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Abstract

I examine when, how, and which conventions arise in N-player games. Each player
draws a random sample of strategies used in the recent past, and then chooses a strat-
egy in response to this sample. A player’s response is determined by a behavioural
rule, which maps from the set of recently used strategy profiles to a subset of his own
strategy set, and each element in the latter set is chosen with positive probability. A
random sample of strategies is monomorphic if it contains only one distinct strategy
for each of the other players. The behavioural rule of a player is responsive if, on draw-
ing a monomorphic sample, there is a positive probability of playing a best-response
to the other players’ strategy profile that is induced by their respective strategies in
that sample; in addition, if the said induced strategy profile supports a strict Nash
equilibrium, then a strategy played by him in the recent past is chosen with the com-
plementary probability. A game is weakly acyclic if there exists a ‘best-response path’
from each outcome that is not a strict Nash equilibrium to a strict Nash equilibrium. I
show that: (i) a convention forms whenever the players’ behavioural rules are respon-
sive, and the game is weakly acyclic, (ii) in bi-matrix games, individuals described
by the behavioural rule of extreme optimism—whereby, conditional on the random
sample, they play a best-response to the most optimistic belief about the other player’s
strategy choice—perform better than individuals described by any other responsive
behavioural rule in the sense that the convention that is most preferred by the former is
always in the stochastically stable set, and (iii) in bi-matrix pure coordination games,
the said convention is the uniquely stochastically stable state if the other player’s
behavioural rule is ‘mildly different’ from extreme optimism.
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1 Introduction

A convention is described as a situation where individuals customarily act in a pre-
dictable fashion. The focus of this paper is on how conventions arise in a decentralised
manner when individuals recurrently interact with each other. In any environment with
strategic uncertainty, an individual’s behaviour depends on how the game has unfolded
in the past, on how he expects the other individuals to behave, and on how he condi-
tions his action in response to these considerations. A convention is sustained by the
expectation that others will act as per the prevailing custom; this results in every indi-
vidual also preferring to do the same, as choosing to do otherwise would presumably
lead to a less desirable outcome. In this paper, I assume that each individual’s expec-
tation about the other individuals is shaped purely by their historical behaviour, and
each individual is associated with a behavioural rule that specifies his response to the
history of the game. In this setting, I pose the following questions: What are the con-
ditions on the nature of the strategic environment and on the behavioural rules under
which one would find that the individuals themselves end up settling on a convention?
Furthermore, in an environment where different conventions may arise, the one that is
most likely to be observed depends on the interaction between the behavioural rules
of the players; in this context, is a particular behavioural rule more advantageous than
others in the sense that the most preferred convention of the individuals who behave
according to that rule is also the convention that is most likely to emerge?

I study these issues in the adaptive play framework of Young (1993, 1998). I
consider N-player games where each player’s strategy set is finite, and he only needs
to know his binary preference relation between each pair of outcomes of the game. In
order to obtain information about the history of the game, and to form an expectation
about how other individuals may play the game, each individual draws a random
sample from the strategies used in the recent past. His strategy choice is obtained from
his behavioural rule, which maps from the set of recently used strategies to a subset
of his own strategy set, and each element in this latter subset is chosen with positive
probability.

A random sample of strategies is monomorphic if it contains only one distinct
strategy for each of the other players. The behavioural rule of a player is responsive
if, on drawing a monomorphic sample, there is a positive probability of playing a
best-response to the other players’ strategy profile that is induced by their respective
strategies in that sample; in addition, if the said induced strategy profile supports a
strict Nash equilibrium, then a strategy played by him in the recent past is chosen with
the complementary probability. I emphasise that responsiveness does not impose any
restriction on an individual’s response to non-monomorphic samples. Since individ-
uals’ expectation about others’ actions are formed by the strategies observed in the
randomly drawn sample, and because each individual knows his binary preference
relation, any reasonable behavioural rule should arguably be responsive.

I interpret a convention to be a strict Nash equilibrium of a game, and show that
when the behavioural rule of each player is responsive and the N-player game is
weakly acyclic, then, irrespective of the initial history of the game, the individuals
settle on a convention. A game is weakly acyclic if it has at least one strict Nash equi-
librium, and there is a ‘best-response path’ from any outcome that is not a strict Nash
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equilibrium to a strict Nash equilibrium.! It follows that there may not be complete
certainty about the particular convention that may arise in weakly acyclic games with
multiple strict Nash equilibria. In order to study the influence of behavioural rules on
the convention that is most likely to emerge in such situations, I examine bi-matrix (or
two-player) games where players described by one particular behavioural rule interact
with players described by another behavioural rule. I focus on a particular responsive
behavioural rule, namely extreme optimism; conditional on the randomly drawn sam-
ple, an extremely optimistic individual plays a best-response to the most optimistic
belief about the strategy choice of the other player. I show that the convention that
is most preferred by extremely optimistic individuals is always in the set of long-run
outcomes. Furthermore, in a sub-class of weakly acyclic games, namely pure coordi-
nation games, it is the unique long-run outcome whenever the behavioural rule of the
other individual is mildly different from extreme optimism (in a sense made precise
later). This leads me to suggest that extreme optimism outperforms almost any other
behavioural rule.

This paper contributes to the literature on the formation of conventions in a decen-
tralised environment. Previous work that has examined this issue in the context of
all players being described by similar behavioural rules include Young (1993), Kan-
dori et al. (1993), Hurkens (1995), Saez-Marti and Weibull (1999), Matros (2003),
and Khan and Peeters (2014) for the best-response rule or ‘clever/sophisticated’ ver-
sions thereof;2 Josephson (2008) for better-reply rules; Karandikar et al. (1998) for
satisficing and aspirational play in 2 x 2 games; Robson and Vega-Redondo (1996),
Josephson and Matros (2004), and Bergin and Bernhardt (2009) for imitation.? Blume
(1993, 1997) analyses a logit-response dynamic in a particular class of games (i.e.
potential games) and under an asynchronous strategy revision protocol; in such cases,
the outcome of the game converges to a subset of the Nash equilibrium. Alés-Ferrer
and Netzer (2010) show that this result depends critically on both the revision pro-
tocol (i.e. independent revision vs asynchronous revision) and the particular class of
games; this motivates them to characterize the long-run outcome for arbitrary normal
form games when the individuals’ strategy revision process is described more broadly
by a generalization of the logit-response dynamics. Hwang and Newton (2017) also
analyse a class of coordination games under a dynamic that includes the logit choice
rule.

On the other hand, Kaniovski et al. (2000), Juang (2002), and Josephson (2009)
study heterogeneous behavioural rules, where the heterogeneity is not across individ-
uals but about the same individual using different rules (for example, probabilistically
best-responding and imitating). In this paper, I broaden the understanding of how,

1 Al6s-Ferrer and Netzer (2017) also show convergence to the set of strict Nash equilibrium in weakly
acyclic games with the logit-response dynamic.

2 Bilancini and Boncinelli (2018) add an additional layer by examining the outcome of a coordination game
when individuals choose both the action and the set of individuals they interact with whereas Bilancini and
Boncinelli (2020) study how the interaction between the perturbation in the response of an individual and
the persistence of interaction affects the outcome.

3 Vega-Redondo (1997), Alés-Ferrer and Ania (2005), and Hedlund (2015) examine the relationship
between imitative behaviour and perfectly competitive outcomes in the context of markets and firm
behaviour.
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when, and which conventions may arise when an individual’s decision-making pro-
cess is fairly unrestricted.* In addition, I analyse a question that, to the best of my
knowledge, has not been previously examined in the literature: which behavioural
rule is most successful in the sense of delivering the most preferred convention to the
individuals who adopt that rule?’

2 Unperturbed adaptive play: framework and analysis

There are N distinct finite populations, which are indexed by the first N natural
numbers. Population i is assigned the role of player i in the N-player game under
consideration. X; denotes the finite strategy set of the individuals in population i,
Vi € {1,..., N}. Time is discrete. In every time period, one individual from each
population is randomly chosen, and these randomly chosen N individuals play the
game in that period. x;(#) € X; is the strategy chosen in period ¢ by the individual
from population i. X_; = 1'[?’21) j2i X is the strategy space of all players other than

i,and x_;(t) € X_; is their period ¢ strategy profile. X = HlN: 1 Xi denotes the set
of outcomes, and the period ¢ outcome is denoted by x(¢) = (x1(¢),...,xn(?)).
Whenever convenient, I write (x;, x_;), with x; € X; and x_; € X_;, to denote
the outcome obtained when, for a particular i € {1, ..., N}, the population i player
chooses x; € X;, and strategy profile of the other players is x_; € X_;. The binary
rational preference relation of the individuals in population i, that is defined on the
set X, is represented by >;. For any x, y € X, x >; y implies that the individuals in
population i consider the outcome x to be at least as good as the outcome y. Individuals
need only be aware of their binary preference relation—while individuals may know
more about their preferences, I do not make any such assumption. I emphasise the
recurrent nature of the game, and abstract away from considerations that may arise
out of repeated interactions.

The state of the game at the beginning of period ¢ 4+ 1—before each individual has
chosen his strategy—is given by the finite H period history of strategies w(t + 1) =
(x(@),x(t—1),...,x(@ — H+ 1)).  assume that the initial history of the game (i.e.
the strategies played in the first H periods) is specified exogenously. w;(t + 1) =
(xi(®), ..., xi(t — H+ 1)) denotes the vector of strategies used by population i in the
preceding H periods. Similarly, w_;(t + 1) = (x_;(¢),...,x_;(t — H + 1)) is the
vector of the strategy profiles of the populations other than population i in the previous
H periods. The state space is denoted by = (X1 x --- x Xy).

In the beginning of period ¢ + 1, the randomly chosen individual from each pop-
ulation i € {1,..., N} draws a random sample of § strategies without replacement
from w;(t +1),Vj € {1,..., N} That is, he draws § strategies from the strategies
used by each population in the last H time periods. The sample size S < H is fixed

4 On arelated note, Khan (2021) examines the evolutionary stability of behavioural rules in the context of
a bargaining game.

5 While Axelrod (1984) studies the success of various strategies in the repeated Prisoner’s Dilemma, the
novelty of the question in this paper lies in its focus on the most successful behavioural rule in a broad class
of games—rather than the most successful strategy in a particular game (i.e. the Prisoner’s dilemma)—and
I abstract from repeated game considerations in order to isolate the effect of the behavioural rules.
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exogenously. Every feasible sample has positive probability of being drawn; how-
ever, it is possible that particular strategies in the history are more likely than others
to be drawn. s;(r + 1) denotes the sample drawn in period ¢ + 1 by the individ-
ual from population i. supp(s; j(t + 1)) is the set of strategies of population j that
appear in the sample s;(f + 1). I define the sample s;(# 4+ 1) to be monomorphic if
supp(s; j(t + 1)) is a singleton for each of the other populations j € {1, ..., N}\{i}.
Thus, supp(s; ;(t + 1)) need not be a singleton for the sample to be monomorphic.
If 5; (¢ 4+ 1) is monomorphic, then x_; (s; (t + 1)) € X_; denotes the strategy profile
induced by the monomorphic sample s; (t 4+ 1). That is, x_; (s; (¢ + 1)) is the strategy
profile formed by taking the strategy in the singleton supp(s; ;(t + 1)) for each of the
other populations j € {1, ..., N}\{i}.

Individuals in population i are associated with a behavioural rule R; : l'IlN: 1 X IS =
P(X;) that goes from l'IlN: 1 X lS , the space of feasible samples, to P(X;), the power
set of the strategy set X; that contains all the non-empty subsets of X;. Each element
of the response set R;(s;(t + 1)) has strictly positive probability of being played
in period t + 1. SoBR;(x_;) represents the set of best responses of the individuals
in population i to the strategy profile x_; of the other players, i.e. SOBR;(x_;) =
{xi € X; : (xi, x—;) >; (zi,x—;),Vz; € X;}. 1 use BR;(x_;) to refer to an element
in SoBR;(x—;) whenever further identification of the element is not necessary; so,
BR;(x_;) denotes a best response to the strategy profile x_;.

A best-response path x’ — x” exists from the outcome x’ € X to another outcome
x"” € X if there exists i € {I,..., N} such that x" = (x/,x" ), x” = (x/, x ), and
x € SoBR;(x" ;). That is, along a best-response path from x” to x”, the strategy
chosen by exactly one player differs, and the strategy chosen by him in x” is a best-
response to the strategy profile of the other players in x". An outcome is defined to be a
sink if there does not exist any best-response path from it; thus, a sink is equivalent to
a strict Nash equilibrium. I will say that a strategy profile x_; € X_; supports a strict
Nash equilibrium if there exists x; € X; such that (x;, x_;) is a strict Nash equilibrium.
A game is weakly acyclic if it contains at least one sink, and if there exists a finite
sequence of best-response paths from every non-sink outcome to a sink. Hence any
outcome x” € X is either a sink, or there exists a finite sequence of best-response paths
x0 = x2. x5 x* from x0 to a sink x*. Some prominent examples of weakly
acyclic games include the Nash bargaining/demand game, coordination games, and
the Prisoner’s dilemma.

The behavioural rule of population i is responsive if SoBR; (x_;(s;(t + 1))) C
R;(s;(t + 1)) for any monomorphic sample s; (¢ 4+ 1); in addition, if x_; (s; (# + 1))
supports a strict Nash equilibrium, then SoBR; (x_;(s;(t + 1))) C Ri(si(t + 1)) C
SoBR;(x_;(si(t + 1))) U w;(t 4+ 1). That is, the set of best-responses to the other
players’ strategy profile that is induced by a monomorphic sample is always in his
response set. Furthermore, if the induced strategy profile of the other players supports
a strict Nash equilibrium, then the response set may contain the strategies played by
the individuals in population 7 in any of the previous H periods. I underline that in
the event that x_; (s; (¢ + 1)) does not support a strict Nash equilibrium, R; (s; (t + 1))
may contain any other strategy in addition to the ones in SoBR; (x_; (s; (t + 1))), and
that responsiveness does not impose any restriction on the response set correspond-
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ing to any non-monomorphic sample. I suggest that responsiveness is the weakest
condition that must be satisfied by any behavioural rule that responds to information.
Conditional on an individual’s response depending on the obtained sample, the event
where a monomorphic sample is drawn is the simplest decision making situation for
an individual. If the individual does not play a best-response in such a situation in
spite of being aware of his preference relation, then his behavioural rule is arguably
completely unresponsive to the information contained in the sample. In this sense,
responsiveness is a very mild restriction on the behavioural rules, and I present few
examples to illustrate its generality:

(1) the best-response rule: an individual always plays a best-response to the empirical
distribution of strategies of the other individuals in the random sample.

(ii) better-response rules/aspirational play: an individual has a reference strategy that
may either be specified exogenously or obtained from the history of strategies
played by the individuals in his population in the recent past; then, the response set
corresponding to a monomorphic sample s; (# 4+ 1) comprises of the strategies that
lead to outcomes that are at least as preferred as the outcome obtained by playing
the reference strategy (when the other individuals’ strategy profile is assumed to
be x_; (s; (t + 1))).

(iii) stochastic imitation and best/better response: with positive probability, an indi-
vidual plays a best-response/better-response (as in (i) and (ii) above); with the
complementary probability, he imitates either the strategy that was most com-
monly/least commonly used by the individuals in his population in the past H
periods or the strategy that yielded the highest payoff/highest average payoff to
the individuals in his population in the last H periods.

(iv) behavioural rules with inertia: with positive probability, an individual plays a
strategy that is dictated by a combination of the rules in (i), (ii), or (iii) above;
with the complimentary probability, he plays the same strategy that was chosen
by the individual in his population in the previous period.

I also present two examples of behavioural rules that are not responsive. Firstly, a
behavioural rule that induces an individual to always play the same strategy, irrespec-
tive of the sample, is not responsive. Another such example is a purely imitation based
behavioural rule that causes an individual to play either: (a) the strategy that was most
commonly/least commonly used in the previous H periods by the individuals in his
population, or (b) the strategy that led to the highest payoff/highest average payoff to
the individuals in his population in the previous H periods.

This recurrent strategic situation—where individuals respond to a sample of strate-
gies played in the recent past—can be described by a Markov process Q on the state
space 2. A convention is a state w € 2 where the same sink outcome, say x € X, has
been realised in all the preceding H periods. This particular convention is denoted by
wz. Co(G) denotes the set of conventions of the game G. Co(G); = {w, € Co(G):
X =i y, Yoy € Co(G)} is the set of conventions of the game G that is most preferred
by the individuals in population i. Without loss of generality, I assume Co(G); to be
a singleton—if not, then the individuals in population i are indifferent amongst all
conventions in Co(G);. The game is said to converge almost surely to a convention
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if there is positive probability of a transition from any state to a convention in finite
time, and if that convention persists in all succeeding periods.

In Proposition 1 below, I state that the game converges almost surely to a con-

vention if the sampling is sufficiently incomplete, the game is weakly acyclic, and
the behavioural rules are responsive. The reason is as follows. Consider any initial
state that does not represent a convention. Then, with positive probability, individuals
respond to the history of the game in such a manner that over time, the state is described
in turn by the outcomes that lie on the sequence of best-response paths that originates
from that initial state to a sink; thus, with positive probability, the game transitions
from any state to a convention in finite time. Responsiveness of all the behavioural
rules implies that once a convention is formed, it persists then on. This is because once
a convention is formed, any feasible sample that may be drawn by any individual in
any population is monomorphic, and the induced strategy profile of the other players
supports the same strict Nash equilibrium; responsiveness of each behavioural rule
then implies that the response set of any individual comprises only of the strategy
played by him in that strict Nash equilibrium. I refer to the proof of the proposition in
the Appendix for a more formal presentation of these arguments.
PSroposition 1 Let sailnpling be sufficiently incomplete so that % < % if N =2, and
H = ST X min(Xi] Xy -N+1
weakly acyclic game, and the behavioural rule of the individuals in each population
is responsive. Then, the game converges almost surely to a convention.

if N > 2. Suppose that the N-player game is

Incomplete sampling, responsiveness of the behavioural rules, and weak-acyclicity of
the games are the three salient features of Proposition 1. I will underline the importance
of each feature by arguing that the game may not converge to a convention if any one
of the three conditions do not hold.

Firstly, in order to highlight the importance of incomplete sampling, I borrow the
example of a two-player coordination game from Young (1998). The row player [the
column player] can choose strategy U or strategy D [strategy L or strategy R], and
the payoff matrix is depicted in Fig. 1 below. This game is weakly acyclic as it has at
least one strict Nash equilibrium—in this case, (U, L) and (D, R)—and because there
exists a best-response path from each of the other outcomes, i.e. (U, R) and (D, L), to
each of the two strict Nash equilibria. Suppose that individuals always sample the entire
history of play, and that they mis-coordinate on the outcome (U, R) in the very first
period. Also suppose the individuals always best-respond to the empirical distribution
of the other player’s strategies; recall that this is a responsive behavioural rule. Let r (¢)
and c(¢) represent the relative frequency with which strategy U and strategy L has been
played at the end of time period ¢ by the row player and the column player, respectively.
The row player [column player] plays strategy U [strategy L] in period # + 1 if and
only if \/5(1 —c() <c() [ﬂr(t) > 1 —r(¢)]. Since the outcome in the first period
is (U, R), r(1) = 1 and ¢(1) = 0; so, the row and the column player play D and L,
respectively, and mis-coordinate in the next period as well. Continuing in this fashion,
it may be seen that they mis-coordinate in each and every period. Thus, complete
sampling results in the game not converging to a convention, even though the game
is weakly acyclic and the behavioural rules are responsive. The reason is that with
complete sampling, individuals best-respond instantaneously to the strategy chosen
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Fig.1 Example 1 R
Ul1,v2 0,0
D 00 V2,1

by the other individual in the previous period; hence, if they begin by mis-coordinating,
then the mis-coordination persists thereafter. In contrast, incomplete sampling creates
the opportunity for individuals to exhibit ‘inertia’ in their response, and this opens
up the possibility of coordinating on a convention even if they mis-coordinate in any
particular period.

Secondly, in order to convey the salience of responsiveness of the behavioural rules,
I consider the same game but now suppose that the response set of each player always
comprises of both strategies, irrespective of the sample; clearly, this behavioural rule is
not responsive. I assume that sampling is arbitrarily incomplete. It follows that when
the individuals behave in accordance to this behavioural rule, then the game never
converges to a convention in spite of incomplete sampling and the game being weakly
acyclic. Thus, responsiveness of the behavioural rules ensures both that the game
eventually transitions along a finite sequence of best-response paths to a convention,
and that it stays locked into that convention thereafter.

Finally, I underscore the criticality of the weakly acyclicity property by considering
a two-person game where {U, M, D} and {L, C, R} is the strategy set of the row
player and the column player, respectively. The payoff matrix is presented in Fig. 2
below. I assume that the sampling is arbitrarily incomplete, and that the individuals
always best-respond to the empirical distribution of the other player’s strategies in their
randomly drawn sample. This game has a strict Nash equilibrium (D, R) but it is not
weakly acyclic as there does not exist a best-response path from any of the outcomes
U, L), U,C),(M,L) and (M, C) to the sink (D, R). Suppose that the initial H
period history is specified by the row player [column player] playing U and M [L and
C] in any exogenously fixed proportion. It follows from their behavioural rule that
they will continue to play one of these two strategies thereafter; in particular, the row
[column] player never plays strategy D [strategy R] as it is never a best response to any
distribution of the other player’s strategies that never contains strategy R [strategy D].
Hence, the absence of a best-response path to the sink outcome results in the game
not converging to a convention even though the behavioural rules are responsive and
sampling is incomplete.

Fig.2 Example 2 L C R
vuil21 1,2 0,0
M|1,2 21 0,0
D 0,0 0,0 3,3
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3 Perturbed adaptive play: framework and analysis

The analysis in the previous section reveals that under certain conditions, the individ-
uals are expected to eventually settle on a convention. In this context, it is instructive
to develop an understanding of how behavioural rules influence the convention that
is most likely to arise in games that have more than one strict Nash equilibrium. In
this section, I posit that the strategic interaction may be punctuated with the possi-
bility of exogenous shocks in the choices made by the individuals. That is, in any
period ¢ 4 1, there is an independent probability ¢ of the individual in each popula-
tioni € {1,..., N} making a mistake (or experimenting) with his strategy choice.
An individual is said to experiment, or make a mistake, if he plays a strategy that
does not belong to the response set corresponding to any feasible sample that can be
drawn from the H period history of strategies. These mistakes now make possible the
transition from one convention to another, and, at an intuitive level, the conventions
that are most likely to be observed in the long-run are the ones that are relatively hard
to displace via mistakes but, at the same time, relatively easy to transit into from the
complementary set of conventions via mistakes. Formally, the stochastically stable set
of this perturbed Markov process is the set of states that receive positive weight in
the limiting stationary distribution (see Foster and Young 1990; Kandori et al. 1993;
Young 1993, 1998 for details). In what follows, I make use of an implication of par-
ticularly useful result from Ellison (2000): if it is possible to transit into a particular
convention from any other convention with a single mistake, then the former conven-
tion is in the stochastically stable set; if, in addition, a transition from that particular
convention needs strictly more than one mistake, then it is the uniquely stochastically
stable state.

The question I pose is, does there exist a behavioural rule that outperforms any
other behavioural rule in the sense that the convention that is most preferred by the
individuals who follow the former rule is also the convention that is likely to be
observed in the long-run. The nature of this question causes me to restrict attention
to two-player games, as this allows me to pit individuals who follow one behavioural
rule against individuals who follow another behavioural rule. I use i and —i to denote
the population that assumes the role of the row player and column player, respectively,
in the game under consideration.

I focus on one particular responsive behavioural rule, namely extreme optimism.
The individuals in population i are said to be extremely optimistic if, on drawing any
sample s;(r + 1) in any period ¢ + 1, they assess that the population —i player will
choose a strategy from the assessment set AS;(t + 1) = {x_; € supp(si —i(t + 1)) :
(BRi(x_i),x_;) >; (BR;(x",),x";),Vx", € supp(s; —i(t + 1))}; then, R;(s;(t +
1) € U,_eas ¢+1) SOBRi(x—;). Thatis, an extremely optimistic individual believes
that he is going to face only the most favourable of circumstances—amongst all the
strategies of the other player that appear in his randomly drawn sample, he believes that
his co-player will play a strategy that will lead to the most favourable outcome for him;
he then plays a best-response to this belief. It is easily verified that this behavioural
rule is responsive.

As anillustration of this behavioural rule, consider the game illustrated in Fig. 1, and
suppose that the population of row players is extremely optimistic. Then, whenever a
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row player’s randomly drawn sample contains both L and R, he believes that the col-
umn player will play R. This is because (BR;(R), R) = (D, R) >; (BR;(L),L) =
(U, L). So, he responds by playing D. On the other hand, he believes that the col-
umn player will play strategy L [strategy R] when his sample comprises only of
this strategy of the column player; in this case, he plays strategy U [strategy D] in
response. Similarly, in context of the game in Fig. 2, a row player who is extremely
optimistic believes that the column player will play: (i) strategy R whenever his ran-
dom sample contains at least one instance of the column player playing strategy R
(since (BR;(R), R) >=; (BR;(C),C) ~; (BR;(L), L)), (ii) either strategy L or strat-
egy C whenever the sample contains both of these strategies, but does not contain
strategy R (since (BR;(C),C) ~; (BR;(L), L)), and (iii) strategy L [strategy C]
when the sample contains only this strategy of the column player. Correspondingly,
he plays (i) strategy D, (ii) strategy U or strategy M, and (iii) strategy U [strategy M].

I recall that Co(G); is the set of conventions that is most preferred by the indi-
viduals in population i, and I assume that Co(G); is a singleton. Let supp; (Co(G);)
and supp_;(Co(G);) denote the strategy of the individuals in population i and pop-
ulation —i, respectively, that support the strict Nash equilibrium of the convention in
Co(G);.Since Co(G); isasingleton, SoBR; (supp—i(Co(G);)) = {suppi (Co(G);)},
and SoBR_;(supp;i(Co(G);)) = {supp—i(Co(G);)}. For instance, in the game
described in Fig. 1, Co(G); = {wp r}, suppi(Co(G);) = D and supp_;(Co(G);) =
R; furthermore, SoBR; (supp—_;(Co(G);)) = SoBR;(R) = {D} = {supp; (Co(G);)},
and SoBR_;(suppi(Co(G);)) = SoBR_;(D) = {R} = {supp_i(Co(G))}.

The behavioural rule of the individuals in population —i is said to be mildly differ-
ent from extreme optimism if the following condition holds. Consider any randomly
drawn sample where the strategy supp; (Co(G);) appears at least S — 1 times while
another strategy x; # supp;(Co(G);) appears at most once; then the only element in
the corresponding response set is BR_; (supp;(Co(G);)) = supp—_;(Co(G);). The
reason why this behavioural rule differs from extreme optimism is that in response to
the afore-mentioned sample, an extremely optimistic individual may play a strategy
other than BR_; (supp;(Co(G);)) but if and only if (x/, BR_;(x})) >_; Co(G);.1
underline that the proportion with which the strategy x; occurs in the sample can be
arbitrarily small because the sample size S can be arbitrarily large, and that the defini-
tion of mildly different imposes a restriction only for the particular sample comprised
of § — 1 instances of supp;(Co(G);) and a single occurrence of another strategy
xi’ # supp; (Co(G);). There is no other restriction on these other rules, and hence,
their response sets may mimic that of extreme optimism in all other situations—it is
in this sense that these behavioural rules are mildly different from extreme optimism.

As an example, consider the game depicted in Fig. 1. The population of extremely
optimistic individuals, who assume the role of the row player, play strategy D whenever
they observe at least once occurrence of strategy R. In contrast, the individuals in the
other population, who assume the role of the column player, play R when they observe
strategy U appearing at most once and strategy D appearing at least S — 1 times in their
sample. Here, I note that responsiveness of their behavioural rule causes them to play
R when they observe only strategy D in their sample; hence, the only implication of
their behavioural rule being mildly different from extreme optimism is that they also
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play R when they observe strategy U appearing exactly once and strategy D appearing
exactly S — 1 times.

Finally, a strategic situation represents a pure coordination game if, for every strat-
egy x; € X; [x_; € X_;], there exists a unique strategy x_; € X_; [x; € X;] such that
the outcome (x;, x_;) is a strict Nash equilibrium. That is, SoBR; (x_;) [SoBR_; (x;)]
is a singleton for any x_; € X_; [x; € X;], and the outcome (BR;(x_;), x_;)
[(xi, BR_;(x;)]1s astrict Nash equilibrium. It is easily verified that pure coordination
games are weakly acyclic.

The main result in this section is that in bi-matrix games, the most preferred conven-
tion of population i—that is comprised of extremely optimistic individuals—is always
in the stochastically stable set if the behavioural rule of the individuals in the other
population is responsive, the game is weakly acyclic, and the sampling is sufficiently
incomplete. This is because a single mistake is sufficient to effect a transition from any
convention in the set Co(G)\Co(G); to the convention in Co(G);. The intuition is as
follows. Suppose that the state is described by a convention in Co(G)\Co(G);, and, in
a particular time period, the individual from population —i makes a mistake by play-
ing the strategy supp_; (Co(G);). Then, with positive probability, supp_; (Co(G);) is
always contained in the samples that are drawn by the extremely optimistic individuals
in the subsequent periods, and extreme optimism leads them to play supp; (Co(G);) in
all of these periods. In response to the individuals in population i recurrently playing
suppi(Co(G);), the individuals in population —i eventually start playing the strategy
supp—;(Co(G);), thereby resulting in a transition to the convention in Co(G);. Hence,
this convention is always in the stochastically stable set.

In addition to the above, if the behavioural rule of the individuals in the other
population is mildly different from extreme optimism, and the sample size S > 1, then
the conventionin Co(G); is the uniquely stochastically stable state in pure coordination
games. To show this, it is sufficient to argue that a transition out of the convention
W(x;.x_;) € Co(G); is not possible by a single experimentation. So, suppose that the
state in period 7 iS w(y; x_;), and either an individual in population i experiments with
x| # x;, or aindividual in population —i experiments with x” ; # x_;. In either case,
since S > 1, any sample that a population i player can draw comprises of at least
one instance of strategy x_;; similarly, any sample that a population —i can draw
comprises of at least S — 1 instances of strategy x;. It follows from the definition of the
corresponding behavioural rules that the individuals in population i [population —i]
continue to play x;[x_;]. Hence, it is not possible to transit from w(y, . ,) with one
experimentation, and so, this is the only stochastically stable state. These results are
summarised in Proposition 2; the formal proofs are presented in the appendix.

Proposition 2 Consider any weakly acyclic bi-matrix game. Suppose that the individ-
uals in one of the two populations are extremely optimistic. If sampling is sufficiently
incomplete so that % < % then the most preferred convention of these individuals
is: (i) always in the stochastically stable set if the behavioural rule of the individu-
als in the other population is responsive, and (ii) the uniquely stochastically stable
state in pure coordination games if the behavioural rule of the individuals in the other
population is mildly different from extreme optimism, and S > 1.
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Corollary 1 Consider any bi-matrix pure coordination game where a Pareto-efficient
coordination outcome exists. Suppose that % < %, S > 1, and that individuals in
one of the two populations are extremely optimistic but the behavioural rule of the
individuals in the other population is mildly different from extreme optimism. Then, in
the stochastically stable state of this game, the individuals coordinate on the Pareto-
efficient coordination outcome.

Corollary 2 Consider the bi-matrix pure coordination game where two individuals
bargain over the division of a pie of fixed size in the Nash demand game framework.
Suppose that % < % S > 1, and that individuals in one of the two populations are
extremely optimistic but the behavioural rule of the individuals in the other population
is mildly different from extreme optimism. Then, in the stochastically stable state of
this game, the extremely optimistic individuals obtain almost the entire pie.

4 Conclusion

I show that when individuals recurrently play an N-player game, then they end up
settling on a convention if the game is weakly acyclic, and the behavioural rules of
the players satisfies a very general condition, namely responsiveness. In the specific
context of two-player weakly acyclic games, the most preferred convention of players
described by the behavioural rule ‘extreme optimism’ is always in the set of long-
run outcomes; furthermore, this particular convention is the unique long-run outcome
in pure coordination games whenever the behavioural rule of the individuals in the
other population is mildly different from extreme optimism. So, in two-player pure
coordination games where the interests of the two populations are oppositely aligned
(for eg. games where individuals bargain over a pie of fixed size, or Battle of the Sexes
type coordination games), the other population is constrained to its least preferred
convention; in such cases, extreme optimism outperforms almost any other behavioural
rule. However, in two-player pure coordination games where there is no conflict of
interest (for eg. Stag-hunt games or minimum effort games), the other population also
shares the spoils of the most preferred convention of the population comprised of
extremely optimistic individuals emerging as the long-run outcome.
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Appendix

Proof of Proposition 1 The history of play in the first H periods is assumed to be
given exogenously. Consider the state w(f + 1), for any t + 1 > H. Suppose that
w(t + 1) is not a convention; otherwise, there is nothing left to prove. Now, in each
time period from ¢ 4+ 1 to ¢t + §, with positive probability, the randomly chosen
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individual from each population draws the strategies played in the S time periods
fromt — S + 1 to ¢. Then, with positive probability, the randomly chosen individual
from population i plays the same strategy x; € X; in all these periods, and this holds
foralli € {1,..., N}. So, with positive probability, the outcomex = (X1, ..., Xy)
obtains in all the S time periods from ¢ + 1 to ¢ + S. Then, there are two mutually
exclusive and exhaustive possibilities:

(i) Suppose that the outcome x = (X1, ..., Xy) is a sink. Then, with positive proba-
bility, in each time period from 74-S+1 onwards, individuals from each population
draw a sample that comprises of the strategies used in the S periods immediately
preceding it. Each such sample is monomorphic, and the induced strategy profile
of the other players supports the strict Nash equilibrium x. As a result, a popula-
tion i player plays x; € X;, and this holds foreachi € {1, ..., N}. Hence, the H
period history of play from 7 + 1 to t + H is described by the same sink outcome
x. Thus, the game converges to a convention almost surely.

(ii) Suppose, on the other hand, that the outcome x = (X, ..., Xy) is not a sink.
Then, there exists a sequence of best-response paths x0 — x!...xk=1 — xk
where x0 = %, x¥ is a sink, and x' is the outcome (x{, el xﬁv) Vie{0,..., k}.
The best-response path x0 — x! implies that x? * xl.l forsomei € {1,..., N},
x? = le. for all the other populations j € {1, ..., N}\{i}, and )cl.l € SoBR(xgi).
Now, with positive probability:

(a) The sample drawn in all the time periods from 7 + S + 1 to t + 2 S by the
randomly chosen individual from population i comprises of the strategies used
in the periods t + 1 to ¢ + S. Since this sample is monomorphic, the set of
best-responses to the induced strategy profile of the other players belongs to
his response set; hence, the randomly chosen individuals from population i
play xi1 in all the time periods from ¢ 4+ S+ 1tor 42 S.

(b) The sample drawn in all the time periods from ¢t + S+ 1 to z +2 S by the ran-
domly chosen individuals from all the other populations j € {1, ..., N}\{i}
comprises of the strategies used in the periods t — S + 1 to ¢; so, for each
Jj € {1,..., N}\{i}, the individuals in population j play x? € X in all the
time periods froms 4+ S+ 1tor +2S.

Then, at the end of period ¢ + 2 S, the S-period history immediately preceding it
comprises only of the outcome xl= (xl.l , xgi ). If this outcome is a sink, then (i) above
applies. If not, then using the argument outlined above, there is positive probability
that the outcome of the S periods immediately succeeding it corresponds to x> in
the sequence of best-response paths. With positive probability, the process proceeds
along the sequence in this manner till there is a S-period run of the sink outcome x*,
at which point (i) above applies. Hence, the game converges to a convention almost
surely.

The final part of the proof relates to the incompleteness of sampling. The argument
in (ii) above relies on the fact that: (a) as the state transits from one outcome of the
sequence of best-response paths to another, only one population changes its strategy
while the other populations do not, and (b) a S-period run of each outcome in the
sequence is sufficient to move along this sequence. So, in order to move along the
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sequence of best-response paths, the population that changes its strategy must do so
for S consecutive periods, and in these S periods, the individuals in each of the other
populations do not change their strategy; in order for this to occur, the latter must
have access to the sample that causes them to choose the same strategy as before. I
now present on a sufficient condition that enables this.

Without loss of generality, consider the transition from the state described by the
outcome x°, and that has been outlined in (i1) above. Starting from period # + S + 1,
exactly one population changes its strategy every S periods. At period ¢ + S + 1, any
populationi € {1, ..., N} can play | X; | —1 number of other strategies. I consider
the following two mutually exclusive and exhaustive cases:

(a) When N = 2, then the population that is the last to change its strategy does so in
period t 4+ 2 § + 1; this implies that till time period ¢ + 2 S, this population plays
its strategy that supports the outcome x”. A sufficient condition for this is that till
period t +2 S, the individuals in this population must have access to the strategies
used as far back as period t — S + 1, and % < % is sufficient to enable this.

(b) When N > 2, the population that is the last to change its strategy from the one
that supports x* may actually do so after all the other populations have played all
the strategies in their strategy sets. Suppose that population i is the last to change
its strategy; then, the total number of strategies that may be played by the other

populations before the strategy of population i changes is Q = ¥ jv 1, ji | X |
—N = EN _; | X;j | =1 Xi | =N, where N is subtracted because a strategy is

played by each of the N populations in the initial state x°. Hence, the maximum of
the total number of strategies that may be played by the other populations before
the last population changes its strategy is Q = 2,-1\;1 | Xi | —min{| X1 |,...,]|
Xy |} —N.Now, for a sufficient upper bound on S, I consider the case where all of
these Q strategies are played before the last population changes its strategy; if each
of these Q strategies is played S times consecutively, then the game reaches the
time period f + Q S. So, in order for individuals in this population to play the same
strategy as in the outcome x till period 7 + Q S, it may have to obtam the strategies
used as far back as period t — § + 1, and is

<
H = sV 1X|- mm{|x1| SIXN-N+1
sufficient to ensure this. O

Proof of Proposition 2 (i) It is sufficient to show that there is positive probability
of a transition from any convention w(y, x ;) € Co(G)\Co(G); to the convention
Oy ) € Co(G); when an individual in population —i makes a mistake in his
choice of strategy. So, suppose that state is w(y; x_;), and the population —i player
experiments with x”; € X_; in some time period . Then, with positive probability, in
all the time periods from 7 + 1 to # + H, the population i individual draws a sample that
contains this strategy x’_i; then, extreme optimism implies that AS; (t + k) = {x i
and so, R;(s;(t + k)) = {xlf} forall k = 1,..., H. Also, with positive probability,
in each time period from ¢ + S + 1 to r + H, the population —i player’s sample
comprises of the strategies used in S periods immediately preceding it; this sample is
monomorphic, and comprises only of x;; because the behavioural rule of the individ-
uals in the other population is responsive and because the outcome (x;, x” ;) is a sink,

@ Springer



Evolution of conventions in games... 223

these individuals play x” ; in all the time periods from 7 + § + 1 to r + H. Hence, the
same outcome (x/, x”_;) obtains in all periods from7 4+ S+ 1tor + H.

Now, in all the H — § periods from ¢ + H + 1 tot +2H — S, there is a positive
probability of the sample drawn by the players from either population comprising
of the strategies used in the previous S periods. These randomly drawn samples are
monomorphic, and the individuals in population i [population —i] observe the indi-
viduals in the other population playing only x” ; [x/]; consequently, they play x/ [x ;]
in all periods from ¢t + H + 1 tot + 2H — S. Then, the H period history at the end
of time period # + 2H — S is comprised only of the sink outcome (x;, x” ;). Thus, a
transition to the convention O ) from any other convention is possible by a single

mistake. Consequently, this convention is always in the stochastically stable set.
(i1) The argument for this part has been provided in the main body of the paper (just
before the statement of Proposition 2). O
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