another
example is the space of bounded signed Borel measures on an infinite compact metric
space to represent differentiated commodity spaces (Mas-Colell 1975; Jones 1984;
Ostroy and Zame 1994; Greinecker and Podczeck 2017).1 To prove the second result,
we modify the infinite-dimensional Gale-Nikaido-Debreu lemma of Yannelis (1985)
and Cornet et al. (2023) to allow for positive cones with empty interiors.We present an
existence result in L p spaces, illustrating how infinite-dimensional commodity spaces,
previously not covered due to the interiority condition, are now covered by the second
result (1 ≤ p < ∞).

Our work is also in line with studies on abstract and exchange economies with
general preferences such as He and Yannelis (2016), Podczeck and Yannelis (2022,
2024), and Anderson et al. (2022). He and Yannelis (2016) prove an existence result
in finite-agent exchange economies with finitely many commodities. It allows for
nontransitive, incomplete, discontinuous, interdependent, and price-dependent pref-
erences and does not require the interiority condition of initial endowments. The
issue is that it assumes the compactness of consumption sets. Podczeck and Yannelis

1 The space M(K ) of bounded signed Borel measures on a compact metric space K is separable if and
only if K is countable. The second result includes the case where K is countably infinite.
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(2022) replace this assumption with the standard assumption that consumption sets
are closed, convex, and bounded from below. Podczeck and Yannelis (2024) further
extend these results to infinite-dimensional commodity spaces for price-independent
preferences, including infinite-dimensional existence results fromMas-Colell (1986),
Yannelis and Zame (1986), Araujo and Monteiro (1989) and Mas-Colell and Richard
(1991). Meanwhile, Anderson et al. (2022) prove an equilibrium existence theorem in
abstract economies, allowing for arbitrary cardinality of agents, action sets that lie in
different locally convex topological vector spaces, and general preferences including
discontinuous ones. However, these results do not apply to an economy in which the
influence of each agent on the economy is negligible, that is, a large economy. One of
our contributions is establishing an existence result for large exchange economies in
the same settings, except for interdependence. In particular, to the best of our knowl-
edge, our results are the first to establish the existence of an equilibrium in large
economies with discontinuous preferences.2

The remainder of this paper is organized as follows. Section2 introduces the nota-
tions and definitions. Section3 describes ourmodel. Section4 provides themain results
and an example of Walrasian equilibrium newly covered by the results. As this exam-
ple (Example 1) effectively illustrates our motivation, the reader may first refer to it.
Section5 concludes the paper. The proofs of our results are in Appendix A.

2 Notation and definitions

2.1 Bochner integration of functions andmultifunctions

Let (T , T , μ) be a measure space and E a Banach space. A function φ : T → E
that takes only a finite number of values, say x1, x2, · · · xn , is called an E-simple
function if Ai = φ−1({xi }) ∈ T for all i . The formula φ = ∑n

i=1 xiχAi is called
the standard representation of φ. If μ(Ai ) < ∞ for each nonzero xi , then φ is called
an E-step function. The integral of an E-step function φ is the vector

∫
T φdμ in

E defined by
∫
T φdμ = ∑n

i=1 μ(Ai )xi . As in the case of Lebesgue integration, if
φ = ∑m

j=1 y jχBj is another representation of φ with μ(Bj ) < ∞ for each nonzero
y j , then

∫
T φdμ = ∑m

j=1 μ(Bj )y j . The integral of φ over S ∈ T is defined by
∫
S φdμ = ∫

T φχSdμ. A function f : T → E is strongly measurable if there exists
a sequence {φn} of E-simple functions such that limn→∞ || f (t) − φn(t)|| = 0 a.e.
t ∈ T . If f : T → E is strongly measurable, then its norm function || f || is also
measurable. Additionally, the space of strongly measurable functions is a vector space
containing all E-step functions (see Aliprantis and Border 2006). Thus, we can extend
the notion of the integral from E-step functions to strongly measurable functions.

2 Recently and independently from this study, Bhowmik and Yannelis (2024) have obtained related results,
which include existence results in exchange economies with a finite-dimensional commodity space and
a measure space of agents whose preferences may be nontransitive, incomplete, discontinuous, interde-
pendent, and price-dependent. The author learned about these results from Nicholas C. Yannelis after the
submission of this paper.
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Definition 1 A strongly measurable function f : T → E is Bochner integrable if
there exists a sequence {φn} of E-step functions such that the measurable function
|| f − φn|| is Lebesgue integrable for each n and

lim
n→∞

∫

T
|| f − φn||dμ = 0.

In this case, for each S ∈ T the Bochner integral of f over S is defined by

∫

S
f dμ = lim

n→∞

∫

S
φndμ,

where the last limit is in the norm topology on E .

Denote by L p(μ, E) the space of the equivalence classes of strongly measurable
functions f : T → E such that

∫
T || f ||pdμ < ∞. The space L p(μ, E) is a Banach

space equipped with the norm || f ||p = (
∫
T || f ||pdμ)

1
p (1 ≤ p < ∞). Denote by

L∞(μ, E) the space of essentially bounded functions normed by the usual essential
supremumnorm. For S ∈ T , denote by L p

S (μ, E) the subspace of L p(μ, E) consisting
of strongly measurable functions vanishing outside of S. We simplify the notation
L p(μ,R) and L p

S (μ,R) to L p(μ) and L p
S (μ), respectively, for all 1 ≤ p ≤ ∞.

A mapping from T to the family of (possibly empty) subsets of E is called a
multifunction or correspondence. Amultifunction� : T � E is said to bemeasurable
if the set {t ∈ T |�(t) ∩ U �= ∅} is in T for every open subset U of E . It is graph
measurable if its graph {(t, x) ∈ T ×E |x ∈ �(t)} belongs to T ⊗BE , whereBE is the
Borel σ -algebra of E generated by the norm topology. For nonempty closed valued
multifunctions, measurability and graph measurability coincide whenever (T , T , μ)

is complete and E is separable (Castaing andValadier 1977). A function f : T → E is
a selection of � if f (t) ∈ �(t) a.e. t ∈ T . If E is separable, then any nonempty valued
multifunction � with a measurable graph admits a measurable selection (Aumann
1969; Castaing and Valadier 1977).

Let B be the closed unit ball in E . A multifunction � : T � E is integrably
bounded if there exists a function φ ∈ L1(μ) such that �(t) ⊂ φ(t)B a.e. t ∈ T .
Denote byS1

� the set of Bochner integrable selections of�.The integral of� is defined
as

∫
T �dμ = {∫T f dμ| f ∈ S1

�}. If a nonempty valued multifunction � is graph
measurable and integrably bounded, then it admits a Bochner integrable selection
whenever E is separable. Thus, the integral

∫
T �dμ is nonempty.

Let E be anorderedBanach space.Denote by E∗ the dual space of E , i.e. the space of
all bounded linear functionals from E toR.A subset A of E is solid if the norm interior
of A is nonempty. The polar set A◦ of A is defined as A◦ = {p ∈ E∗ : |p · x | ≤ 1 for
all x ∈ A}.Denote by E+ the positive cone of E , i.e. E+ = {x ∈ E : x ≥ 0}. Note that
E+ is closed by definition. For p ∈ E∗ and x ∈ E , we denote by p · x the value of p at
x . Denote by E∗+ the dual cone of E+, i.e. E∗+ = {p ∈ E∗ : p · x ≥ 0 for all x ∈ E+}.
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2.2 Saturatedmeasure space and convexifying effect

Let (T , T , μ) be ameasure space. Here, we denote the complement of anymeasurable
subset A ∈ T by −A. Denote by TA the trace σ -algebra on A, i.e. TA = {E ⊂ A :
E ∈ T }. Denote by μA the subspace measure on A, i.e. μA(E) = μ(E) for every
E ∈ TA. LetN (μ) denote the family of null sets in T . It is a σ -ideal of the σ -algebra
T .

We define the measure algebra (A, μ̂) of (T , T , μ). Denote by ∼ the equivalence
relation on T given by E ∼ F if and only if E�F ∈ N (μ). Then, A is the set of
equivalence classes in T defined by the relation ∼ . The set A is a Boolean algebra
under the natural Boolean operations. Indeed, if (E1, E2) and (F1, F2) are pairs of
equivalent sets, then E1 ∪ F1 is equivalent to E2 ∪ F2. Consequently, the union ∪•
of two equivalence classes is well-defined by selecting representatives from each and
forming the equivalence class of their union. The same is true for the intersection ∩•
and the complement −•. A partial order ⊂• on A is defined as follows: if E• and
F• ∈ A are equivalence classes of E and F respectively, then E• ⊂• F• if and only
if E• ∪• F• = F•. The last condition is equivalent to E\F ∈ N (μ). For a subset
A ⊂ A, we denote by supA the supremum of A with respect to ⊂•, if it exists.

A subalgebra of A is a subset of A that contains ∅• and T •, and is closed under
the operations ∪•,∩•,−•. A subalgebraB of A is order-closed if supB belongs toB
whenever B ⊂ B is non-empty upwards directed, and supB is defined in A. A subset
A is said to completely generate A if the smallest order-closed subalgebra of A that
contains A is A itself. The Maharam type of μ is the least cardinal number of any
subset A ⊂ A that completely generates A.

It is known that a measure space (T , T , μ) is atomless if and only if, for every
E ∈ T with μ(E) > 0, the Maharam type of μE is infinite (Podczeck 2008). The
following definition of saturation strengthens the condition of atomlessness.

Definition 2 Ameasure space (T , T , μ) is saturated if for every E ∈ T withμ(E) >

0, the Maharam type of μE is uncountable.

By definition, the saturation condition implies nonatomicity. Several equivalent
definitions of the saturation are available [see Fajardo and Keisler (2002), Podczeck
(2008), Keisler and Sun (2009) and Fremlin (2011)]. A simple characterization of the
saturation property is as follows: a measure space is saturated if and only if L1

E (μ)

is nonseparable for every E ∈ T with μ(E) > 0. The significance of the saturation
property lies in the fact that it is both necessary and sufficient for weak compactness
and convexity of the Bochner integral of a multifunction, as well as the Lyapunov
convexity theorem in Banach spaces (see Podczeck 2008; Sun and Yannelis 2008;
Khan and Sagara 2013, 2014a).

2.3 Continuous inclusion property

Let X and Y be topological spaces. Amultifunctionψ : X � Y is upper hemicontinu-
ous if the set {x ∈ X : ψ(x) ⊂ U } is open in X for every open subsetU of Y . It is lower
hemicontinuous if the set {x ∈ X : ψ(x)∩U �= ∅} is open in X for every open subset
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U of Y . A multifunction ψ has open lower sections if φl(y) = {x ∈ X : y ∈ ψ(x)} is
open in X for any y ∈ Y . Following He and Yannelis (2016, 2017), we weaken these
notions as follows:

Definition 3 Let X be a topological space and Y a convex subset of a topological
vector space. A multifunction ψ from X to Y is said to have the continuous inclusion
property at x ∈ X if there exists an open neighborhood Ox of x and a nonempty valued
multifunction Fx : Ox � Y such that Fx (z) ⊂ ψ(z) for any z ∈ Ox , and coFx has a
closed graph.3 The multifunction ψ is said to have the continuous inclusion property
if it has the continuous inclusion property at every x ∈ X .

Adding additional assumptions typical of fixed-point theorems, various continuity
conditions on multifunctions imply the continuous inclusion property for topological
vector spaces. For example, multifunctions that are convex valued and have a closed
graph clearly have the continuous inclusion property. Multifunctions with open lower
sections also have this property (He and Yannelis 2016). He and Yannelis (2017)
unify the fixed point theorems of Browder andKakutani-Fan-Glicksberg for Hausdorff
locally convex topological vector spaces as follows.

Theorem 1 (He and Yannelis (2017)) Let K be a nonempty, convex, and compact
subset of a Hausdorff locally convex topological vector space, and let T : K � K
be a multifunction with nonempty, convex values that has the continuous inclusion
property. Then there exists an element x∗ ∈ K such that x∗ ∈ T (x∗).

The notion of continuous inclusion properties and this fixed point theorem have
been applied to studies on the existence of an equilibrium in economies and games
with discontinuous preferences (see, He and Yannelis 2016, 2017; Khan and Uyanik
2021; Podczeck and Yannelis 2022, 2024; Anderson et al. 2022).

3 Themodel

Our exchange economy model is based on Khan and Yannelis (1991), Lee (2013), and
Khan and Sagara (2016). We adopt preference correspondences instead of preference
relations to address nontransitive, incomplete, discontinuous, and price-dependent
preferences. A key step in our setup is the continuous inclusion property of the
intersection between preference and budget correspondence.

The commodity space is an ordered separable Banach space E for which the dual
cone of E+ is non-degenerate (i.e. E∗+ �= {0}). The price space is a nonempty subset
	 �= {0} of E∗+.

Definition 4 An economy E is a tuple ((T , T , μ), (X(t), Pt , e(t))t∈T ) where

• (T , T , μ) is a saturated finite measure space of agents;
• X(t) ⊂ E is a consumption set of agent t ;
• Pt : 	 × X(t) � X(t) is the preference correspondence of agent t ;

3 coFx is defined as coFx (z) = co(Fx (z)), that is, the convex hull of Fx (z).
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• e(t) ∈ X(t) is the initial endowment of agent t, and e : T → E is a Bochner
integrable function.

We define the concept of Walrasian equilibrium with free disposal. Let E be an
economy.Given price p ∈ 	, the budget set of agent t is B(t, p) = {x ∈ X(t) : p·x ≤
p · e(t)}. The demand set of agent t is D(t, p) = {x ∈ B(t, p) : B(t, p)∩ Pt (p, x) =
∅}. An allocation is a Bochner integrable function x : T → E such that x(t) ∈ X(t)
a.e. t and

∫
x(t)dμ ≤ ∫

e(t)dμ.

Definition 5 Let E be an economy. A Walrasian equilibrium with free disposal for E
is a pair (p, x) of a price p ∈ 	 and an allocation x such that

1. p �= 0;
2. x(t) ∈ D(t, p) a.e. t ∈ T .

We consider the following assumptions for an economy E . For each t ∈ T , let ψt :
	 × X(t) � X(t) be the correspondence defined by ψt (p, x) = B(t, p) ∩ Pt (p, x)
for (p, x) ∈ 	 × X(t).

A.1 X(t) is nonempty, convex andweakly compact for all t, and the correspondence
X is integrably bounded.

A.2 For each p ∈ 	, the demand correspondence D(·, p) : T � E has a
measurable graph in T ⊗ BE .

A.3 For each p ∈ 	 and each x in X(t), it holds that x /∈ coψt (p, x).
A.4 For all t , the correspondence ψt has the continuous inclusion property at

(p, x) ∈ 	 × X(t) with ψt (p, x) �= ∅, where 	 is endowed with the weak*
topology and X(t) with the weak topology.

A.5 For each p ∈ 	, if x(t) is a satiation point for agent t under p, then x(t) ≥ e(t).
A.6 For each p ∈ 	, if x(t) is not a satiation point for agent t under p, then x(t)

belongs to the weak closure of Pt (p, x(t)).

In A.1, we assume that consumption sets are weakly compact. It is employed in
Khan and Yannelis (1991), Podczeck (1997), Lee (2013), Khan and Sagara (2016),
and Jang and Lee (2020). With this assumption, Podczeck (1997), Lee (2013), and
Khan and Sagara (2016) derive the compact-valueness of the "enlarged" demand cor-
respondences, and we apply the same technique. A.2 is of technical significance only.
This assumption may be mathematically strong, but non-measurable sets are highly
"pathological" as Aumann (1964) argues. They are unlikely to occur in the context
of economics and thus do not impose a real economic restriction (for further dis-
cussion, see the concluding remarks in section 5). A.3 and A.4 are introduced by
He and Yannelis (2016) for finite-agent economies. Similar assumptions are later
adopted in He and Yannelis (2017), Podczeck and Yannelis (2022, 2024), and Ander-
son et al. (2022). These two assumptions ensure that the demand set of each agent is
nonempty for any positive price. A.5 and A.6 are introduced by Podczeck (1997) and
also imposed by Lee (2013) and Khan and Sagara (2016). Analogous assumptions for
production economies are adopted in Jang and Lee (2020). A.6 works similarly to the
local nonsatiation assumption.
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4 Results

4.1 Commodity spaces with solid positive cones

Here, we present the initial results of this study.

Theorem 2 Let commodity space E be an ordered separable Banach space whose
positive cone is solid. Define the price space 	 = {p ∈ E∗+ : p · v = 1}, where v is
a norm interior point of E+. If economy E satisfies A.1-A.6, then it has a Walrasian
equilibrium with free disposal.

Remark 1 There are three noticeable differences from the previous literature on large
economies such as Aumann (1966), Khan and Yannelis (1991), Noguchi (1997), Pod-
czeck (1997), Lee (2013), Khan and Sagara (2016), and Jang and Lee (2020). First,
Theorem 2 does not require transitivity, completeness, continuity, or convexity of pref-
erences. Second, it does not require an interiority condition for the initial endowments.
Khan and Yannelis (1991), Noguchi (1997), Podczeck (1997), Lee (2013), and Khan
and Sagara (2016) impose the following interiority condition:

• For every t ∈ T , there exists an element z(t) in X(t) such that e(t) − z(t) belongs
to the norm interior of E+.

The interiority condition is unnecessary for the upper hemicontinuity of the enlarged
demand correspondence under the continuous inclusion property condition. Finally,
Theorem 2 requires the stronger irrefrexivity of preferences as described in A.3. Thus,
Theorem 2 is not comparable with the previous existence results.

Remark 2 The graph measurability of the demand correspondence and the continuous
inclusion property of ψt are derived from the standard conditions of the literature of
large economies with infinitely many commodities. Consider the following conditions
which are standard in the literature.

• X : T � E has a measurable graph in T ⊗ BE .

• For all p ∈ 	, the set {(t, x, x ′) ∈ T × E × E : x ∈ Pt (p, x ′)} belongs to
T ⊗ BE ⊗ BE .

• For all t ∈ T , p ∈ 	, and x ∈ X(t), the sets {x ′ ∈ X(t) : x ′ ∈ Pt (p, x)} and
{x ′ ∈ X(t) : x ∈ Pt (p, x ′)} are weakly open subset of X(t).

The graph measurability of the demand correspondence follows from these three con-
ditions (see Lee 2013, Lemma 4). The continuous inclusion property of ψt follows
from the interiority condition, the last condition (continuity), and convexity of X(t).

Next, we provide an example of Walrasian equilibrium newly covered by The-
orem 2. The following example is based on Example 3 of He and Yannelis
(2017).

Example 1 Consider the following 2-goods exchange economy with a measure space
of agents.
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• The space of agents is a Lebesgue open interval ((0, 1), T , μ) with saturation
property.4

• The commodity space is R2 and the price space is 	 = {p ∈ R2 : p1 + p2 =
1 and p1, p2 ≥ 0}.

• The consumption set of agent t is Xt = [0, 1] × [0, 1].
• The initial endowment of agent t is e(t) = (t, 1 − t).
• Define u = (1, 1) ∈ R2. For all x, y ∈ R2, let (x, y] denote the set {λx+(1−λ)y :

λ ∈ [0, 1)} if x �= y, and the empty set if x = y. The preference correspondence
of agent t is defined by, for x = (x1, x2) ∈ Xt ,

Pt (x) =

⎧
⎪⎨

⎪⎩

{(y, z) ∈ Xt : z > y and y + z > 1} ∪ (x, u] (x1 > x2)

(x, u] (x1 = x2)

{(y, z) ∈ Xt : y > z and y + z > 1} ∪ (x, u] (x2 > x1).

Because the agents have nontransitive, incomplete, and discontinuous preferences,
previous results such as Lee (2013), Khan and Sagara (2016) and Jang and Lee
(2020) do not ensure the existence of equilibrium in the economy, whereas Theorem
2 demonstrate this.

Proposition 3 The economy described in Example 1 satisfies all the assumptions of
Theorem 2.

Therefore, this exchange economy has a Walrasian equilibrium with free disposal.
Indeed, the economy has an equilibrium of p∗ = ( 12 ,

1
2 ) and x∗(t) = ( 12 ,

1
2 ) for all

t ∈ T .OtherWalrasian allocations under the price p∗ include e(t) and x̂(t) = (1−t, t).

4.2 Commodity spaces with nonsolid positive cones

The second result of this study includes the case in which the positive cone of the
commodity space has an empty interior. Under the continuous inclusion property, there
is no need for an interiority condition, which leads to the existence result for the case of
nonsolid positive cones. We add a condition that works like the nonsatiation condition
to guarantee that the price obtained in our version of the Gale-Nikaido-Debreu lemma
(GND lemma) is not zero:

First, we provide an infinite-dimensional GND lemma that is applicable regardless
of the topological structure of the positive cone.

Proposition 4 Let E be a Hausdorff locally convex vector space, C be a nonempty
closed convex cone of E, C∗ be the dual cone of C, W be a norm neighborhood of
0 bounded in the weak topology of E,5 and 	 = C∗ ∩ W ◦. Let ξ : 	 � E be a
correspondence such that:

4 There exists a Lebesgue closed interval ([0, 1],T , μ) with saturation property (Podczeck 2008). By
restricting it to the open interval (0, 1), we obtain a Lebesgue open interval with saturation property.
5 This means that for any weak neighborhood V of 0 in E , there exists some α > 0 such that W ⊂ αV .
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1. ξ is upper demicontinuous in the weak* topology of 	 and the weak topology
of E, i.e. the set {p ∈ 	 : ξ(p) ⊂ V } is weakly* open in 	 for every open half
space V of E;

2. ξ(p) is nonempty, closed and convex for all p ∈ 	;
3. for all p ∈ 	 there exists an element x ∈ ξ(p) such that p · x ≤ 0.

Then, there exists an element p∗ ∈ 	 such that 0 ∈ cl[ξ(p∗) + C].6 Moreover, if we
additionally assume that the correspondence ξ is compact valued, then there exists an
element p∗ ∈ 	 such that ξ(p∗) ∩ (−C) �= ∅.

Remark 3 There are two differences between Proposition 4 and the infinite-
dimensional version of GND lemma proposed by Yannelis (1985) and Cornet et al.
(2023). First, the GND lemma of Yannelis (1985) and Cornet et al. (2023) addresses
only solid cones, whereas Proposition 4 includes both solid and nonsolid cones. Sec-
ond, the GND lemma of Yannelis (1985) and Cornet et al. (2023) ensures that the price
is not zero, although Proposition 4 permits the price to be zero.

The second result requires the following nonsatiation assumption7 for a non-
negligible set of agents:

A.7 For any pair of p ∈ 	 and an allocation x : T → E such that x(t) ∈ B(t, p)
a.e. t ∈ T , there exists a measurable set S ∈ T with μ(S) > 0 such that
Pt (p, x(t)) �= ∅ for all t ∈ S.

He and Yannelis (2017, Theorem 4) and Podczeck and Yannelis (2022) impose the
nonsatiation condition for one agent only in the context of finite-agent economies. A.7
is a large-economy version of this assumption.

We are ready to present the second result of this study.

Theorem 5 Let commodity space E be an ordered separable Banach space. We define
price space 	 = {p ∈ E∗+ : ||p|| ≤ 1}. If economy E satisfies A.1-A.7, then it has a
Walrasian equilibrium with free disposal.

Theorem 5 covers infinite-dimensional commodity spaces which are important in
economics but could not be covered due to the interiority condition on the initial
endowments.

We present the existence result of L p spaces, as an application of Theorem 5. Let
the commodity space be L p(F , ν) (1 ≤ p < ∞) for a measure space (�,F , ν).
As mentioned in the Introduction, this space is important for the allocation problem
under uncertainty. The positive cone of L p(F , ν) generally has no interior points. On
the other hand, if the underlying measure space is σ -finite, the dual space coincides
with Lq(F , ν), where 1

p + 1
q = 1. Hence, the following corollary is an immediate

consequence of Theorem 5. Recall that a measure space (�,F , ν) is countably gen-
erated if its σ -algebra can be generated by a countable number of measurable subsets.
(�,F , ν) is essentially countably generated if its σ -algebra can be generated by a
countable number of measurable subsets together with the null sets N (ν).

6 cl[ξ(p∗) + C] denotes the closure of ξ(p∗) + C .
7 If the preference of each agent is price-independent, then this assumption is unnecessary.
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Corollary 6 Let (�,F , ν) be an essentially countably generated σ -finite measure
space which is nontrivial in the sense that ν(�) > 0. Let the commodity space be
L p(F , ν) (1 ≤ p < ∞). We define the price space 	 = { f ∈ Lq(F , ν)+ : || f ||q ≤
1},where 1

p+ 1
q = 1. If economyE satisfiesA.1-A.7, then it has aWalrasian equilibrium

with free disposal and with a positive price in Lq(F , ν).

Corollary 6 is an analogy of the existence results of L∞ spaces (Bewley 1972, 1991;
Khan and Sagara 2016) to L p spaces (1 ≤ p < ∞). In particular, when (�,F , ν) is
a probability space and p = 2, there exists a competitive price in L2(F , ν). Thus, the
price system has a finite mean and variance.

5 Concluding remarks

We have established two existence results for large economies with an infinite-
dimensional commodity space, which involve the following new aspects. The first
result allows for nontransitive, incomplete, discontinuous, and price-dependent pref-
erences. It does not require an interiority condition for the initial endowments, which
suggests the existence result including the case of a commodity space with a nonsolid
positive cone. This is the second result. Note that the second result imposes a nonsatia-
tion condition; thus, the two results are incomparable. Our two results are analogous
results in large economies to the existence results in He and Yannelis (2016), Pod-
czeck and Yannelis (2022, 2024), and Anderson et al. (2022) under the framework of
inter-independent preferences.

We provide examples of Walrasian equilibrium and commodity spaces covered by
our results, in contrast to previous results, including Lee (2013) and Khan and Sagara
(2016). In the example of Walrasian equilibrium, the agents’ preferences are nontran-
sitive, incomplete, and discontinuous. When we consider an agent as a group whose
members have discontinuous preferences and decisions are made by voting, agents
with nontransitive, incomplete, and discontinuous preferences naturally emerge. In
addition, commodity space L2 is used in the analysis of financial markets, but it was
not covered previously due to the interiority condition. AsCorollary 6 shows, Theorem
5 covers this commodity space.

Finally, we describe two open problems and one direction of extension.8 The first
problem is that the graph measurability of the demand correspondence could be
replaced with some weaker conditions. What is essential for the existence of Wal-
rasian equilibrium is that the demand correspondence has a measurable selection for
each price. Assumption A.2 can be replaced by the two conditions of the graph mea-
surability of X : T � E and the measurability of ψ : T × 	 × E � E . It is unclear
whether this latter condition could be replaced with the standard assumption of the
graph measurability of the preference correspondence.

The second problem is whether the weak compactness of consumption sets could
be replaced by the standard assumption that these sets are closed, convex, and bounded
from below. The approach of Podczeck and Yannelis (2024), who deal with discontin-
uous preferences without the compactness of consumption sets in infinite-dimensional

8 For the first open problem and the direction of extension, see also Bhowmik and Yannelis (2024).
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commodity spaces, is insightful. They assume the compactness of feasible allocations
and construct subeconomies with finite-dimensional commodity spaces. Using their
finite-dimensional existence theorem, they construct a net of equilibria for the sube-
conomies. By effectively using cone conditions and the continuous inclusion property,
they construct an equilibrium of the original economy as a limit of this net. It is
also reasonable in our model to assume the weak compactness of feasible allocations
and approximate the infinite-dimensional commodity space as a sequence of finite-
dimensional spaces (seeKhan and Sagara 2017, Section 6.2). However, some obstacles
arise in the limiting arguments because the infinite-dimensional Fatou’s lemma can-
not be applied without the weak compactness of consumption sets. Thus, even if a
sequence of allocations weakly converges to some allocation, it is difficult to find an
allocation that is a limit point of the sequence for almost every agent. Considering
these and other obstacles, it remains uncertain whether this compactness assumption
could be removed.

One direction of extension is to impose interdependence on the agents’ preferences,
as inHe andYannelis (2016), Podczeck andYannelis (2022, 2024), andAnderson et al.
(2022). We can then formulate a more realistic situation in which the impact of each
agent on price formation is negligible, but each agent can influence the choice of other
agents. One approach to formulating the interdependence of preferences in a large
economy is to model the preference of each agent as affected by price, his/her con-
sumption, and statistics determined by allocation, as in Carmona and Podczeck (2014).
If we assume an appropriate topological structure in the space of statistics, our results
may be extended to large economies where agents’ preferences are interdependent.

Appendix A Proofs

A.1 Proof of Theorem 2

The proof follows the arguments in Podczeck (1997) andLee (2013). Under the contin-
uous inclusion property condition, the “enlarged" demand correspondence is defined
more naturally and its weakly upper hemicontinuity is derived immediately.

Lemma 1 	 is nonempty and weakly* compact.

Proof We prove the lemma in two steps.

Step 1. 	 is nonempty.
Since E∗+ is non-degenerate, there exists an element q ∈ E∗+ such that q �= 0. Then,

there exists an element e ∈ E such that q · e �= 0. From the linearity of q, we may
assume that q · e < 0. Since v is a norm interior of E+, there exists a neighborhood
W of 0 such that v + W ⊂ E+. Since W is absorbing, there exists some λ > 0 such
that λe ∈ W . Hence, it follows q · (v + λe) ≥ 0. Thus, q · v ≥ −λq · e > 0. Then, we
have 1

q·vq ∈ 	.

Step 2. 	 is weakly* compact (Mas-Colell and Zame 1991).
Take a balanced neighborhood W of 0 such that v + W ⊂ E+. Fix any p ∈ 	.

For any w ∈ W , we have p · v + p · w = p · (v + w) ≥ 0. Thus, it follows from
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p · v = 1 that p · w ≥ −1. Since −w also belongs to W , we have p · w ≤ 1. Thus,
	 is a weakly* closed subset of the polar setW ◦. SinceW ◦ is weakly* compact from
Alaogle’s theorem, 	 is weakly* compact. ��
Lemma 2 Fix an agent t ∈ T . The demand set D(t, p) is nonempty for all p ∈ 	.

Proof (He and Yannelis 2017) Suppose D(t, p) = ∅ for some p ∈ 	. Then,
ψt (p, x) = B(t, p) ∩ Pt (p, x) �= ∅ for all x ∈ B(t, p). Hence, the correspon-
dence coψt (p, ·) : B(t, p) � B(t, p) is nonempty and convex valued. Additionally,
coψt (p, ·) has the continuous inclusion property fromA.4. Since B(t, p) is nonempty,
convex, weakly compact, it follows from Theorem 1 that there exists an element
x ∈ B(t, p) such that x ∈ coψt (p, x). This is a contradiction to A.3. ��

Since the evaluation map (p, x) �→ p · x is not jointly continuous if E is equipped
with the weak topology and 	 with the weak* topology, we construct the enlarged
demand set of agent t for a given p ∈ 	 as follows:

C(t, p) = {x ∈ X(t) : ψt (p, x) = ∅}.

It is clear that D(t, p) ⊂ C(t, p).

Lemma 3 For each t ∈ T , the correspondence C(t, ·) : 	 � X(t) is weakly compact
valued, and weakly upper hemicontinuous with respect to the weak* topology of 	.

Proof Since X(t) is Hausdorff and weakly compact, it suffices to show thatC(t, ·) has
a closed graph in 	× X(t). Let A = {(p, x) ∈ 	× X(t)ψt (p, x) �= ∅}. Then, A is a
open subset of	×X(t) fromA.4. Since the graph ofC(t, ·) is equal to (	×X(t))\A,
the graph is a closed subset of 	 × X(t). ��

We denote by w-limn→∞ xn the weak limit of a sequence {xn}n∈N in E . The weak
upper limit of a sequence of subsets {An}n∈N in E is defined by

w-LsAn = {x ∈ E : ∃{xni }i∈N, x = w-limi→∞xni and xni ∈ Ani for all i ∈ N}.

Lemma 4
∫
C(t, ·)dμ : 	 � E is nonempty, convex, weakly compact valued, and

weakly upper hemicontinuous with respect to the weak* topology of 	.

Proof We prove the lemma in three steps.

Step 1.
∫
C(t, ·)dμ : 	 � E is nonempty valued.

Fix any p ∈ 	. From Lemma 2, D(·, p) is nonempty valued. From A.2, D(·, p)
has a measurable graph in T ⊗ BE . Since E is a complete separable metric space,
there exists a measurable function gp : T → E such that gp(t) ∈ D(t, p) a.e. t ∈ T .

Since gp(t) ∈ X(t) a.e. t ∈ T , and X is integrably bounded, gp is Bochner integrable.
Hence,

∫
gpdμ ∈ ∫

D(t, p)dμ ⊂ ∫
C(t, p)dμ.

Step 2.
∫
C(t, ·)dμ : 	 � E is convex valued.

Since (T , T , μ) is saturated, it follows from Theorem 1 of Podczeck (2008) that∫
C(t, p)dμ is convex for all p ∈ 	.
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Step 3.
∫
C(t, ·)dμ : 	 � E is weakly compact valued and weakly upper

hemicontinuous.
Since X : T � E isweakly compact valued and integrably bounded, it follows from

Theorem 2 of Podczeck (2008) that
∫
X(t)dμ is weakly compact. Hence, it suffices to

prove that
∫
C(t, ·)dμ has a closed graph in	×∫

X(t)dμ. Since a weakly* compact
subset of the dual space of a separable Banach space is metrizable, 	 is metrizable.
Similarly, since a weakly compact subset of a separable Banach space is metrizable,∫
X(t)dμ is metrizable. Hence, it suffices to prove that if (pn, zn) is a sequence of

	 × ∫
X(t)dμ such that

pn → p0 ∈ 	 in the weak* topology of 	,

zn → z0 ∈
∫

X(t)dμ in the weak topology of E, and

zn ∈
∫

C(t, pn)dμ for all n ∈ N,

then z0 ∈ ∫
C(t, p0)dμ.

It is clear that z0 ∈ w-Ls
∫
C(t, pn)dμ. It follows from Theorem 4.5 of Khan and

Sagara (2014b) that

w-Ls
∫

C(t, pn)dμ ⊂
∫

w-LsC(t, pn)dμ.

For any t ∈ T , since C(t, ·) : 	 � X(t) has a closed graph, we have

w-LsC(t, pn) ⊂ C(t, p0).

Hence, it follows that

z0 ∈ w-Ls
∫

C(t, pn)dμ ⊂
∫

w-LsC(t, pn)dμ ⊂
∫

C(t, p0)dμ.

��
We consider the correspondence ξ : 	 � E defined by

ξ(p) =
∫

C(t, p)dμ −
∫

e(t)dμ.

ξ is nonempty, convex, weakly compact valued, and weakly upper hemicontinuous
from Lemma 4.

The next lemma is the infinite-dimensional Gale-Nikaido-Debreu lemma by
Yannelis (1985).

Lemma 5 Let E be a Hausdorff locally convex vector space and C a closed convex
cone of E such that the dual cone C∗ of C is non-degenerate and the norm interior of
C is nonempty. Define 	 = {p ∈ C∗ : p · e = 1}, where e is a norm interior point of
C. Let ξ : 	 � E be a correspondence such that:
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1. ξ is upper demicontinuous in the weak* topology of 	 and the weak topology
of E, i.e. the set {p ∈ 	 : ξ(p) ⊂ V } is weakly* open in 	 for every open half
space V of E;

2. ξ(p) is nonempty, convex, and compact for all p ∈ 	;
3. for all p ∈ 	 there exists an element x ∈ ξ(p) such that p · x ≤ 0.

Then, there exists an element p∗ ∈ 	 such that ξ(p∗) ∩ (−C) �= ∅.

We are now ready to prove Theorem 2.

Proof of Theorem 2 We prove in three steps.

Step 1. For any p ∈ 	, there exists some z ∈ ξ(p) such that p · z ≤ 0.
Since D(·, p) is nonempty valued and has a measurable graph, there exists a mea-

surable function gp : T → E such that gp(t) ∈ D(t, p) a.e. t ∈ T . Then, it follows
that

∫

gp(t)dμ −
∫

e(t)dμ ∈
∫

D(t, p)dμ −
∫

e(t)dμ ⊂ ξ(p).

Additionally, since p · gp(t) ≤ p · e(t) a.e. t ∈ T , it follows that

p ·
(∫

gp(t)dμ −
∫

e(t)dμ

)

= p ·
∫

(gp(t) − e(t))dμ

=
∫

p · (gp(t) − e(t))dμ ≤ 0.

This completes the proof of Step 1.
It follows from Step 1 and Lemma 5 that there exists an element p∗ ∈ 	 such that

ξ(p∗) ∩ (−E+) �= ∅. Take an element z∗ ∈ ξ(p∗) ∩ (−E+). Then, there exists a
measurable function x∗ : T → E such that

x∗(t) ∈ C(t, p∗) a.e. t ∈ T , and (A1)
∫

x∗(t)dμ −
∫

e(t)dμ = z∗ ≤ 0. (A2)

We prove (p∗, x∗) is a Walrasian equilibrium with free disposal.

Step 2. p∗ · x∗(t) ≥ p∗ · e(t) a.e. t ∈ T .

It suffices to prove that p∗ · x∗(t) ≥ p∗ · e(t) for all t ∈ T satisfying x∗(t) ∈
C(t, p). If x∗(t) is a satiation point of agent t under p∗, then it follows from A.5 that
x∗(t) ≥ e(t). Since p∗ is positive, we have p∗ · x∗(t) ≥ p∗ · e(t). Suppose that x∗(t)
is not a satiation point of agent t under p∗ and p∗ · x∗(t) < p∗ ·e(t). Then, there exists
a weak neighborhood Vx∗(t) of x∗(t) such that p∗ · x ′ < p∗ · e(t) for all x ′ ∈ Vx∗(t).
Since x∗(t) belongs to the weak closure of Pt (p∗, x∗(t)) from A.7, there exists an
element x ′ ∈ Vx∗(t) such that x ′ ∈ Pt (p∗, x∗(t)). Since p∗ · x ′ < p∗ · e(t), this is a
contradiction to x∗(t) ∈ C(t, p∗).

Step 3. p∗ · x∗(t) = p∗ · e(t) a.e. t ∈ T .
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From Step 2, we have p∗ ·x∗(t) ≥ p∗ ·e(t) a.e. t ∈ T .By integrating both sides, we
have

∫
p∗ ·x∗(t)dμ ≥ ∫

p∗ ·e(t)dμ.On the other hand, since
∫
x∗(t)dμ ≤ ∫

e(t)dμ,
and p∗ is positive, we have

∫
p∗ · x∗(t)dμ ≤ ∫

p∗ · e(t)dμ. Therefore, it follows that

∫

p∗ · x∗(t)dμ =
∫

p∗ · e(t)dμ. (A3)

Combining Step 2 and (A3), it follows that p∗ · x∗(t) = p∗ · e(t) a.e. t ∈ T .

From (A1) and Step 3, it follows that x∗(t) ∈ D(t, p∗) a.e. t ∈ T . Since∫
x∗(t)dμ ≤ ∫

e(t)dμ, the pair (p∗, x∗) is aWalrasian equilibriumwith free disposal.
��

A.2 Proof of Proposition 3

Proof We only prove A.4 because it is clear that the other assumptions hold. Fix agent
t arbitrarily.We prove thatψt has the continuous inclusion property at (p, x) ∈ 	×Xt

with ψt (p, x) �= ∅. We prove this only in the case where x2 ≤ x1.
From the definition of the preference correspondence, there are the following two

cases:

1. ψt (p, x) ∩ (x, u] �= ∅.
2. ψt (p, x) ∩ (A =){(y, z) ∈ Xt : z > y and y + z > 1} �= ∅.

Case 1. ψt (p, x) ∩ (x, u] �= ∅.

Step 1. p · x < p · e(t).
If p1, p2 �= 0, take x ′ ∈ ψt (p, x) ∩ (x, u] arbitrarily. Since x ≤ x ′ and x ′ �= x ,

it follows p · x < p · x ′ ≤ p · e(t). If p1 = 1 and p2 = 0, then it must be that
x1 ≤ t . Take x ′ ∈ ψt (p, x)∩ (x, u] arbitrarily. Then, x ′

1 = p · x ′ ≤ p · e(t) = t . Since
x1 ≤ t < 1 and x ′

1 can be written as x ′
1 = λx1 + (1 − λ) · 1 for some λ ∈ [0, 1), it

follows that x1 < x ′
1. Hence, p · x = x1 < x ′

1 ≤ t = p · e(t). The same arguments
hold when p1 = 0 and p2 = 1.

Step 2. ψt has the continuous inclusion property at (p, x).
Since the evaluation map (p, x) �→ p · x is jointly continuous, there exists a

neighborhood Ox of x and a neighborhood Op of p such that p′ · x ′ < p′ · e(t) for all
(p′, x ′) ∈ Op × Ox . Define the multifunction Ft

(p,x) : Op × Ox � Xt as

Ft
(p,x)(p

′, x ′) = (x ′, u] ∩ {y ∈ Xt : p′ · y = p′ · e(t)}

= {x ′ + p′ · x ′ − p′ · e(t)
p′ · x ′ − p′ · u (u − x ′)}.

Then, Ft
(p,x) is a continuous function on Op×Ox such that Ft

(p,x)(p
′, x ′) ⊂ ψt (p′, x ′)

for all (p′, x ′) ∈ Op × Ox .

Case 2. ψt (p, x) ∩ A �= ∅.
It follows from the definition of the preference that x2 < x1. Take a neighborhood

Ox of x such that x ′
2 < x ′

1 for any x
′ ∈ Ox . Take (y, z) ∈ ψt (p, x)∩A arbitrarily. For a
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sufficiently small ε > 0, we have (y−ε, z−ε) ∈ ψt (p, x)∩ A. Thus, we may assume
p1y + p2z < p · e(t). Take a neighborhood Op of p such that p′

1y + p′
2z < p′ · e(t)

for any p′ ∈ Op. Define Ft
(p,x) : Op × Ox � Xt as

Ft
(p,x)(p

′, x ′) = {(y, z)} ⊂ ψ t (p′, x ′).

Then, Ft
(p,x) is a continuous function on Op × Ox . Thus, ψt has the continuous

inclusion property at (p, x). ��

A.3 Proof of Proposition 4

Proof We prove the proposition in four steps. The proof is almost identical to that of
Theorem 3.1 in Cornet et al. (2023).

Step 1. 	 is nonempty, convex, and weakly* compact.
The polar set W ◦ is convex and contains 0. From Alaoglu’s theorem, W ◦ is also

weakly* compact. SinceC∗ is weakly* closed, convex, and contains 0, 	 = C∗ ∩W ◦
is convex, weakly* compact, and contains 0.

Step 2. Define the correspondence F : 	 � 	 as F(p) = {q ∈ 	 : q · z > 0 for all
z ∈ ξ(p)}. Then there exists some p∗ ∈ 	 such that F(p∗) = ∅.

Suppose not. Since ξ is upper demicontinuous, the correspondence F has open
lower sections. It is clear that F is convex valued. 	 is nonempty, convex, weakly*
compact, and F has nonempty convex values and open lower sections. Hence, it
follows from Browder fixed point theorem that there exists some p∗ ∈ 	 such that
p∗ ∈ F(p∗). This means that p∗ · z > 0 for all z ∈ ξ(p∗). This is a contradiction to 3.

Step 3. There exists some p∗ ∈ 	 such that 0 ∈ cl[ξ(p∗) + C].
From Step 2, there exists some p∗ ∈ 	 such that F(p∗) = ∅. We prove that

0 ∈ cl[ξ(p∗) + C] by contradiction. Suppose not. Since cl[ξ(p∗) + C] is closed
convex, the point 0 and cl[ξ(p∗) +C] can be strictly separated by a continuous linear
functional, that is, there exists a continuous linear functional q �= 0 such that

0 = q · 0 < inf x∈cl[ξ(p∗)+C]q · x ≤ inf z∈ξ(p∗),c∈Cq · (z + c). (A4)

Since ξ(p∗) and C are nonempty, it follows from (A4) that inf z∈ξ(p∗) is finite.
Hence, we have

−inf z∈ξ(p∗)q · z < infc∈Cq · c.

Let a = −inf z∈ξ(p∗)q · z and b = infc∈Cq · c. Since C is a nonempty closed convex
cone, b must be 0. Thus, q ∈ C∗.

There exists someλ > 0 such thatλq ∈ 	. Indeed, the set N = {x ∈ E : |q ·x | ≤ 1}
is a weak neighborhood of 0. Since W is bounded in the weak topology, there exists
some α > 0 such that W ⊂ αN = {x ∈ E : |q · x | ≤ α}. Hence, we have |q · x | ≤ α

for all x ∈ W . Then, we have α−1q ∈ W ◦. Since q ∈ C∗ and α > 0, if follows that
α−1q ∈ C∗. Thus, we have α−1q ∈ 	. Define λ = α−1.
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Sinceλq ∈ 	 andλq /∈ F(p∗), there exists some z∗ ∈ ξ(p∗) such that (λq)·z∗ ≤ 0.
Since λ > 0, it follows that q · z∗ ≤ 0. Therefore, a = −inf z∈ξ(p∗)q · z ≥ −q · z∗ ≥ 0.
This is a contradiction to a < b = 0.

Step 4. If ξ is additionally assumed to be compact valued, then:

0 ∈ cl[ξ(p∗) + C] ⇔ 0 ∈ ξ(p∗) + C ⇔ ξ(p∗) ∩ (−C) �= ∅.

Since ξ(p∗) is compact and C is closed, ξ(p∗) + C . is also closed. Thus, the first
equivalence follows. If 0 ∈ ξ(p∗) + C, there exist some z ∈ ξ(p∗) and c ∈ C such
that z + c = 0. Then, z = −c ∈ ξ(p∗) ∩ (−C). The converse direction of the second
equivalence similarly follows. ��

A.4 Proof of Theorem 5

Proof First, note that	 �= {0} because E+ is non-degenerate. DefineC(t, p) and ξ(p)
as in the proof of Theorem 2. Then, ξ is nonempty, convex, weakly compact valued and
weakly upper hemicontinuous as in Theorem 2. Let B and B ′ be the closed unit ball of
E and E∗, respectively. Then, from the definition of the operator norm, it follows that
B◦ = B ′. Since B is bounded in the weak topology, and 	 = E∗+ ∩ B ′ = E∗+ ∩ B◦,
the correspondence ξ satisfies all the assumptions of Proposition 4. Hence, there exists
an element p∗ ∈ 	 such that ξ(p∗) ∩ (−E+) �= ∅.

Take an element z∗ ∈ ξ(p∗) ∩ (−E+). Then, there exists a measurable function
x∗ : T → E such that

x∗(t) ∈ C(t, p∗) a.e. t ∈ T , and (A5)
∫

x∗(t)dμ −
∫

e(t)dμ = z∗ ≤ 0. (A6)

We prove (p∗, x∗) is a Walrasian equilibrium with free disposal.
We prove that p∗ �= 0 by contradiction.9 If p∗ = 0, then B(t, p∗) = X(t) for

all t ∈ T . Since x∗(t) ∈ X(t) = B(t, p∗) a.e. t ∈ T and
∫
x∗(t)dμ ≤ ∫

e(t)dμ, it
follows from A.7 that there exists a measurable set S ∈ T with μ(S) > 0 such that
Pt (p, x∗(t)) �= ∅ for all t ∈ S. This is a contradiction to x∗(t) ∈ C(t, p∗) a.e. t ∈ T .

From the same arguments as in the proof of Theorem 2, we have

p∗ · x∗(t) = p∗ · e(t) a.e. t ∈ T . (A7)

Combining (A5), (A6) and (A7), it follows that (p∗, x∗) is a Walrasian equilibrium
with free disposal. ��
9 When the preference of each agent is independent from prices, it is irrelevant whether p∗ = 0 or not.
If p∗ = 0, then B(t, p∗) = X(t) for all t ∈ T . Since x∗(t) ∈ C(t, p∗) a.e. t ∈ T , it follows that x∗(t)
is a satiation point of agent t for almost all t ∈ T . Hence we have e(t) ≤ x∗(t) a.e. t ∈ T . Take p∗∗ �= 0
arbitrarily. Given that e(t) ≤ x∗(t) a.e. t ∈ T and

∫
x∗(t)dμ ≤ ∫

e(t)dμ, we have p∗∗ · x∗(t) = p∗∗ · e(t)
a.e. t ∈ T . Then, it follows that (p∗∗, x∗) is a Walrasian equilibrium with free disposal.
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A.5 Proof of Corollary 6

Proof Since (�,F , ν) is nontrivial, Lq(F , ν)+ is non-degenerate. Thus, all that
remains is to prove that L p(F , ν) is separable. Then, applying Theorem 5, the
conclusion follows.

Since (�,F , ν) is σ -finite, there exists a sequence {�n}n∈N such that � = ⋃
�n

and ν(�n) < ∞ for all n ∈ N. Suppose F is generated by A ⊂ F and the null sets
N (ν), where A is countable and A ∩ N (ν) = ∅. We may assume A contains �n

for all n ∈ N. Let σ(A) be the σ -algebra generated by A. Then, the measure space
(�, σ (A), ν|σ(A)) is σ -finite and countably generated. Therefore, L p(σ (A), ν|σ(A))

is separable (Cohn 2013, Proposition 3.4.5).
We show that L p(σ (A), ν|σ(A)) is dense in L p(F , ν). Since the space of F-

measurable step-functions is dense in L p(F , ν), it suffice to show that for any χA

(A ∈ F and ν(A) < ∞) and ε > 0, there exists a set A′ ∈ σ(A) such that ν(A′) < ∞
and ||χA−χA′ ||p < ε.More strongly, it holds that for anyχA (A ∈ F and ν(A) < ∞),
there exists a set A′ ∈ σ(A) such that ν(A′) < ∞ and ||χA − χA′ ||p = 0. In fact,
define G = {A ∈ F : ∃A′ ∈ σ(A), ν(A�A′) = 0}. Then G is a σ -algebra, and con-
tains A and N (ν). Therefore G = F . Consider χA for any A ∈ F with ν(A) < ∞.

There exists a set A′ ∈ σ(A) such that ν(A�A′) = 0. Then, ν(A′) < ∞ and
(||χA − χA′ ||p)p = ∫

�
|χA(ω) − χA′(ω)|pdν = ν(A�A′) = 0. This completes the

proof. ��
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