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Abstract
According to Dantzig (Econometrica, 17, p.200, 1949), von Neumann was the first
to observe that for any finite two-person zero-sum game, there is a feasible linear
programming (LP) problem whose saddle points yield equilibria of the game, thus
providing an immediate proof of the minimax theorem from the strong duality theo-
rem. We provide an analogous construction going in the other direction. For any LP
problem, we define a game and, with a brief and elementary proof, show that every
equilibrium either yields a saddle point of the LP problem or certifies that one of
the primal or dual programs is infeasible and the other is infeasible or unbounded.
We thus obtain an immediate proof of the strong duality theorem from the minimax
theorem. Taken together, von Neumann’s and our results provide a succinct and ele-
mentary demonstration that matrix games and linear programming are “equivalent”
in a classical sense.
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1 Introduction

Since at least the early 1950’s, starting with the work of Dantzig (1951), it was widely
understood that the theory of two-person zero-sum games (matrix games) and the
theory of linear programming (LP) had been shown to be “equivalent”, both in the
sense that a solution to any matrix game can be obtained by solving a suitably chosen
LP problem and vice versa, as well as in the sense that their fundamental theorems,
minimax and strong duality, each follow from the other. At least, this was the perceived
state of affairs prior to 2013.

In an important paper, Adler (2013) points out that there are significant flaws in
the classical arguments for equivalence which “…led to incomplete proofs of the
relationship between the Minimax Theorem of game theory and the Strong Duality
Theorem of linear programming” (p. 165). Adler then makes sufficient repairs to these
flaws so as to correctly establish a certain equivalence betweenmatrix games and linear
programming.

As Adler notes, the flaws in the classical arguments occur only in one direction,
namely when attempting to reduce an LP problem (i.e., a primal and dual pair of linear
programs) to a game problem andwhen attempting to prove the strong duality theorem
from the minimax theorem. The other direction, reducing games to LP problems and
proving the minimax theorem from strong duality, was correctly settled very early.
Indeed, according to Dantzig (1949, 1951, 1982), von Neumann observed in 1947
that any matrix game can be solved by solving a suitably chosen feasible LP problem.
Since the chosen LP problem is feasible, this construction yields an immediate proof
of the minimax theorem from the strong duality theorem.1

To correct the flaws in the classical arguments, Adler (2013) does two things.2 First,
for any LP problem, he constructs amatrix gamewith the property that any equilibrium
of that game yields a saddle point of the LP problem whenever a saddle point exists,
thereby correctly reducing an LP problem to a game problem. Second, and entirely
separately, he provides a proof of the strong duality theorem from the minimax theo-
rem by showing that the minimax theorem implies Ville’s theorem implies Tucker’s
theorem implies Farkas’ lemma implies strong duality.

A key point for our purposes here is that, while von Neumann’s LP problem con-
struction for solving games yields an immediate proof of the minimax theorem from
the strong duality theorem, Adler’s game construction for solving LP problems does
not yield an immediate proof of the strong duality theorem from theminimax theorem.
Indeed, in order to prove that his game solves LP problems, Adler must appeal to the
strong duality theorem itself. Thus, even after Adler’s (2013) corrections, the natural
counterpart to von Neumann’s result remained missing.

1 It is evident that von Neumann explained to Dantzig the reduction of a game to a linear program, Farkas
lemma, and vonNeumann’s (1947) LP duality theorem, during a private meeting in 1947 that is recounted in
Dantzig (1982, p. 45). So whenever we refer here to “von Neumann’s construction/result”, we are referring
both to the reduction of a game to an LP problem whose primal program is as given in Dantzig (1951,
pp. 330–331), and to the immediate implication that the minimax theorem follows from the strong duality
theorem.
2 Adler (2013) also obtains computability results which we will not discuss here.
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A canonical game—75 years in the making… 173

The purpose of the present paper is to provide the counterpart to von Neumann’s
result by constructing for any LP problem a matrix game with the property that every
equilibrium of the game either provides a saddle point of the LP problem or provides
whatwe call an unbounded direction of the LP problem.An unbounded direction is a
pair of vectors, a primal direction and a dual direction, such that starting from a feasible
solution to one of the programs, it is feasible to move in the corresponding direction
and improve the objective without bound.3 To see that a game with these properties
achieves the desired goal, notice first that if the LP problem has a saddle point, then
both the primal and dual programs are feasible and bounded, and so there can exist no
unbounded direction. So every equilibrium of the game must yield a saddle point, and
the LP problem has been reduced to a game problem. Additionally however—and this
is the crucial distinction between our game construction and Adler’s (2013)—a game
with these properties provides an immediate proof of strong duality from minimax.
Indeed, by the minimax theorem, the constructed game has an equilibrium. By the
properties of the game, either, the equilibrium yields a saddle point, in which case a
saddle point exists, or, the equilibrium yields an unbounded direction, in which case if
either one of the constituent programs is feasible then it is unbounded. From this last
fact, it follows (by the elementary weak duality inequality) that the other program is
infeasible. Thus, from theminimax theorem, it immediately follows that either a saddle
point exists or one of the constituent programs is infeasible and the other is infeasible
or unbounded, which is precisely the conclusion of the strong duality theorem.

So analogous to von Neumann’s construction, the game constructed here not only
reduces any LP problem to a game problem, it also furnishes an immediate proof of
the strong duality theorem from the minimax theorem. Furthermore, the proof that our
game has these properties is brief and elementary, using only the defining property of
linearly independent vectors. Taken together, von Neumann’s classical result and the
present result provide a natural formalization of the very old idea that matrix games
and linear programming are “equivalent”.

2 Preliminaries

Let F be any ordered field with total order >, e.g., the reals or the rationals with their
usual order.4 Henceforth, all entries of any matrix or vector are in F . All vectors are
column vectors (so any transposed vector, x�, is a row vector), and (x, y) denotes

3 Unbounded directions are output by the simplex algorithm, in the event that no saddle point exists. This
is how Dantzig (1963) proves the strong duality theorem. Another well-known proof of strong duality
establishes the existence of either a saddle point or an unbounded direction by an application of Farkas’
Lemma (see, e.g., Gale 1960, Chapter 3). Indeed, an unbounded direction is a solution to the Farkas dual
of the inequality system characterizing saddle points. Thus, in reducing LP problems to matrix games, it is
natural to seek a game whose equilibria yield either saddle points or unbounded directions. Note that the
proof that equilibria of our game have this property does not invoke Farkas’ lemma or any other separation
result.
4 Because the minimax theorem, the strong duality theorem, and Farkas’ lemma are valid in any ordered
field (see, e.g., Gale 1960), we have constructed our proofs so that they too are valid in any ordered field. In
particular, we avoid the use of topological results such as the fact that bounded sequences have convergent
subsequences, which are valid for the field of real numbers but not for, e.g., the field of rational numbers.
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174 B. Brooks, P. J. Reny

the concatenation of vectors x and y. The i th row (column) of A is denoted Ai (Ai ).
Given vectors x and y of the same length, we write x ≥ y to mean xi ≥ yi for every
coordinate i , and x ≥ 0 means that every coordinate of x is non-negative. We use
“0” to denote either a matrix or a vector of zeroes, “1” to denote a vector of 1’s, and
I to denote the identity matrix. In each case, their sizes are those that are uniquely
appropriate given the context.

A linear programming (LP) problem is a dual pair of constituent linear programs.
Formally, for any m × n matrix A and vectors b and c of lengths m and n respectively,
the (m × n dimensional) LP problem (A, b, c) is the pair of optimization problems:

max
x≥0

c�x s.t. Ax ≤ b; (1a)

min
y≥0

b�y s.t. A�y ≥ c. (1b)

We refer to (1a) as the primal program and to (1b) as the dual program. A feasible
solution to (1a) is any non-negative x ∈ Fn that satisfies Ax ≤ b, and an optimal
solution is a feasible solution that attains the maximum. These terms are defined
analogously for (1b). It is well known that if x and y are feasible solutions for (1a)
and (1b), respectively, then cx ≤ yb (a result known as weak duality), since

c�x ≤ y�Ax ≤ y�b. (2)

We say that (1) is feasible if both (1a) and (1b) have feasible solutions. A saddle
point of (1) is a pair of feasible solutions that have the same value, i.e., a pair of
non-negative vectors (x, y) such that Ax ≤ b, A�y ≥ c, and c�x = b�y. By the
weak duality inequality (2), any saddle point consists of optimal solutions. The strong
duality theorem states that for every LP problem, either there exists a saddle point,
or one of the constituent programs is infeasible and the other is either infeasible or
unbounded.

All definitions up to now have been standard. We next introduce a definition that
will play an important role in our main result. Say that a pair of non-negative vectors
(x, y) is an unbounded direction of the LP problem (A, b, c) if Ax ≤ 0, A�y ≥ 0,
and c�x > b�y.

The sense inwhich an unbounded direction (x̄, ȳ) of an LP problem is “unbounded”
is that starting from a feasible solution to one of the constituent programs, moving in
the corresponding direction, x̄ for the primal, ȳ for the dual, will improve the objective
without bound. Indeed, suppose that the primal program is feasible. Then there is x ≥ 0
such that Ax ≤ b. Hence, 0 ≤ (ȳ�A)x = ȳ�(Ax) ≤ ȳ�b < x̄�c and A(x +λx̄) ≤ b
for every λ ≥ 0. Consequently, the primal program is unbounded (above) because its
value, c�(x+λx̄), at the feasible solution x+λx̄ increases without bound as λ → ∞.

Of course, if the primal (dual) program is unbounded, then the dual (primal) pro-
gram is infeasible by the weak duality inequality (2). Therefore, and importantly, the
existence of an unbounded direction establishes that one of the constituent programs
is infeasible and the other is infeasible or unbounded.
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Consider any m × n-dimensional LP problem (A, b, c). Define the (m + n + 1) ×
(m + n) matrix Â and the (m + n + 1)-vector b̂ by,

Â :=
⎡
⎣

0 −A�
A 0

−c� b�

⎤
⎦ b̂ :=

⎛
⎝

−c
b
0

⎞
⎠ , (3)

and letC := [
Â I −1

]
.5 Say that α ∈ F is a solution bound for (A, b, c) if

∑
j w j <

α whenever w ≥ 0, Cw = b̂, and the columns j of C with ŵ j > 0 are linearly
independent, i.e., whenever w is a so-called basic f easible solution of Cw = b̂.

Since for any set of linearly independent columns ofC there is at most one solution
w ≥ 0 to Cw = b̂ that places its positive weights on that particular set of columns,
and because C has only finitely many sets of linearly independent columns, every LP
problem has a solution bound.6 As we will show, solution bounds permit the search
for saddle points to be confined to a bounded set such that either a saddle point exists
within this set or the LP problem admits an unbounded direction.

Finally, a matrix game is simply a matrix P . For any positive integer k, let Sk be
the set of non-negative elements of Fk whose entries sum to one. An equilibrium of
the (m × n) matrix game P is a pair (ŝ, t̂) ∈ Sm × Sn such that

ŝ�Pt̂ = max
s∈Sm s

�Pt̂ = min
t∈Sn ŝ

�Pt .

If v = maxs∈Sm mint∈Sn s�Pt = mint∈Sn maxs∈Sm s�Pt then v is called the value of
the game P. If P has a value v, then (ŝ, t̂) is an equilibrium if and only if v = ŝ�Pt̂ =
maxi∈{1,...,m} Pi t̂ = min j∈{1,...,n} ŝ�P j . Theminimax theorem states that every matrix
game has a value and an equilibrium. See von Neumann (1928) for the original result
and Gale (1960) for the extension to any ordered field.

3 The canonical game

We can now state our main result.

Theorem 1 Fix an m × n dimensional LP problem (A, b, c). Choose any positive
α ∈ F that is a solution bound for (A, b, c). Then the matrix game P with n +m + 1
rows and columns defined by

P := α

⎡
⎣

0 −A� 0
A 0 0

−c� b� 0

⎤
⎦ +

⎡
⎣

c · · · c
−b · · · −b
0 · · · 0

⎤
⎦ , (4)

5 Here I is the (m + n + 1)-dimensional identity matrix, and the −1 is a column vector all of whose
(m + n + 1) entries are equal to −1.
6 In fact, using the rank theorem (i.e., row-rank equals column-rank), which is not needed for the proof of
our main result, it is easy to show that α = 1+ (n +m + 1)2 max{||b||, ||c||}maxW ||W−1||, is a solution
bound for (A, b, c), where || · || is the maximum absolute value of the entries in the given vector or matrix,
and where the second maximum is over all square invertible submatrices W of C .
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has the following property: If (x, y, z), (x∗, y∗, z∗) ∈ Fn × Fm × F are equilibrium
strategies for the row and column players, respectively,7 then either (αx∗, αy∗) is a
saddle point of (A, b, c), or (x, y) is an unbounded direction of (A, b, c).

Proof Suppose that (s, t) = ((x, y, z), (x∗, y∗, z∗)) is any equilibrium of P . Then
the value is v := s�Pt . Letting q∗ := (αx∗, αy∗) and given Â and b̂ defined in (3),
Pt = Âq∗ − b̂ and v = s�( Âq∗ − b̂). There are two cases, v ≤ 0 and v > 0.

Suppose first that v ≤ 0. Then 0 ≥ v = maxi Pi t = maxi ( Âi q∗ − b̂i ), and so
Âq∗ ≤ b̂, which implies that A(αx∗) ≤ b, A�(αy∗) ≥ c, and b�(αy∗) ≤ c�(αx∗).
Weak duality (2) then implies that b�(αy∗) = c�(αx∗). Hence, (αx∗, αy∗) is a saddle
point.

Next, suppose that v > 0. The proof will be complete if we show that (x, y)
is an unbounded direction. To accomplish this, it suffices to show that v = −s�b̂.
Then, −s�b̂ = v ≤ s�P j = αs� Â j − s�b̂ for all j ≤ n + m, which implies that
s� Â ≥ 0 (since α > 0). Hence, y�A ≥ zc� and Ax ≤ zb, and so z(c�x − y�b) ≤
y�Ax − y�Ax = 0. Since c�x − y�b = −s�b̂ = v > 0, it follows that z = 0
and c�x > y�b. Hence, y�A ≥ 0, Ax ≤ 0 and (x, y) is an unbounded direction
as desired. The remainder of the proof shows that v = −s�b̂ by constructing for the
column player a best reply to s that puts positive weight on the last column of P (and
so v = s�Pm+n+1 = −s�b̂).

Since v = maxi ( Âi q∗ − b̂i ),we have Âq∗ ≤ b̂+1v, and so there is a non-negative
u ∈ Fm+n+1 such that Âq∗ + u = b̂ + 1v. (So ui is row’s gain from optimally
deviating from row i .) Choose a (q̂, û, v̂) ≥ 0 with the fewest number of positive
coordinates such that Âq̂ + û = b̂+1v̂, v̂ ≤ v, and ûi = 0 whenever ui = 0. Observe
that s�( Âq̂ − b̂) = v̂ because si > 0 implies that ui = 0 (which in turn implies
ûi = 0). Let ŵ := (q̂, û, v̂) and C := [

Â I −1
]
. We claim that the columns j of C

with ŵ j > 0 are linearly independent. Otherwise,8 there is d 	= 0 such that Cd = 0
and d j 	= 0 implies ŵ j > 0. We may assume that that, either, the last coordinate of
d is positive, or, the last coordinate is zero and some other coordinate is positive (if
not then replace d with −d). Then, setting λ := min j :d j>0(ŵ j/d j ), the non-negative
vector (q̃, ũ, ṽ) := (q̂, û, v̂)−λd has strictly fewer positive coordinates than (q̂, û, v̂)

which, since Âq̃ + ũ = b̂ + 1ṽ, ṽ ≤ v̂ ≤ v, and ui = 0 ⇒ ûi = 0 ⇒ ũi = 0 for
every i, contradicts the choice of (q̂, û, v̂) and proves the claim.

Since ŵ ≥ 0 satisfies Cŵ = b̂ and the columns j of C with ŵ j > 0 are linearly
independent, we have

∑
j ŵ j < α because α is a solution bound for (A, b, c). So

since ŵ := (q̂, v̂, û) ≥ 0, we have
∑

j q̂ j < α. Hence, t̂ :=
(
q̂/α, 1 − ∑

j q̂ j/α
)
is

in Sm+n+1 and t̂m+n+1 = 1 − ∑
j q̂ j/α > 0. Moreover, because s�( Âq̂ − b̂) = v̂ ≤

v = s�( Âq∗ − b̂), we have

v ≤ s�Pt̂ = s�( Âq̂ − b̂) ≤ s�( Âq∗ − b̂) = s�Pt = v.

7 So, for example, x gives the weights placed by the row player on the first n rows of P , y on the next m
rows, etc.
8 Note that by definition the empty set of vectors is linearly independent.
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Therefore, s�Pt̂ = v and so t̂, which puts positive weight on the last column of P , is
a best reply to s as desired. ��
Remark 1 Theorem 1 is the result we desire because it delivers two key requirements.

I. Every equilibrium of P provides a saddle point of (1)whenever one exists. Indeed,
given any equilibrium, Theorem 1 states that either (a) or (b) holds. If a saddle
point exists, then both constituent programs are feasible and bounded and hence
there can be no unbounded direction. Consequently, (b) cannot hold and so (a)
must hold. Thus, the column player’s strategy provides a saddle point whenever
one exists.

II. The properties of P yield an immediate proof of strong duality from the minimax
theorem. Indeed, for any LP problem (A, b, c), the minimax theorem ensures that
P has an equilibrium. By Theorem 1, either (a) holds and the column player’s
strategy demonstrates that a saddle point exists, or (b) holds and the row player’s
strategy provides an unboundeddirection, demonstrating that one of the constituent
programs is infeasible and the other is infeasible or unbounded.

Remark 2 Note that Theorem 1 does not assume that P has an equilibrium. Theorem 1
merely states that if P has an equilibrium, then either (a) or (b) must hold for that
equilibrium. In particular, Theorem 1 (and hence the equivalence described in the
preceding remark) does not itself rely on the minimax theorem.

Remark 3 The game P is canonical in that it has a natural interpretation in terms of a
pair of adversaries, one of whom is trying to exhibit a saddle point of (A, b, c), and the
other of whom is trying to prove that no saddle point exists by exhibiting an unbounded
direction. By the weak duality inequality (2), a saddle point is simply a non-negative
pair (x̃, ỹ) that satisfies Ax̃ ≤ b, A� ỹ ≥ c, and c� x̃ ≥ b� ỹ. Defining Â and b̂ as in
the proof of Theorem 1, we can write this system of inequalities as Â(x̃, ỹ) ≤ b̂. As
the proof of Theorem 1 shows, the value of P is non-positive if and only if a saddle
point exists. Indeed, to force the maximizer’s (row player’s) payoff to be non-positive,
any equilibrium strategy (x∗, y∗, z∗) for the minimizer (column player) in our game
P must be such that (x̃, ỹ) := (αx∗, αy∗) is feasible for the system ( Â, b̂), meaning
that (αx∗, αy∗) is a saddle point. Even so, the maximizer can still obtain a payoff of
zero by playing the last row and so the value is never negative. On the other hand, the
maximizer wants to establish that the minimizer’s proposed solution is infeasible by
exhibiting a violated constraint. The proof of Theorem 1 shows that, in equilibrium,
either the minimizer succeeds in identifying a saddle point, or the maximizer finds a
weighted average of the constraints that shows that any candidate solution is infeasible.
In the latter case, the maximizer’s strategy (x, y, z) solves the Farkas alternative to
Â(x̃, ỹ) ≤ b̂, i.e., Â�(x, y, z) ≥ 0 and b̂�(x, y, z) < 0. Since, as shown in our
proof, these inequalities imply that z = 0, they reduce to our definition of (x, y) as an
unbounded direction for the original LP problem.

Remark 4 As is well known, saddle points of an LP problem may be unbounded. In
contrast, strategies in amatrix game (including in our game P) are necessarily bounded.
So a key step in reducing an LP problem to a matrix game problem is to show that the
search for a saddle point, i.e., a non-negative solution (x̃, ỹ) to the system Â(x̃, ỹ) ≤ b̂
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can be confined to a bounded set, which, after normalizing, may be identified with the
strategies in a game. As is well-known, if this system has a feasible solution, then it
has a so-called basic feasible solution, in which the submatrix defined by all of the
columns of Â that are given positive weight and by all of the rows of Â corresponding
to constraints that are satisfied with equality, has linearly independent columns.9 So
it would be natural when seeking to confine one’s saddle point search to a bounded
set, to choose a bound α̃ that is just large enough to include each of the finitely many
basic feasible solutions. Indeed, this is the approach taken by Adler (2013). But in
fact such a bound is not large enough for our purpose. Indeed, when the value of the
resulting game P̃ (with α = α̃) is positive, the bound is large enough to conclude that
no saddle point exists, but it is not large enough for us to conclude that the row player’s
strategy yields an unbounded direction, and so we would be unable to conclude that
the LP problem is infeasible/unbounded. Thus, the game P̃ would not prove strong
duality from minimax. Consequently, the bound that we choose is larger and includes
all (x̃, ỹ) such that (x̃, ỹ, ṽ) is a basic feasible solution to Â(x̃, ỹ) ≤ b̂ + 1ṽ, which
has a solution even when the original LP problem has no saddle point. Our solution
bound is large enough to not only include all basic feasible solutions to Â(x̃, ỹ) ≤ b̂
when any exist, thereby admitting a strategy for the minimizer that makes the value of
P zero, it is also large enough to ensure that when Â(x̃, ỹ) ≤ b̂ has no non-negative
solution, the maximizer can guarantee the value of P , which now is positive, only by
using a strategy that yields an unbounded direction.

Remark 5 The proof of Theorem 1 provides an immediate proof of Farkas’ lemma
from the minimax theorem. Indeed, fix any k × l matrix Â and any vector b̂ of length
k, where neither need be as in (3). The proof in fact shows that if s ∈ Fk and
t = (q∗, z∗) ∈ Fl × F are any equilibrium strategies for the row and column players,
respectively, of the game10

P̂ := [
α Â 0

] + [−b̂ · · · −b̂
]
,

then exactly one of the following holds: (a) Âq∗ ≤ b̂, or (b) Â�s ≥ 0 and b̂�s < 0.
Consequently, Farkas’ lemma (in its inequality form) follows immediately from the
minimax theorem.

Remark 6 For a second immediate proof of Farkas’ lemma from minimax, simply
apply Theorem 1 to the LP problem (A, b, c) where c = 0. Then, by the minimax
theorem, Theorem 1 implies that either, (A, b, c) has a saddle point (x, y) in which
case, in particular, Ax ≤ b holds, or (A, b, c) has an unbounded direction (x, y) in
which case A�y ≥ 0 and b�y < 0 holds, because with c = 0 we cannot have Ax ≤ 0
and cx > 0.

9 The type of argument that is used to establish the existence of a basic feasible solution is standard, being
also the core part of the argument used to prove Caratheodory’s theorem. We use this type of argument in
our proof to establish the independence of the columns of C := [

Â I −1
]
that are given positive weight

by ŵ. We include this (elementary) argument explicitly rather than appealing to the properties of basic
feasible solutions so as to make our proof entirely self-contained.
10 Here, 0 < α ∈ F must satisfy

∑
j w j < α whenever w ≥ 0 solves Cw = b̂ and the columns j of

C := [
Â I −1

]
with w j > 0 are linearly independent.
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Remark 7 Just as von Neumann’s construction is not unique, P is not the only matrix
game that achieves our goals here. After the circulation of previous drafts of this paper,
which included the game P and Theorem 1, Rakesh Vohra (private communication)
and Bernard von Stengel (2022) each obtained distinct game constructions that yield
the desired counterpart to von Neumann’s result. Both constructions require finding a
suitably large bound analogous to our α. The game P , however, may permit the most
elementary, short, and direct self-contained proof.

4 Addendum: A symmetric perspective

An apparent asymmetry between matrix games and linear programs is that matrix
games always have solutions, i.e., equilibria, while the constituent programs of an LP
problemmight not have any optimal solutions at all.We show here that this asymmetry
can be eliminated with an appropriate modification of the meaning of a “solution” of
an LP problem.

Say that a pair of non-negative vectors (x, y) is a solution of anLP problem (A, b, c)
if (x, y) is either a saddle point or an unbounded direction.

With this definition, the relationship between matrix games and linear programs
becomes completely symmetric. Indeed, we can now state the following.

(1) Every LP problem has a solution.
(2) Every matrix game has a solution.
(3) For every matrix game there is an LP problem whose solutions provide solutions

to the game.
(4) For every LP problem there is a matrix game whose solutions provide solutions to

the LP problem.

Statement (1) is a consequence of theminimax theorem combinedwith Theorem1, and
is a slight strengthening of the strong duality theorem;11 (2) is the minimax theorem;
(3) is von Neumann’s result; and (4) is our main result, Theorem 1.
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