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Abstract
We consider a two-agent, single indivisible object allocation problem. We focus on 
continuous mechanisms that satisfy agent sovereignty, and investigate implications 
of group strategyproofness. In particular, we provide an explicit characterization of 
the strategyproof mechanisms and show that there are non-affine maximizer mech-
anisms that do not belong to the class characterized by Roberts (North-Holland, 
1979). Further, we show that there are no budget-balanced strategyproof mecha-
nisms. Also, we obtain an impossibility for existence of strong group strategyproof 
mechanism. We find that this impossibility goes away upon relaxing our notion of 
group strategyproofness, and consequently, present a class of weak group strategy-
proof mechanisms. Finally, we completely characterize the class of feasible strategy-
proof mechanisms satisfying individual rationality, and show that there are no opti-
mal strategyproof expected revenue maximizing mechanisms under a general class 
of well behaved type distributions.

Keywords Group strategyproofness · Budget balance · Optimal mechanism

JEL classification C72 · C78 · D71 · D63

1 Introduction

We consider the standard object allocation model where a single indivisible object is 
allocated among two agents who have private non-negative valuations for the object 
and quasi-linear preferences over the object and money. An example of such a situ-
ation could be a bilateral bargaining setting where two agents, a seller and a buyer, 
negotiate over when and how to trade an indivisible object. Similar examples can 
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also be seen in situations where a license, a house, a plot of land or an airport land-
ing right, etc. is to allotted.

We focus on reasonable mechanisms in the sense that they are well behaved (sat-
isfying a mild notion of continuity) and satisfy agent sovereignty (which requires 
that every agent have some ability to affect the allocation outcome of mechanism). 
In the class of such mechanisms, we provide an explicit complete characterization of 
the strategyproof mechanisms, similar to that obtained in Roberts (1979). However, 
unlike Roberts (1979), this class contains non-affine maximizer mechanisms. This is 
clearly because in the present setting there are only two alternatives and the domain 
of valuations is restricted. We then look for stronger notions of non-manipulability, 
in terms of strong and weak (pairwise) group strategyproofness, that eliminate group 
level incentives to misreport. We find that there are no strong group strategyproof 
mechanisms. Instead, we provide a class of mechanisms that are weak group strat-
egyproof. To the best of our knowledge, there are no papers that characterize group 
strategyproof mechanisms in the present setting.

Further, in line with Jackson (2003), we take a novel approach of using budget 
balance as a yardstick for efficiency and look for strategyproof budget-balanced 
mechanisms. Unfortunately, we find no mechanisms that are budget balanced as 
well as strategyproof. Consequently, we completely characterize the class of feasi-
ble strategyproof mechanisms that satisfy individual rationality.1 Finally, we look 
for optimal mechanisms that maximize expected payments for the object (under an 
assumed common prior distribution) in the class of feasible strategyproof mecha-
nism that satisfy individual rationality. We find a strong negative result. That is, 
there does not exist an optimal strategyproof mechanism when valuations are inde-
pendently (and possibly non-identically) distributed according to any increasing dif-
ferentiable cumulative distribution.

On the issue of strategyproofness of mechanisms, the papers that are closest to 
ours are Mishra and Marchant (2015) and Mishra and Quadir (2014). The former 
paper investigates strategyproof allocation rules in a two-alternative framework with 
quasi-linear utilities. Their characterization result applies to the present setting as the 
number of agents is two. However, our characterization is independent of theirs as 
we focus on strategyproof mechanisms, whereas they focus on strategyproof rules. 
The latter paper provides characterization of strategyproof and non-bossy allocation 
rules in a different setting where objects may remain unallocated and agents have 
strictly positive valuations. Unlike our paper, none of these papers pursue issues of 
budget balance, group strategyproofness or optimality.

On the issue of budget-balanced strategyproof mechanisms, the papers clos-
est to ours are Hagerty and Rogerson (1987), Drexl and Kleiner (2015) and Shao 
and Zhou (2016). The first paper shows that posted-price mechanisms are the only 
mechanisms that satisfy differentiability, strategyproofness, budget-balancedness, 
individual rationality, and a technical property involving step functions. The sec-
ond paper, too, reports a similar result where the only strategyproof budget balanced 

1 Individual rationality requires that participants of a mechanism always get non-negative utility irre-
spective of valuations reported.
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deterministic mechanism satisfying individual rationality is either a posted-price 
mechanism or an option-price mechanism.2 The third paper updates the findings of 
Drexl and Kleiner (2015) and finds an identical result by replacing individual ration-
ality with a stronger notion of regularity of type distributions.

In this paper, our supposition of agent sovereignty eliminates such posted-price 
or option price mechanisms. In comparison, we find that they there are no continu-
ous strategyproof budget-balanced deterministic mechanisms that satisfy agent 
sovereignty. This confirms the negative results cited above, as upon elimination of 
posted-price and option-price mechanisms, our investigation of deterministic mech-
anisms under weaker technical restrictions yields no strategyproof budget-balanced 
mechanism.3

2  Model and leading definitions

Consider a two agent model with set of agents N = {1, 2} and an indivisible object. 
Each agent i has an independent private valuation vi ≥ 0 for the object. A mech-
anism � is a tuple (d, �) such that at any reported profile of valuations v ∈ ℝ

N
+

 , 
each agent i is allocated a transfer �i(v) ∈ ℝ and a decision di(v) ∈ {0, 1} such 
that 

∑
i∈N di(v) = 1 . We follow the notation where di(v) = 1 implies that agent 

i gets a object, while di(v) = 0 stands for i not getting the object. Note that we 
assume that the object is allocated at each profile of reported valuations.4 Define 
w(v) to be the agent getting the object at any profile v.5 The utility to agent i with 
a true valuation of vi at any reported profile v� ∈ ℝ

N
+

 , from the mechanism � is 
given by u(di(v�), �i(v�);vi) = vidi(v

�) + �i(v
�) . Let ∀ i ∈ N , ∀ S ⊆ N , ∀ v ∈ ℝ

N
+

 , 
v−i ∶= (v1,… , vi−1, vi+1,… , vn) , v−S ∶= (vi)i∈N⧵S and vS ∶= (vi)i∈S . Since N = {1, 2} 
in our simple setting, v−i = vj for all i ≠ j ∈ N.

Note that, a priori, a mechanism may have a peculiar allocation decision rule that 
gives the object to some agent j, whenever she reports some value 𝜃 > 0 , irrespec-
tive of what the other agent i ≠ j bids. It could also be that the object is given to i, 
whenever j reports � , irrespective of what i bids. In other words, the mechanism 
treats some agent i ∈ N as a dictator, whenever any one of the agents reports � . Two 
examples of such mechanisms are the aforementioned posted-price mechanisms 
and option-price mechanisms. In our setting, for any valuation profile v, the former 
implies existence of a price p̄P such that d(v) = (0, 1) if and only if v1 ≤ p̄P, v2 ≥ p̄P , 
while the latter implies existence of a price p̄O such that d(v) = (0, 1) if and only if 
v2 ≥ p̄O . It is easy to see that in both these cases, if v2 ∈

[
0,min{p̄P, p̄O}

)
 , agent 1 

gets the good irrespective of what she reports, that is, agent 1 becomes a dictator 

2 Under certain regularity distributional conditions, Drexl and Kleiner (2015) show that the optimal 
strategyproof, feasible mechanism satisfying individual rationality must be budget balanced.
3 Hagerty and Rogerson (1987) interpret their cited result “as essentially negative”.
4 This premise has also been used by  Athey and Miller (2007), Miller (2011), Hagerty and Rogerson 
(1987), Drexl and Kleiner (2015) and Shao and Zhou (2016).
5 We often refer to this agent w(v) as the winner at profile v in the text.
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who must be allocated the good irrespective of what she reports. It is this unde-
sirable feature that leads Hagerty and Rogerson (1987) to “interpret this result as 
essentially negative.”

In this paper, we exclude such arbitrary mechanisms from our purview of study. 
Instead, we focus on mechanisms that satisfy agent sovereignty in the following 
manner: every agent i can change the allocation decision by unilaterally changing 
her report, if the other agent j reports a positive value. That is, every agent can exert 
some influence on the mechanism allocation decision, irrespective of what other 
agents are bidding.6

Definition 1 A mechanism � = (d, �) satisfies agent sovereignty (AS) if for all 
i ≠ j ∈ N and all v ∈ ℝ

N
++

 , ∃ v�
i
≥ 0 such that

Further, we impose a mild technical restriction of continuity, on the mechanisms 
we study. It requires that for any sequence of profiles, whenever the allocation deci-
sion of an agent i is not preserved in limit, the transfer assigned to i at the limit pro-
file is such that she is indifferent between getting or not getting the object.

Definition 2 A mechanism (d, �) is continuous (C) if for any � ∈ {0, 1} , any i ∈ N 
and any sequence of profiles {vk} that converges to ṽ , whenever di(vk) = � for all k,

Let Γ be the class of mechanisms that satisfy agent sovereignty and continuity. 
In this paper, we focus our attention on the mechanisms in Γ that satisfy desirable 
strategic axioms.

In particular, we study the popular strategic axiom of strategyproofness, which 
eliminates any incentive to misreport on an individual level. It is defined as follows.

Definition 3 A mechanism � = (d, �) satisfies strategyproofness (SP) if ∀ i ∈ N , 
∀ v, v� ∈ ℝ

N
+

 such that v−i = v�
−i

,

3  Results

We start by stating by presenting a modification of a well-known characterization of 
strategyproof mechanisms.

di(v) ≠ di(v
�
i
, vj).

di(ṽ) ≠ 𝜁 ⟹ u((1, 𝜏i(ṽ));ṽi) = u((0, 𝜏i(ṽ));ṽi).

u(di(v), �i(v);vi) ≥ u(di(v
�), �i(v

�);vi).

6 Similar axioms have been used by Mishra and Marchant (2015) and Moulin and Shenker (2001).
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Result 1 Any continuous mechanism � = (d, �) satisfies AS and SP only if 
∀ i ≠ j ∈ N and ∀ vj ≥ 0 , there exist real-valued functions K�

i
∶ ℝ+ ↦ ℝ and 

T
�

i
∶ ℝ+ ↦ ℝ ∪ {∞} such that 

(1) di(v) =

{
1 if vi > T

𝜇

i
(vj)

0 if vi < T
𝜇

i
(vj)

and 𝜏i(v) =

{
K

𝜇

i
(vj) − T

𝜇

i
(vj) if di(v) = 1

K
𝜇

i
(vj) if di(v) = 0.

(2) For all i ∈ N and all x > 0 , T�

i
(x) ∈ [0,∞).

Proof Condition (1) follows from Proposition 9.27 in Nisan (2007) and Lemma 1 
in Mukherjee (2014). Now, any mechanism which satisfies SP would violate AS 
if image of T�

i
(.) function (for any i ∈ N ) is unbounded or negative at some pos-

itive point in the real line. That is, if there exists a � ∈ (0,∞) such that T�

i
(�) is 

unbounded, then the agent j ≠ i gets the object whenever she reports her valuation 
to be � , irrespective of what i reports. Similarly, if there exists a � ∈ (0,∞) such that 
T
�

i
(�) is negative, then agent i gets the object whenever j ≠ i reports her valuation 

to be � , irrespective of what i reports. Both these cases violate AS. Thus, for any 
mechanism that satisfies SP and AS, for all i ∈ N , T�

i
(x) ∈ [0,∞) for all x > 0 .   ◻

Note that Result 1 allows for arbitrary tie-breaking in allocation decision of the 
object at any profile v ∈ ℝ

N
+

 such that ∀ i ≠ j ∈ N with vi = T
�

i
(vj) , vj = T

�

j
(vi) . In 

this paper, without loss of generality, we assume a lexicographic tie-breaking rule 
[as in Sprumont (2013)] where the linear order 1 ≻ 2 is used to break ties among 
agents. That is, for any profile v such that vj ≤ T

�

j
(vi) for all j ∈ N,

The following theorem characterizes the class of strategyproof mechanisms in Γ.7

Theorem 1 Any mechanism � = (d, �) ∈ Γ satisfies SP if and only if there exist func-
tions, K�

i
∶ ℝ+ ↦ ℝ and T�

i
∶ ℝ+ ↦ ℝ , such that

(1) For all i ∈ N , if di(v) = 1 , then i ∈ argmax j∈N(vj − T
�

j
(vi)).

(2) For all i ∈ N , �i(v) =
{

K
�

i
(vj) − T

�

i
(vj) if di(v) = 1

K
�

i
(vj) if di(v) = 0

(3) For all x ≥ 0 , T�

1
(T

�

2
(x)) = T

�

2
(T

�

1
(x)) = x.

(4) For all i ∈ N , T�

i
 is a strictly increasing continuous function.

(5) For all i ∈ N , T�

i
(0) = 0.

Proof See Appendix.   ◻

Remark 1 Note that a special class of strategyproof mechanisms is one, where 
T
�

i
(x) = x for all x ≥ 0 and all i ∈ N . This is the the popular class of VCG 

d1(v) = 1 ⟺ v1 = T
�

1
(v2).

7 That is, it characterizes the class of continuous mechanisms that satisfy AS and SP.
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mechanisms that have an efficient (welfare maximizing) decision rule.8 However, 
the class of mechanisms characterized in Theorem 1, allows for mechanisms � such 
that T�

1
(x) = xk and T�

2
(x) = x

1

k , where k ∈ ℕ . Note that whenever k > 1 , these strate-
gyproof mechanisms are not affine maximizer mechanisms of the kind characterized 
by Roberts (1979). This occurs because the popular Robert’s theorem fails to hold in 
the present (restricted domain) setting where agents are can only have non-negative 
valuations for the object.

Note that a strategyproof mechanism guarantees that revealing the true valua-
tion is a weakly dominant strategy for each agent in every simultaneous move game 
that ensues from the mechanism. But there remains the possibility of agents form-
ing groups and misreporting together. Ideally a mechanism should also be immune 
to such group misreporting. And so, to study such mechanisms, we define below a 
stronger notion of truth-telling: strong pair-wise group strategyproofness.9

To state this stronger notion of strategyproofness, we introduce the following 
notation. For any v ∈ ℝ

N
+

 and for any non-empty S ⊆ N , define v� ∈ ℝ
N
+

 to be an 
S-profile of v if ∀ i ∉ S, vi = v�

i
 . The following definition states that if a mecha-

nism satisfies strong pair-wise group strategyproofness, then no matter how the two 
agents misreport: either one of them is worse off, or none of them are better off.

Definition 4 A mechanism � = (d, �) satisfies strong pair-wise group strategyproof-
ness (SPGS) if ∀ v ∈ ℝ

N
+

 , ∄ S ⊆ N such that |S| ≤ 2 and

and

where v′ is an S-profile of v.

The following corollary of Theorem 1 states that there exists no reasonable mech-
anism that eliminates the incentive for the two agents to misreport jointly.

Corollary 1 There is no mechanism � = (d, �) ∈ Γ that satisfies SPGS.

Proof The result trivially follows from Result 1 and (4) in Theorem 1, as at any type 
profile v, both agents can deviate as a group in a manner where the agent j ≠ w(v) 

u(di(v), �i(v);vi) ≤ u(di(v
�), �i(v

�);vi),∀ i ∈ S,

u(dj(v), 𝜏j(v);vj) < u(dj(v
�), 𝜏j(v

�);vj) for some j ∈ S,

8 A mechanism � = (d, �) is a VCG mechanism if ∀ v ∈ ℝ
N
+

 , ∀ i ∈ N,

and

di(v) = 1 ⟹ vi ≥ vj,

�i(b) =
∑

j≠i
(dj(v) − dj(vj))vj + hi(vj) where hi ∶ ℝ

N⧵{i}
+ ↦ ℝ is an arbitrary function of vj.

9 This stronger notion of strategyproofness has also been studied by Barberà et al. (2016), Bogomolnaia 
and Moulin (2004), Hatsumi and Serizawa (2009), Mitra and Mutuswami (2011), Serizawa (2006) and 
Pápai (2000).
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reduces her report unilaterally—which would make the winning agent w(v) strictly 
better off (as the price that she must pay for the object post-deviation decreases)—
while j’s own utility remains unchanged post-deviation.   ◻

Remark 2 This impossibility with respect to SPGS is very interesting. Previously, it 
has been noted in allocation problems with money that there are no mechanisms that 
satisfy both efficiency10 and SPGS (by Mitra and Mutuswami (2011) and (Mukher-
jee 2013, 2014 )). However, in our paper, we find that even without efficiency, it is 
impossible to find a reasonable mechanism that satisfies SPGS.

In the related literature, non-existence of mechanisms satisfying strong pairwise 
group strategyproofness has led to investigation into weaker notions of group level 
truth-telling. The most popular notion is that of weak pair-wise group strategyproof-
ness.11 This weaker notion requires that no matter how the pair of agents misreport, 
at least one of them is not strictly better off. As is evident from the definition below, 
any mechanism satisfying SPGS, also satisfies weak pair-wise group strategyproof-
ness (and of course, satisfies strategyproofness).

Definition 5 A mechanism � = (d, �) satisfies weak pair-wise group strategyproof-
ness (WPGS) if ∀ v ∈ ℝ

N
+

 , ∄ S ⊆ N such that |S| ≤ 2 and

where v′ is an S-profile of v.

Unlike the impossibility of existence of reasonable mechanisms that satisfy SPGS 
in Corollary 1, we find that there exists the following class of mechanisms that sat-
isfy weak pair-wise group strategyproofness.

Theorem 2 A mechanism � = (d, �) ∈ Γ satisfies WPGS if for all i ∈ N such that for 
all x ≥ 0,

where Ci ∈ ℝ for all i ∈ N and either � = ∞ or � ∈ {x ≥ 0|T�

i
(x) = x,∀ i ∈ N}.

Proof See appendix.   ◻

Given the impossibility of efficient and strong pair-wise group strategyproof 
mechanisms described in Remark 1, we must consider the possibility of existence 

u(di(v), 𝜏i(v);vi) < u(di(v
�), 𝜏i(v

�);vi),∀ i ∈ S,

K
�

i
(x) = Ci +min{T

�

i
(x), �},

10 A mechanism is said to be efficient if and only if at all type profiles, it allocates objects in a manner 
that maximizes aggregate welfare. That is, if a mechanism is efficient, then it allocates the object to a 
person who reports the highest valuation.
11 See Barbera et al. (2010), Barberà et al. (2012, 2016), Barbera and Jackson (1995), Hatsumi and Seri-
zawa (2009), Mitra and Mutuswami (2011), Mukherjee (2013, 2014).
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of such mechanisms if one considers an alternate notion of efficiency: budget bal-
ance.12 Informally, a mechanism is budget balanced if there is never any excess or 
shortage of resources in its execution. The formal definition is as follows.

Definition 6 A mechanism � = (d, �) satisfies budget balance (BB) if for all v ∈ ℝ
N
+

,

Unfortunately, as Corollary 2 shows that any reasonable mechanism that satisfies 
budget balance fails to satisfy even the weakest notion of truth-telling entailed by 
strategyproofness.

Corollary 2 There is no mechanism � = (d, �) ∈ Γ that satisfies SP and BB.

Proof Suppose there exists a mechanism � ∈ Γ that is budget balanced and strategy-
proof. Therefore, from Result 1, it follows that ∀ (x, y) ≥ 0,

By Theorem  1, for all i ∈ N , T�

i
(0) = 0 and Ti(z) > 0,∀ z > 0 . Therefore, by 

Result 1, d(z, 0) = (1, 0) and d(0, z) = (0, 1) for all z > 0 . Hence, the equations above 
imply that for all z > 0 , K�

i
(z) is constant for all i. Therefore, T�

i
(z) is constant for all 

z > 0 and all i, and hence, a contradiction to Theorem 1. Thus, the result follows.  
 ◻

Corollary 2 confirms the flavour of impossibility in results of Hagerty and Rog-
erson (1987), Drexl and Kleiner (2015) and Shao and Zhou (2016). That is because 
Corollary 2 shows that upon excluding unfair mechanisms that violate agent sover-
eignty, such as posted-price or option price mechanisms: we find no other budget-
balanced strategyproof mechanism under weaker technical restrictions. In an unpub-
lished working paper, De and Mitra (2019) also find a similar result in context of 
sequencing problems where they show that budget balance requires more than two 
participants in a strategyproof mechanism.

Since Corollary 2 shows that there are no reasonable mechanisms that are strat-
egyproof and budget balanced, in the following theorem, we look to weaken the 
notion of budget balance to the notion of feasibility (which requires only that a 
mechanism never lead to a deficit of resources)—and look for feasible strategyproof 
mechanisms. The following is the formal definition of feasibility.

∑

i∈N

�i(v) = 0.

K
�

1
(y) + K

�

2
(x) = T

�

1
(y) if d(x, y) = (1, 0)

K
�

1
(y) + K

�

2
(x) = T

�

2
(x) if d(x, y) = (0, 1).

12 Jackson (2003) argues that in the absence of Pareto efficient and strategyproof mechanisms [as shown 
by Green and Laffont (1979)], budget balance should be treated as an equally important yardstick of 
efficient mechanisms as decision efficiency. A similar approach has been taken in Hagerty and Rogerson 
(1987) and Drexl and Kleiner (2015).



297

1 3

On group strategyproof and optimal object allocation  

Definition 7 A mechanism � = (d, �) satisfies feasibility (F) if for all v ∈ ℝ
N
+

,

Note, however, that the class feasible mechanisms may contain unfair mecha-
nisms that allow for possible extraction of exorbitant taxes from agents participat-
ing in a mechanism. Such mechanisms would not only be unreasonable but also 
be impractical because participating agents, when faced with such mechanisms, 
may choose to not participate—defeating the whole purpose of allocation exercise. 
Hence, in our investigation of feasible mechanisms, we look for individually rational 
mechanisms, which ensure that each participating agent receives a non-negative util-
ity irrespective of the reported valuations. The following is the formal definition of 
individual rationality.

Definition 8 A mechanism (d, �) satisfies individual rationality (IR) if for all i ∈ N 
and all v ∈ ℝ

N
+

,

The following theorem completely characterizes the class of strategyproof, fea-
sible and individually rational mechanisms in Γ . We first define a class of pairs of 
functions, and then present this result:

Theorem 3 A mechanism � = (d, �) ∈ Γ satisfies SP, IR and F, if and only if for all 
i ∈ N and all v ∈ ℝ

N
+

,

and

where 
(
T
�

1
(.), T

�

2
(.)
)
∈ F .

Proof For proof of sufficiency, fix any mechanism �̂� = (d̂, 𝜏) ∈ Γ that satisfies the 
properties mentioned in the statement of theorem. It is easy to check that �̂� belongs 
to the class of mechanisms characterized by Theorem  1 (obtained by setting the 
function K�̂�

i
(x) = 0 for all i ∈ N and x ≥ 0 ), and so, satisfies SP. Note that �̂� assigns 

non-positive transfers to all agents at all reported type profiles, and so, it satisfies 
F. Further, at any reported valuation profile v, if any agent i is assigned the object 
by �̂� , then Theorem  1 implies that T �̂�

i
(vj) ≤ vi , which implies that i’s utility from 

getting the object is non-negative. Since utility to such any agent i continues is 0 

∑

i∈N

�i(v) ≤ 0,

u(di(v), �i(v);vi) ≥ 0.

F ∶=

{
(f , g)

|||||

f (.), g(.) are strictly increasing continuous bijections over domain [0,∞) such

that f (0) = 0 and g(x) = f−1(x) for all x ≥ 0.

}
.

di(v) = 1 ⟹ i ∈ argmax j∈N(vj − T
�

j
(vi)),

�i(v) =

{
−T

�

i
(vj) if di(v) = 1

0 if di(v) = 0,
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whenever �̂� does not assign the object to her, we can infer that �̂� satisfies IR. Also, 
note that by construction of F  , T �̂�

i
(.) is a strictly increasing bijection over [0,∞) 

for all i ∈ N , and so, for all x > 0 , T �̂�

i
(x) ∈ (0,∞) , which implies that �̂� satisfies 

AS. Finally, fix any sequence of profiles {vn} in ℝN
+

 that converges some limit pro-
file v̄ , and suppose, without loss of generality, that d̂(vn) = (1, 0) for all n. Then by 
Result 1, v1 ≥ T

�̂�

1
(vn

2
), v2 ≤ T

�̂�

2
(vn

1
),∀ n . Now, by construction of F  , T �̂�

i
(.) is continu-

ous for all i ∈ N , and so, in limit v̄1 ≥ T
�̂�

1
(v̄2), v̄2 ≤ T

�̂�

2
(v̄1) . Further, construction of 

F  implies that; v̄1 > T
�̂�

1
(v̄2) ⟹ v̄2 < T

�̂�

2
(v̄1) , and v̄1 = T

�̂�

1
(v̄2) ⟹ v̄2 = T

�̂�

2
(v̄1) . 

Thus, if d̂(v̄) ≠ (1, 0) , then u((1, 𝜏1(v̄));v̄1) = v̄1 − T
�̂�

1
(v̄2) = 0 = u((0, 𝜏1(v̄));v̄1) , and 

u((1, 𝜏2(v̄));v̄2) = v̄2 − T
�̂�

2
(v̄1) = 0 = u((0, 𝜏2(v̄));v̄2) . This establishes continuity of �̂� . 

Thus, the proof of sufficiency follows.
To prove necessity, fix any mechanism � = (d, �) ∈ Γ that satisfies SP, IR and 

F. Note that Theorem 1 implies that 
(
T
�

1
(.), T

�

2
(.)
)
∈ F  . Therefore, it is easy to see, 

given Theorem 1, we simply need to show that K�

i
(z) = 0 for all z ≥ 0 to establish 

this result. Recall that Theorem  1 implies that for any z > 0 , T𝜇

i
(0) = 0 < T

𝜇

i
(z) , 

and so, u(di(0, vj), �i(0, vj);0) = K
�

i
(vj) whenever vj ≥ 0.13 Therefore, IR implies that 

(�) K
�

i
(z) ≥ 0 for all z ≥ 0 , and all i. And so, F implies that when reported profile 

is (0, 0), the condition 0 ≤ K
�

1
(0) + K

�

2
(0) ≤ 0 holds. Thus, K�

i
(0) = 0 for all i ∈ N . 

Now, consider a profile (x, T�

2
(y)) , where x > y ≥ 0 . By Result 1, d(x, T�

2
(y)) = (1, 0) . 

Therefore, by feasibility, K�

1
(T

�

2
(y)) − T

�

1
(T

�

2
(y)) + K

�

2
(x) ≤ 0 , which, by condition 

(3) of Theorem  1 and (a) implies that 0 ≤ K
�

1
(T

�

2
(y)) + K

�

2
(x) ≤ y . Note that this 

equation holds for all y ∈ [0, x) and so, by the standard “squeeze” property of limits,

Now, by (a), limy→0+ K
�

1
(T

�

2
(y)) ≥ 0 , which implies that K�

2
(x) = 0 . Arguing in a 

similar manner for the profile (T�

1
(y), x) , we get that K�

1
(x) = 0 . Since x > 0 was cho-

sen arbitrarily, we get that K�

i
(x) = 0 for all i and x ≥ 0 .   ◻

The following corollary emphasises an interesting connection of the mechanisms 
characterized by Theorem 3 to group strategyproofness.

Corollary 3 If � = (d, �) ∈ Γ satisfies SP, IR and F, then it satisfies WPGS.

Proof The proof easily follows from noting that mechanisms characterized by Theo-
rem 3 belong to the class described by Theorem 2.14   ◻

Theorem 3 completely characterizes the class of mechanisms in Γ that are feasi-
ble, strategyproof and satisfy IR. It requires that no positive transfers be made irre-
spective of whether an agent wins the object or not. Further, Corollary 2 shows that 
these mechanisms can never be budget balanced. Therefore, the question arises as 

K
�

2
(x) = − lim

y→0+
K

�

1
(T

�

2
(y)).

13 As argued in the previous paragraph, even if vi = 0, vj = 0 , i’s utility continues to be 0 irrespective of 
whether she is assigned an object or not.
14 They can be obtained by setting C1,C2 and � equal to 0 in Theorem 3.
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to whether an expected revenue maximizing risk neutral seller/planner may pick, 
from the class of mechanisms characterized in Theorem 3, an optimal mechanism. 
As shown in the proposition below, for a general class of beliefs about type distribu-
tion, there does not exist a revenue maximizing optimal strategyproof mechanism 
satisfying IR in Γ.

Theorem 4 Let the valuation of each agent i, vi be distributed independently accord-
ing to a differentiable strictly increasing distribution function Fi(.) over the interval 
[0,∞) . In the class of mechanisms � = (d, �) ∈ Γ satisfying SP and IR, there exists 
no mechanism that is optimal.15

Proof Suppose an optimal mechanism exists and has threshold functions (
T∗
1

�(.), T∗
2

�(.)
)
∈ F  . For simplicity of notation, let �y ∶= T∗

1

�(y) and �y ∶= T∗
2

�(y) 
for all y ≥ 0 . Note that by Result 1, the exact functional form of K�

i
(.) functions 

does not affect the strategyproofness of mechanisms. Further, using Result  1 we 
can infer that for any mechanism satisfying IR, the K�

i
(.) functions must have a 

range in ℝ+ . Therefore, an optimal mechanism must set K∗
i

�(.) = 0 for all i. Also, 
Result  1 implies that for all possible y values, �y = inf {x ≥ 0|d(x, y) = (1, 0)} and 
�y = inf {x ≥ 0|d(y, x) = (0, 1)}.

Therefore, by Lemma 1, the seller’s expected revenue from the optimal mecha-
nism is

By Euler’s equation (for calculus of variation), a necessary condition that (� and � 
must satisfy to maximize the aforesaid expression is

which implies that

Now, by condition (3) of Theorem 1, ��x2 = T∗
2

�
(
T∗
1

�(�x2 )
)
= x2 , and so the equation 

above reduces to

V(�, �) ∶= ∫
∞

0

{
�x2 (1 − F1(�x2 )) + ∫

�x2

0

�x1 f1(x1)dx1

}
f2(x2)dx2.

�

[{
�x2 (1 − F1(�x2 )) + ∫ �x2

0
�x1 f1(x1)dx1

}
f2(x2)

]

��x2

= 0,

�x2 = ��x2
+

1 − F1(�x2 )

f1(�x2 )
,∀ x2 ≥ 0.

�x2 = x2 +
1 − F1(�x2 )

f1(�x2 )
,∀ x2 ≥ 0.

15 The result continues to hold if the lower bound of the support of distribution is positive.
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However, Theorem 1 requires that �0 = 0 and so, it must be that 0 =
1−F1(0)

f1(0)
 which 

implies that f1(0) = ∞ , which is a contradiction to the definition of derivative.   ◻

Note that the impossibility in Theorem 4 reflects a standard fact of calculus of 
variations where extremal of a functional that does not depend on the slope of fea-
sible functions fails to exist if the feasible functions are required to satisfy boundary 
conditions.16 Therefore, one may hope to find existence of optimal mechanisms if 
zero valuations are excluded from the domain. We leave this as a future exercise 
as removing possibility of zero valuations would render our proof of Corollary  2 
incorrect.

Remark 3 Myerson (1981), Theorem 4 looks at optimal mechanisms that are truthful 
in the sense of dominant strategy incentive compatibility. It shows that the candi-
dates for optimal strategyproof mechanisms satisfying individual rationality must be 
those not belonging to Γ . That is, such mechanisms may be discontinuous or may 
allow the object to be allocated dictatorially at some profile of reported valuations. 
Note that this impossibility may also be a result of the restriction implicit in present 
setting, which requires that the object must be allocated at all profiles. This rules out 
usage of reserve prices that were shown by Myerson (1981) to be essential compo-
nents of the optimal strategyproof and individually rational mechanism. Are there 
any optimal strategyproof mechanisms satisfying some form of individual rational-
ity, if objects are not allocated at all profiles? This appears to be an interesting area 
of future research.

4  Conclusion

We study group strategyproofness and optimality of mechanisms for a two agent 
indivisible object allocation problem. We only consider well-behaved mechanisms 
that satisfy agent sovereignty and a mild continuity condition. We characterize the 
class of strategyproof mechanisms and show presence of non-affine maximizer strat-
egyproof mechanisms outside the class characterized by Roberts (1979). We obtain 
impossibilities for the presence of strong group strategyproof mechanisms, as well 
as for the presence of budget balanced strategyproof mechanisms. However, we find 
that there exists a large class of weak group strategyproof mechanisms. We also 
completely characterize the class of feasible strategyproof mechanisms satisfying 
individual rationality. Finally, we show that there does not exist an expected revenue 
maximizing strategyproof mechanism satisfying individual rationality, under a large 
class of distributions of types.

Extension of these results to general n player setting is a difficult exercise as the 
dimension of the domain of threshold Ti(.) functions (of Result 1) becomes greater 
than one. This line of inquiry is left for future research.

16 See Elsgolts and Yankovsky (1973).
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Appendix

Proof of Theorem 1

We first prove the following lemma that establishes two particular properties of T�

i
(.) 

functions for any strategyproof mechanism � ∈ Γ.

Lemma 1 If a mechanism � = (d, �) ∈ Γ satisfies SP, then

(1) For all i ∈ N , T�

i
(.) is a non-decreasing continuous function.

(2) For all x, y ≥ 0 , x = T
�

1
(y) ⟺ y = T

�

2
(x).

Proof To prove (1), fix y, y′ such that 0 ≤ y < y′ . If T𝜇

1
(y�) < T

𝜇

1
(y) , then for any 

x ∈ (T
�

1
(y�), T

�

1
(y)) consider the profiles (x,  y) and (x, y�) . By Result 1 and non-

decreasingness of T�

i
(.) functions, d2(x, y�) = 0 and d2(x, y) = 1 , which contradict 

Result  1 itself. Arguing similarly for agent 2, we get that T�

i
(.) is a non-decreas-

ing function for both i ∈ N . Therefore, these functions must either be continuous 
or have jump discontinuities. Without loss of generality, consider the function 
T
�

1
(.) and suppose that there exists a y ≥ 0 such that T𝜇

1
(y) < limz→y+ T

𝜇

1
(y) . Fix an 

x ∈
(
T
�

1
(y), limz→y+ T

�

1
(y)

)
 and consider the sequence of profiles {(x, yr)} such that for 

all r, yr > y and {yr} → y . By Result 1, d(x, yr) = (0, 1) for all r, but d(x, y) = (1, 0) . 
Since, � ∈ Γ and hence, continuous, we have u((1, �1(x, y));x) = u((0, �1(x, y));x) , 
which implies that x = T

�

1
(y) . This contradicts our choice of x and so, T�

i
(.) func-

tions must be continuous. Thus, condition (1) follows.
To prove (2), fix any x, y ≥ 0 . There are two possibilities: (i) d1(x, y) = 1 or (ii) 

d2(x, y) = 1 . If case (i) holds, then by Result 1, x ≥ T
�

1
(y) and y ≤ T

�

2
(x) . If x > T

𝜇

1
(y) 

and y = T
�

2
(x) , then choose 𝜈 > 0 such that x > T

𝜇

1
(y + 𝜈) (by condition (1) estab-

lished above, such a � exists). By Result 1, d1(x, y + �) = d2(x, y + �) = 1 and hence, 
a contradiction. Similarly, if x = T

�

1
(y) and y < T

𝜇

2
(x) , then choose 𝜈 > 0 such that 

y < T
𝜇

2
(x − 𝜈) . As before, Result  1 implies that d1(x − �, y) = d2(x − �, y) = 0 and 

hence, a contradiction. Arguing in similar manner, we can establish a contradiction 
in case (ii), and so, the result follows.   ◻

Using Lemma  1 above, we present the following proofs of necessity and 
sufficiency:

Only If:

Fix any mechanism � = (d, �) ∈ Γ that satisfies SP. Result  1 and Lemma  1 
imply the conditions (2) and (3) trivially. Further, condition (3) implies that 
T
�−1

i
(.) functions must be well defined for all i, and so, by Lemma  1, T�

i
(.) func-

tions must be strictly increasing. Thus, condition (4) follows, and so, by Result 
1, condition (1) follows. Finally, if T𝜇

1
(0) > 0 , then by conditions (3) and (4), 

T
𝜇

1
(T

𝜇

2
(0)) > T

𝜇

1
(0) ⟹ 0 > T

𝜇

1
(0) which implies that there exists 𝜈 > 0 such that 

0 > T
𝜇

2
(𝜈) which contradicts Result  1. Arguing similarly for T�

2
(.) , condition (5) 

follows.
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If:

Consider any mechanism � = (d, �) that satisfies the conditions (1)–(5) stated in 
the theorem. By Result 1, � satisfies SP.17. Also, since T�

i
(x) ∈ [0,∞),∀ x ≥ 0,∀ i , � 

satisfies AS. To show continuity, consider, without loss of generality, a sequence of 
profiles {vr} converging to v̄ such that the allocation decisions are d(vr) = (1, 0) for 
all r. Therefore, by Result 1, vr

1
≥ T

�

1
(vr

2
) and vr

2
≤ T

�

2
(vr

1
) for all r. By condition (4), 

in limit v̄1 ≥ T
𝜇

1
(v̄2) and v̄2 ≤ T

𝜇

2
(v̄1) . Now, if the allocation decisions are not pre-

served in limit, that is, d(v̄) = (0, 1) ; then v̄1 = T
𝜇

1
(v̄2) and v̄2 = T

𝜇

2
(v̄1) , which 

implies that for both j ∈ N , u(0, 𝜏j(v̄);v̄j) = u(1, 𝜏j(v̄);v̄j) = K
𝜇

j
(vi) , where i ≠ j . 

Hence, continuity of � follows and so, we can infer that � ∈ Γ .   ◻

Proof of Theorem 2

There can be only two types of deviations by the pair {1, 2} : (1) decision-preserving 
deviations where the allocation decision remains same before and after deviation 
and (2) decision-changing deviations where the allocation decision changes after 
deviation. Note that for all i ∈ N and all z ≥ 0 , if � = 0 , then K�

i
(z) = Ci ; and if 

� = ∞ then K�

i
(z) = Ci + T

�

i
(z) . Now if � = 0 , it is easy to see that at any original 

type profile v = (v1, v2) , no possible misreport that any agent j ∈ N can make, would 
affect the K�

i
(.) value for the other agent i ≠ j . So, any {1, 2} deviation v′ that violates 

WPGS must be decision changing. However, given that K�

i
(.) functions are constant 

functions for both i when � = 0 , the winner at v would become strictly worse off by 
becoming loser at v′ , which contradicts our supposed violation of WPGS. Further, 
if � = ∞ , any decision preserving {1, 2} deviation would leave the winner’s utility 
unchanged, and so, any such deviation that violates WPGS must be decision chang-
ing. Now, when � = ∞ , for any decision changing {1, 2} deviation from v to v′ , the 
utility of w(v) at profile v (that is, vw(v) + Cw(v)) is, less than her utility at v′ (that is, 
Cw(v) ); which implies that no such {1, 2} deviation can violate WPGS.

Now, we focus on mechanisms with a finite and positive � ∈ (0,∞) , and show the 
sufficiency with respect to each possible kind of deviation as a separate case. First, 
we define for all possible {1, 2} deviations from the original valuation profile (x, y) 
to a misreported valuation profile (x�, y�);

and

Case(i) Decision preserving Suppose there exists a decision preserving deviation 
from (x,  y) to (x�, y�) that violates WPGS, that is, Δi < 0 for both i. Consider the 
possibility where d(x, y) = d(x�, y�) = (1, 0) , that is, min{x, x�} ≥ max{T

�

1
(y), T

�

1
(y�)} 

and max{y, y�} ≤ min{T
�

2
(x), T

�

2
(x�)} . Note that given the structure of K

�

i
(.) 

Δ1 ∶= u1(d1(x, y), �1(x, y);x) − u1(d1(x
�, y�), �1(x

�, y�);x),

Δ2 ∶= u2(d2(x, y), �2(x, y);y) − u2(d2(x
�, y�), �2(x

�, y�);y).

17 As stated in proof of Result 1, the characterization has been shown to be sufficient for SP by Nisan 
(2007)
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functions, Δ2 < 0 is possible only if x < x′ , and T𝜇

2
(x) < 𝜂 . Similarly, Δ1 < 0 is pos-

sible only if y′ < y , and 𝜂 < T
𝜇

1
(y) . Therefore, under this possibility of violation of 

WPGS, we can infer that (�) 0 ≤ y� ≤ y ≤ T
𝜇

2
(x) < 𝜂 < T

𝜇

1
(y) ≤ x ≤ x� . However, by 

condition (4) of Theorem 1 and construction of � such that T�

i
(�) = � for all i ∈ N ; 

we get that

and hence, a contradiction to (I).
Arguing in a similar manner for the possibility where d(x, y) = d(x�, y�) = (0, 1) , 

we get that (��) 0 ≤ x� ≤ x < T
𝜇

1
(y) < 𝜂 < T

𝜇

2
(x) ≤ y ≤ y� . As before, by Theorem 1 

and construction of � , we get that y < 𝜂 < x , which contradicts (II). Therefore, 
we conclude that there can be no decision preserving {1, 2}-deviation that violates 
WPGS when � ∈ (0,∞).

Case(ii) Decision changing Suppose there exists a decision changing devia-
tion from (x, y) to (x�, y�) that violates WPGS, that is, Δi < 0 for all i ∈ N . With-
out loss of generality, suppose that d(x, y) = (1, 0) and d(x�, y�) = 1 . Now, if 
Δ1 = x + K

𝜇

1
(y) − T

𝜇

1
(y) − K

𝜇

1
(y�) < 0 , then by Result 1, y′ > y , T𝜇

1
(y) < 𝜂 and x < 𝜂 . 

By Theorem 1 and construction of �,

and so, K�

2
(x) = T

�

2
(x) + C2.

Now, if x′ ≤ � , then by the same logic, K�

2
(x�) = T

�

2
(x�) + C2 , which implies that 

Δ2 = K
�

2
(x) − {y + K

�

2
(x�) − T

�

2
(x�)} = T

�

2
(x) − y . Now, by supposition d2(x, y) = 0 , 

and so, y ≥ T
�

2
(x) implying that Δ2 ≥ 0 , which contradicts our supposition. On 

the contrary, if x′ > 𝜂 , then arguing as before, T𝜇

2
(x�) > 𝜂 and so K�

2
(x�) = � + C2 . 

Therefore, by Result 1, Δ2 = (T
𝜇

2
(x) − y) + (T

𝜇

2
(x�) − 𝜂) > 0 and so, a contradiction 

to our supposition. Thus, there can be no decision changing {1, 2}-deviation that can 
violates WPGS when � ∈ (0,∞) .   ◻
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