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Abstract
We provide a generalization of the Gale–Nikaido–Debreu’s lemma for discon-
tinuous excess demand in the light of recent work on the existence of equilibria in 
games with discontinuous payoffs. The standard upper hemicontinuity property of 
the excess demand is replaced by the weaker concept of “continuous inclusion prop-
erty” introduced by He and Yannelis (J Math Anal Appl 450(2):1421–1433, 2017) 
and we allow for the cone P of admissible prices to be general enough to cover cases 
for which commodities cannot be freely disposed of.

Keywords  Existence of equilibrium · Debreu–Gale–Nikaido’s lemma · Fixed-point

JEL Classification  C62 · D50 · D53

1  Introduction

Following the pioneer work by Dasgupta and Maskin (1986) and Reny (1999) on the 
existence of equilibria in games with discontinuous payoffs, the existence of equi-
libria has been proved in several models of Social Sciences, in the case of discon-
tinuouss payoffs, preferences, or excess demand functions. He and Yannelis (2017) 
provide an extensive study of such existence results for a class of correspondences 
satisfying the “continuous inclusion property,” which encompasses the standard 
notions of upper hemicontinuity and lower hemicontinuity.

The existence of an economic equilibrium was proved by Arrow and Debreu 
(1954) with the help of Kakutani’s fixed-point theorem. A well-known reformula-
tion of the fixed-point argument, with more transparent economic interpretation, 
has then been provided by Debreu (1956), Gale (1955), and Nikaido (1956). This 
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paper provides a generalization of the Gale–Nikaido–Debreu’s lemma for excess 
demand satisfying the “continuous inclusion property” introduced by He and Yan-
nelis (2017) and we allow for the cone P of admissible prices to be a non-degenerate 
closed, convex, cone of vertex 0 in the finite dimensional commodity space ℝ� . This 
allows to go beyond the standard free-disposal assumption and it is general enough 
to cover other cases for which commodities cannot be freely disposed of.

The paper is organized as follows. In Sect. 2, we introduce the “continuous inclu-
sion property” that will be used throughout the paper. The main existence results, 
Theorems 1 and 2, are stated. Altogether, they cover the cases of all possible non-
degenerate, closed, convex, cones P of vertex 0 in the finite dimensional commodity 
space ℝ� . The first result (Theorem 1), proves the existence of an equilibrium price, 
whose excess demand meets P0 , the negative polar cone of P. However, the formu-
lation of Theorem 1, differs from the Gale–Nikaido–Debreu since the equilibrium 
price is proved to exist in co [P ∩ S] (the convex hull of P ∩ S , instead of P ∩ S ), thus 
may be zero. Our first result provides a transparent economic interpretation of the 
use of a fixed-point theorem, and it explicits the role of the assumptions made on the 
cone P of admissible prices that is needed to guarantee that the equilibrium price is 
nonzero. The proof of Theorem 1 relies on Kakutani’s theorem and is in fact equiva-
lent to it, as shown in Remark 2. We also provide an example showing that, under 
the assumptions of Theorem 1, there may not exist any equilibrium price in P ∩ S 
(as in Theorem 2).

Our second result (Theorem 2) will then show that, if we rule out the case where 
P is a vector space, the equilibrium price belongs to P ∩ S , hence is nonzero. Thus 
Theorem  2 is in the same spirit of and generalizes the standard result by Debreu 
(1956), Gale (1955) and Nikaido (1956), and further generalizations by Florenzano 
(1982), Florenzano and Levan (1986), and Krasa and Yannelis (1994), all dealing 
with upper hemicontinuous excess demand. Our result is not directly comparable 
with a previous result by He and Yannelis (2017) for excess demand correspond-
ences satisfying the “continuous inclusion property;” they assume the stronger 
assumption that the cone P is pointed but they allow for infinite dimensional spaces. 
Finally, Maskin and Roberts (2008) and Tian (2016) provides also extensions of the 
Gale–Nikaido–Debreu’s lemma but for classes of continuous and discontinuous cor-
respondences that are not directly comparable to the one considered here.

In Sect. 3, we first provide the proof of Theorem 1. Then, we deduce from Theo-
rem 1, the proof of Theorem 2 after showing that P ∩ S is the continuous retraction 
of co [P ∩ S] . The paper ends with some concluding remarks in Sect. 4.

2 � Definitions and main results

2.1 � General notations and definitions

Hereafter, we shall use the following notations. In ℝ� , let x = (x1,… , x
�
) , 

y = (y1,… , y
�
) , we denote by x ⋅ y ∶=

∑𝓁

i=1
xiyi , the dot product, by ‖x‖ ∶= (x ⋅ x)1∕2 

the Euclidean norm, by B = {x ∈ ℝ
� ∣ ‖x‖ ≤ 1} , the closed unit ball and by 

S = {x ∈ ℝ
� ∣ ‖x‖ = 1} , the unit sphere. The notation x ≥ y means that xi ≥ yi for 
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every coordinate i and we let ℝ�

+
= {x ∈ ℝ

� ∣ x ≥ 0}. For P ⊆ ℝ
� we denote by int 

P, cl P, coP , and P0 , respectively the interior, the closure, the convex hull, and the 
negative polar cone of P, that is, P0 = {x ∈ ℝ

𝓁 ∣ x ⋅ p ≤ 0 for all p ∈ P}.
Let Z be a correspondence, from C ⊆ ℝ

� to ℝ� , that is, a mapping from C 
to the set of all subsets of ℝm . Then Z is said to be upper hemicontinuous if the 
upper inverse {p ∈ C ∶ Z(p) ⊆ O} is open in C (for its relative topology) for all 
open set O ⊆ ℝ

� , and Z is said to be lower hemicontinuous if the lower inverse 
{p ∈ C ∶ Z(p) ∩ O ≠ �} is open in C, for all open set O ⊆ ℝ

�.

2.2 � Continuous inclusion property

Following He and Yannelis (2017), the notions of upper hemicontinuity and lower 
hemicontinuity are weakened as follows. A correspondence Z, from C ⊆ ℝ

� to ℝ� , 
is said to satisfy the continuous inclusion property if there exists a family of cor-
respondences Zi (i ∈ I) , from Oi ⊆ C to ℝ� , which are upper hemicontinuous local 
selections of Z, and the family of their domains (Oi)i is an open covering of C. For-
mally we assume that

•	 Zi is upper hemicontinuous with nonempty values, for all i ∈ I;
•	 Zi(p) ⊆ Z(p) for all p ∈ Oi , and all i ∈ I;
•	 Oi is open in C (for its relative topology) for all i ∈ I , and C = ∪i∈IOi.

We now provide three examples of correspondences Z, from C ⊆ ℝ
� to ℝ� , satisfy-

ing the continuous inclusion property:

•	 Z is upper hemicontinuous on C with nonempty values;
•	 Z admits local continuous selections zi ∶ Oi → ℝ

� (i ∈ I)
	   with (Oi)i∈I being an open covering of C;
•	 Z is lower hemicontinuous on C, with nonempty, convex values.

In the first case, we can choose Zi = Z , and Oi = C for all i ∈ I , thus the continuous 
inclusion property is satisfied. The second example is a particular case of the first 
one, though an important one. The latter case follows from Michael’s selection theo-
rem (Michael 1956), which states that, in a finite dimensional space, every lower 
hemicontinuous correspondence Z, from C ⊆ ℝ

� to ℝ� , with nonempty convex val-
ues has a continuous selection; hence the continuous inclusion property is satisfied.

For a thorough study of correspondences satisfying the Continuous Inclusion 
Property, we refer to He and Yannelis (2017).

2.3 � The main results

In equilibrium theory, equilibrium prices are required to belong to a given set P, 
assumed to be a closed convex cone of vertex 0, which is non-degenerate, i.e., 
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P ≠ {0}.1 The excess demand correspondence Z is defined on the set C ∶= co [P ∩ S] 
in our first result (and later on P ∩ S in our second result), the correspondence Z is 
assumed to satisfy the continuous inclusion property for the family (Zi)i∈I , and Z is 
assume to satisfy Walras’ law on P ∩ S , in the sense that each Zi satisfies Walras’ 
law on P ∩ S ∩ Oi:

We note that, when Zi = Z and Oi = C for all i, then the above definition coincides 
with the following Walras’ law:

for which the above inequality is asked to hold for some z ∈ Z(p) (instead of all 
z ∈ Z(p) ) and we refer to Section 4 for further discussion on Walras’ law.

We can now state our first result, which differs from the Gale–Nikaido–Debreu’ 
lemma, since the equilibrium price is proved to exist in co [P ∩ S] (instead of 
P ∩ S ), hence may be zero. Our second result will then show that, under additional 
assumption on the cone P of prices, the equilibrium price belongs to P ∩ S , hence is 
nonzero.

Theorem  1  Let P ⊆ ℝ
� be a nondegenerate,2 closed, convex, cone, with vertex 0. 

Let Z be a correspondence, from co [P ∩ S] to ℝ� , with nonempty, convex, compact 
values, satisfying the continuous inclusion property and Walras’ law on P ∩ S . Then 
there exists p∗ ∈ co [P ∩ S] such that Z(p∗) ∩ P0 ≠ �.

The proof of Theorem 1 is given in Sect. 3.1. It is a consequence of Kakutani’s 
theorem, and we will also show (see Remark 2) that Kakutani’s theorem is a conse-
quence of Theorem 1. We also point out that, under the assumptions of Theorem 1, 
there may not exist any equilibrium price in P ∩ S and some (or all) equilibria may 
be zero.3

Our next result will make an additional assumption on the cone P to guarantee the 
existence of a nonzero equilibrium price. As in Debreu (1956), we now assume that 
P is not a vector space. This covers two important cases usually considered in the 
literature, e.g., P = ℝ

�

+
 , or P is a nondegenerate, closed, convex cone of ℝ� , which is 

pointed, i.e., P ∩ −P = {0}.

Theorem 2  Let P ⊆ ℝ
� be a closed convex cone with vertex 0, which is not a vector 

space. Let Z be a correspondence from P ∩ S to ℝ� with nonempty, convex, compact 

∀i ∈ I, ∀p ∈ P ∩ S ∩ Oi, ∃zi ∈ Zi(p), p ⋅ zi ≤ 0.

∀p ∈ P ∩ S, ∃z ∈ Z(p), p ⋅ z ≤ 0,

2  When P is degenerate, that is, P = {0} , then co [P ∩ S] = � and the result cannot hold.
3  Take P = ℝ

� and consider the (single-valued) correspondence Z ∶ B → ℝ
� defined by Z(p) ∶= {−p} . 

Then � ≠ Z(p∗) ∩ P0 if and only if p∗ = 0 , which is the unique equilibrium point of Z in the unit ball 
B = co [P ∩ S].

1  Assume, for example, that the total production set Y ⊆ ℝ
� satisfies the free disposal assumption 

Y − P0 ⊆ Y  , for some closed convex cone P ⊆ ℝ
� ; then profit maximization leads to prices belonging to 

the given cone P.
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values, satisfying the continuous inclusion property and Walras’ law on P ∩ S . Then 
there exists p∗ ∈ P ∩ S such that Z(p∗) ∩ P0 ≠ �.

The proof of Theorem 2 is given in Sect. 3.2 as a consequence of Theorem 1. In 
order to use Theorem 1, we will show that the set P ∩ S is the continuous retraction 
of the convex compact set co [P ∩ S].

Theorem  2 generalizes the standard result by Debreu (1956), Gale (1955) and 
Nikaido (1956), together with further generalizations by Florenzano (1982), Flor-
enzano and Levan (1986), and Krasa and Yannelis (1994), all dealing with upper 
hemicontinuous excess demand. For excess demand satisfying the continuous inclu-
sion property the above theorem is not directly comparable with the result by He 
and Yannelis (2017) since they consider an infinite dimensional commodity space 
but the stronger assumption that the cone P of prices is pointed, whereas, in Theo-
rem 2 we only assume that the cone P is not a vector space but belongs to a finite 
dimensional space ℝ� . We also refer to Maskin and Roberts (2008) and Tian (2016) 
who provide also extensions of the Gale–Nikaido–Debreu’s lemma but for classes of 
continuous and discontinuous correspondences that are not directly comparable to 
the one considered here.

3 � Proofs

3.1 � Proof of Theorem 1

Step 1: A selection result
We first prove a lemma that will be used in both proofs of Theorems 1 and 2. It 

shows that every correspondence Z, defined on a compact set C and satisfying the 
Continuous Inclusion Property, admits an upper hemicontinuous (global) selection 
with nonempty values, that satisfies Walras’ law if Z satisfies Walras’ law.4

Lemma 1  Let C ⊆ ℝ
� be compact and let Z be a correspondence, from C to ℝ� , sat-

isfying the continuous inclusion property for the family (Zi)i∈I.

Then, there exists a correspondence Z̃ from C to ℝ� such that:

•	 � ≠ Z̃(p) ⊆ Z(p) for all p ∈ C;
•	 Z̃ is upper hemicontinuous on C;
•	 Let P be a nondegenerate, closed convex cone of vertex 0, and let Z satisfy the 

assumption of Theorem 1 with C = co [P ∩ S] (resp. Theorem 2 with C = P ∩ S ). 
Then Z̃ satisfies Walras’ law on P ∩ S.

•	 Z̃ has convex, compact values if Z has convex, compact values.

4  The first idea to get a global selection is to define Z̄ as follows: Z̄(p) ∶= ∪{i∈I∶p∈Oi}
Zi(p) . However, the 

correspondence Z̄ may not be upper hemicontinuous.
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Proof  Let C ⊆ ℝ
� be compact and let Z be a correspondence satisfying the contin-

uous inclusion property for the family (Zi)i∈I . Since the family (Oi)i∈I is an open 
covering of the compact set C, there exists a finite set J ⊆ I such that C = ∪i∈JOi . 
Moreover, there exists a closed refinement (Ci)i∈J of the covering (Oi)i∈J , that is, for 
all i ∈ J , Ci ⊆ Oi , Ci is closed and C = ∪i∈JCi . See Lemma 1 of Michael (1953).

We define the correspondences Z̃i ( i ∈ J ) and Z̃ , from C to ℝ� , by

•	 Clearly, Z̃(p) ⊆ Z(p) for all p ∈ C . We now prove that Z̃ has nonempty val-
ues. Indeed, let p ∈ C = ∪i∈JCi . Then p ∈ Ci ⊆ Oi for some i ∈ J . Hence, 
Z̃i(p) ∶= Zi(p) ≠ � since p ∈ Oi.

•	 We now prove that Z̃ is upper hemicontinuous on C. Indeed, each correspond-
ence Z̃i is clearly upper hemicontinuous on C since Zi is upper hemicontinuous 
on Oi ⊇ Ci and Ci is closed. Thus, the finite union of such correspondences 
∪i∈JZ̃i(p) is clearly upper hemicontinuous on C.

•	 Assume that Z satisfies Walras’ law for the family (Zi)i∈I , that is 

 We now show that Z̃ satisfies (the standard) Walras’ law. Indeed, let 
p ∈ P ∩ S ⊆ ∪i∈JCi . Then p ∈ Ci ⊆ Oi for some i ∈ J . Hence Z̃i(p) ∶= Zi(p) ≠ � . 
From (W), there exists zi ∈ Zi(p), p ⋅ zi ≤ 0 and 

 This proves that Z̃ satisfies also Walras’ law.
•	 Assume that Z has convex, compact values. We need to modify the corre-

spondence Z̃ and define the correspondence Z̄ , from C to ℝ� by 

We now show that Z̄ satisfies the conclusion of the lemma. First, for all p ∈ C , 
Z̄(p) ∶= co cl ∪i∈J Z̃i(p) ⊆ Z(p) since Z has closed, convex values. Second, Z̄(p) 
is clearly convex and it is compact since it is the convex hull of the compact set 
cl ∪i∈J Z̃i(p) ; note that the latter set is compact since it is contained in Z(p) which 
is compact.

Third, Z̄ is upper hemicontinuous on C since cl Z̃ is upper hemicontinuous (as 
the closure of Z̃ which has been proved to be upper hemicontinuous previously) and 
Z̄ ∶= co cl Z̃ is the convex hull of the upper hemicontinuous correspondence cl Z̃ , 
hence is also upper hemicontinuous.

Finally, Z̄ = co cl Z̃ satisfies Walras’ law since Z̃ satisfies Walras’ law and 
Z̃(p) ⊆ Z̄(p) for all p. 	�  ◻

Z̃i(p) ∶= Zi(p) if p ∈ Ci, and Z̃i(p) = � otherwise,

Z̃(p) ∶= ∪i∈JZ̃i(p) ⊆ Z(p) for p ∈ C.

(W) ∀i ∈ I, ∀p ∈ P ∩ S ∩ Oi, ∃zi ∈ Zi(p), p ⋅ zi ≤ 0.

zi ∈ Zi(p) = Z̃i(p) ⊆ ∪i∈JZ̃i(p) ∶= Z̃(p).

Z̄(p) ∶= co cl ∪i∈J Z̃i(p) = co cl Z̃(p).
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Step 2: Proof of Theorem 1 under strong Walras’ law 
In view of Lemma 1, we can assume that Z is upper hemicontinuous with non-

empty, convex, compact values. The proof below makes the additional assumption 
that Z satisfies the strong Walras’ law, that is

with the above inequality satisfied for all z ∈ Z(p) (instead of some z ∈ Z(p) ). We 
let C ∶= co [P ∩ S]. Then C is clearly convex and compact. It is also nonempty since 
P ≠ {0} . Since Z is upper hemicontinuous with compact values and C is compact, 
the set ∪p∈CZ(p) is compact, hence is contained in some nonempty, convex, compact 
subset K of ℝ� . We consider the correspondence F from C × K to itself defined by

One easily checks that F is an upper hemicontinuous correspondence, from C × K to 
itself, with nonempty, convex, compact values. Thus, from Kakutani’s theorem, the 
correspondence F has a fixed point (p∗, z∗) in C × K , that is

We now show that p∗ ⋅ z∗ ≤ 0. Indeed, if p∗ = 0, this is clearly true. Assume now 
that p∗ ≠ 0 , we claim that p∗∕‖p∗‖ ∈ P ∩ S ; indeed, first p∗∕‖p∗‖ ∈ S and sec-
ond, p∗ ∈ C = co [P ∩ S] ⊆ P (since P is convex), hence p∗∕‖p∗‖ ∈ P (since P 
is a cone). Consequently, from the strong Walras’ law, (p∗∕‖p∗‖) ⋅ z∗ ≤ 0 since 
p∗∕‖p∗‖ ∈ P ∩ S and z∗ ∈ Z(p∗) . Thus, p∗ ⋅ z∗ ≤ 0.

Consequently, from the above fixed-point condition, we deduce that 
q ⋅ z∗ ≤ p∗ ⋅ z∗ ≤ 0 for every q ∈ C . Clearly the inequality still holds for every 
q ∈ P ; indeed, for q ∈ P ⧵ {0} , one has q∕‖q‖ ∈ P ∩ S ⊆ C; thus, (q∕‖q‖) ⋅ z∗ ≤ 0 . 
Hence q ⋅ z∗ ≤ 0 for all q ∈ P . Thus, z∗ ∈ P0 , which ends the proof Theorem 2.

Step 3: Proof of Theorem 1 in the general case
We now assume that Z satisfies Walras’ law (as in Theorem 1) and we approxi-

mate the correspondence Z by a sequence of correspondences Zn satisfying the 
strong version of Walras’ law. Applying Step 2, and going to the limit when n → ∞ , 
will allow us to conclude the proof of Theorem 1.5

We define the correspondences Zn ( n ≥ 2 ), from co [P ∩ S] to ℝ� , by

∀p ∈ P ∩ S, ∀z ∈ Z(p), p ⋅ z ≤ 0,

F(p, z) = {p̄ ∈ C ∣ p̄ ⋅ z ≥ q ⋅ z, ∀q ∈ C} × Z(p).

for all q ∈ C, p∗ ⋅ z∗ ≥ q ⋅ z∗ and z∗ ∈ Z(p∗).

Zn(p) ∶=

⎧
⎪⎨⎪⎩

Z(p) if ‖p‖ < 1 − 1∕n,

co
�
Z(p) ∪

�
z ∈ Z(p∕‖p‖) ∶ p ⋅ z ≤ 0

��
if ‖p‖ = 1 − 1∕n,�

z ∈ Z(p∕‖p‖) ∶ p ⋅ z ≤ 0
�

if 1 − 1∕n < ‖p‖ ≤ 1.

5  Note that this step is not needed in the proof of Theorem 2, which only needs to consider Step 2 with Z 
satisfying the Strong Walras’ law.
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Then, one checks that Zn is upper hemicontinuous with nonempty convex compact 
values and satisfies the strong Walras’ law. Moreover, there exists some convex com-
pact set K such that Zn(p) ⊆ K for all p and all n, since the correspondence Z is 
bounded on the compact set co [P ∩ S].

Thus, from Step 2, there exists (pn, zn) ∈ co [P ∩ S] × K such that 
zn ∈ Zn(pn) ∩ P0 ≠ � . Without any loss of generality, we can assume that 
(pn, zn) → (p∗, z∗) for some (p∗, z∗) ∈ co [P ∩ S] × K.

Clearly, one has z∗ ∈ P0 . We end the proof by showing that z∗ ∈ Z(p∗) . 
Indeed, assume first that ‖p∗‖ = 1 , then for n large enough, pn ≠ 0 and 
zn ∈ Zn(pn) ⊆ co

�
Z(pn) ∪ [Z(pn∕‖pn‖)

�
 ; thus, at the limit, when n → ∞ , z∗ ∈ Z(p∗) . 

Assume now that ‖p∗‖ < 1 . Then, for n large enough, ‖pn‖ < 1 − 1∕n . Thus, 
zn ∈ Zn(pn) = Z(pn) . At the limit when n → ∞ , one gets z∗ ∈ Z(p∗) . 	�  ◻

3.2 � Proof of Theorem 2

Step 1 In order to use a fixed-point theorem on the set P ∩ S , we first prove that 
P ∩ S is a continuous retraction of its convex hull co [P ∩ S] . The proof below will 
also prove that P ∩ S is homeomorphic to a nonempty, convex, compact set.

Lemma 2  Let P ⊆ ℝ
� be a closed, convex, cone with vertex 0, which is not a vec-

tor space. Then there exists a continuous mapping r ∶ co [P ∩ S] → P ∩ S such that 
r(p) = p for all p ∈ P ∩ S.

We prepare the proof with two claims.

Claim 1  There exists e ∈ P ∩ −P0 , ‖e‖ = 1.

Proof  We first prove that riP ∩ −P0 ≠ � , where riP denotes the relative interior of 
the convex set P. Suppose on the contrary that riP ∩ −P0 = � , then we can separate 
the two nonempty convex sets riP and −P0 , that is:

Since riP is a cone, we deduce that � = 0 . Thus, u ⋅ q ≤ � = 0 for all q ∈ riP , hence 
also for all q ∈ cl ri (P) = P since cl ri (P) = clP by Rockafellar (1970) and clP = P 
since P is closed. Thus, u ∈ P0.

Similarly, one has � = 0 since P0 is also a cone. Thus, u ∈ P00 = P from the bipo-
lar theorem (see Rockafellar 1970) since P is a closed convex cone. We have thus 
proved that u ∈ P ∩ P0 . But P ∩ P0 = {0} , hence u = 0 , a contradiction with u ≠ 0.

Thus, we can choose e ∈ riP ∩ −P0 ≠ � and it suffices to show that e ≠ 0 (in 
which case e∕‖e‖ ∈ riP ∩ −P0 which is a cone). Suppose on the contrary that e = 0 , 
then 0 ∈ riP . We now show that P is a vector space. Indeed, since 0 ∈ riP , one 
has 𝜀B∩ < P >⊆ P for some 𝜀 > 0 . Here, < P > denotes the vector space spanned 
by P (which is also the affine space spanned by P since 0 ∈ P ). Thus, for every 
p ∈ P ⧵ {0} one has −𝜀p∕‖p‖ ∈ 𝜀B∩ < P >⊆ P . Hence −p ∈ P since P is a cone. 
Thus P is a vector space, which contradicts the assumption made in the lemma. 	�  ◻

∃u ≠ 0, � ∶= sup{u ⋅ q ∣ q ∈ riP} ≤ � ∶= inf{u ⋅ q� ∣ q� ∈ −P0}.
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Let e be as in Claim 1 and let � ∶ ℝ
�
→ e⟂ be the orthogonal projection map-

ping from ℝ� to e⟂ , that is � is defined by �(x) = x − e (x ⋅ e) for all x. We denote 
by �|P∩S the restriction of � to P ∩ S.

Claim 2  The mapping �|P∩S ∶ P ∩ S → �(P ∩ S) is a homeomorphism and 
�(P ∩ S) = �(co [P ∩ S]) , thus is nonempty, convex, and compact.

Proof  The proof is a consequence of the following claims.

•	 Δ ∶= �(P ∩ S) is nonempty, convex, and compact. Indeed, Δ nonempty since 
the cone P is non-degenerate (recalling that P is not a vector space by assump-
tion). The set Δ is clearly compact since P ∩ S is compact and � is continuous. 
We now show that Δ is convex. Let �i ∈ Δ ( i = 1, 2 ), then �i = �(xi) for some 
xi ∈ P ∩ S ( i = 1, 2 ). Then, for every � ∈ [0, 1] , and every t ≥ 0 one has 

 However, �x1 + (1 − �)x2 + te ∈ P since x1 ∈ P, x2 ∈ P , e ∈ P (from Claim 1) 
and P is a convex cone. We now show that we can choose t ≥ 0 so that 
�x1 + (1 − �)x2 + te ∈ S , that is, satisfying for x ∶= �x1 + (1 − �)x2 : 

 which is possible since the second degree equation in t has always a nonegative 
solution. Consequently, ��1 + (1 − �)�2 ∈ �(P ∩ S) = Δ . Thus Δ is convex.

•	 �(P ∩ S) = �(co [P ∩ S]) . We clearly have 
𝜋(P ∩ S) ⊆ 𝜋(co [P ∩ S]) = co𝜋(P ∩ S) since � is linear. But 
co𝜋(P ∩ S) ⊆ 𝜋(P ∩ S) , since we have proved previously that �(P ∩ S) is con-
vex. Thus, �(P ∩ S) = �(co [P ∩ S]).

•	 �|P∩S ∶ P ∩ S → ℝ
� is one-to-one. Indeed, let x1, x2 in P ∩ S such that 

�(x1) = �(x2) . Then, 0 = �(x1) − �(x2) = �(x1 − x2) , which implies that 
x1 − x2 = te for some t ∈ ℝ . Thus 1 = ‖x1‖2 = ‖x2 + te‖2 = 1 + 2tx2 ⋅ e + t2 . 
Hence, t = 0 or t = −2x2 ⋅ e . In the latter case, we get 
x1 ⋅ e = (x2 + te) ⋅ e = −x2 ⋅ e. Recalling that −e ∈ P0 and x1, x2 belong to P, we 
deduce that t = −2x2 ⋅ e = 2x1 ⋅ e ∈ (−ℝ+) ∩ℝ+ = {0}. Consequently, x1 = x2 . 
This proves that the mapping �|P∩S is one-to-one.

•	 � ∶= �|P∩S ∶ P ∩ S → �(P ∩ S) is a homeomorphism. Clearly, the mapping � 
is continuous (since � is continuous), onto, and one-to-one from above. From 
the compactness of P ∩ S , one deduces that the inverse �−1 of � is continuous. 
Hence, � is a homeomorphism..

	�  ◻

��1 + (1 − �)�2 = ��(x1) + (1 − �)�(x2) = �(�x1 + (1 − �)x2)

= �(�x1 + (1 − �)x2 + te).

1 = ‖x + te‖2 = ‖x‖2 + 2tx ⋅ e + t2,
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Proof of Lemma 2  We define r ∶= (�|P∩S)−1◦�|co[P∩S] , that is

Then r is well defined since, by Claim 2, �(co [P ∩ S]) = �(P ∩ S) and the mapping 
�|P∩S ∶ P ∩ S → �(P ∩ S) is a homeomorphism. Thus r is clearly continuous and, 
for all p ∈ P ∩ S , r(p) = p 	� ◻

Step 2: Proof of Theorem 2. In view of Lemma 1, we can assume that Z is upper 
hemicontinuous, from P ∩ S to ℝ� , with nonempty, convex, compact values. Let 
r ∶ co [P ∩ S] → P ∩ S be the continuous retraction defined by Lemma 2. We define 
the correspondence Ẑ , from co [P ∩ S] to ℝ� by

Since Z satisfies Walras’ law, the correspondence Ẑ is nonempty valued and sat-
isfies the strong Walras’ law. Moreover, Ẑ is clearly upper hemicontinuous with 
compact convex values. Thus, from Theorem  16 we deduce the existence of 
p̄ ∈ co [P ∩ S] such that Ẑ(p̄) ∩ P0 ≠ � . Taking p∗ ∶= r(p̄) ∈ P ∩ S , we have 
� ≠ Ẑ(p̄) ∩ P0 ⊆ Z(p∗) ∩ P0 . 	�  ◻

4 � Concluding remarks

The fundamental result by Debreu (1956), Gale (1955), and Nikaido (1956), had a 
revival of interest after the fundamental work by Dasgupta and Maskin (1986), Reny 
(1999), and Reny (2016) on the existence of equilibria in games with discontinu-
ous payoffs. He and Yannelis (2017) provide an extensive study of such existence 
results together with a generalization of the Gale–Nikaido–Debreu’s lemma for a 
class of correspondences satisfying the Continuous Inclusion Property, and we have 
borrowed this notion in this paper. Finally, Maskin and Roberts (2008) and Tian 
(2016) provide also extensions of the Gale–Nikaido–Debreu’s lemma but for classes 
of continuous and discontinuous correspondences that are not directly comparable 
to the one considered here.

In infinite dimensional spaces, Aliprantis and Brown (1983), Podczeck (1997), 
Yannelis (1985) have stressed the importance of considering the (weak) version of 
Walras’ law we consider in our paper:

instead of the standard and stronger version considered by Gale (1955), Nikaido 
(1956), and Debreu (1956):

r ∶ co [P ∩ S]
�|co[P∩S]
�������������������������������→ �(co [P ∩ S]) = �(P ∩ S)

(�|P∩S)−1
����������������������������������→ P ∩ S.

Ẑ(p) ∶=
{
z ∈ Z(r(p)) ∶ r(p) ⋅ z ≤ 0

}
.

∀p ∈ P ∩ S, ∃z ∈ Z(p), p ⋅ z ≤ 0,

6  In fact, at this stage, we only need Theorem 1 with strong Walras’ law, as proved in Step 2 of the proof 
of Theorem 1.
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We have seen in the proof of Theorem 1, that considering the weak version of Wal-
ras’ law required a specific argument provided in Step 3. This is not the case for 
Theorem 2, and the following remark shows that the two formulations of Theorem 2, 
with the weak and the strong version of Walras’ law are equivalent, at least with a 
finite dimensional commodity space.

Remark 1  In finite dimensional spaces, the formulations of Theorem 2, with the weak 
and the strong version of Walras’ law are equivalent. Indeed, if Z satisfies the weak 
Walras’ law, we can define the correspondence Z̃ , by Z̃(p) ∶= {z ∈ Z(p) ∶ p ⋅ z ≤ 0} 
and one checks that Z̃ satisfies the strong Walras’ law. Moreover, whenever Z is 
upper hemicontinuity with nonempty convex compact values, Z̃ satisfies the same 
property, using the joint continuity of the mapping (z, p) → p ⋅ z . Note however that 
this latter property may not hold in infinite dimensional spaces, hence the impor-
tance of considering the weak version of Walras’ law. 	�  ◻

The proof of Theorem 1 relies on Kakutani’s theorem and the following remark 
recalls (the known result) that, in fact, Kakutani’s theorem is also a direct conse-
quence of Theorem 1.

Remark 2  One easily deduces Kakutani’s theorem from Theorem  1 as follows. 
Let F be an upper hemicontinuous correspondence, from B to B, with nonempty, 
convex, compact values. Let P ∶= ℝ

� and let Z be the correspondence defined by 
Z(p) = F(p) − {p} . If p ∈ S , then for all z ∈ Z(p) , y ∶= z + p ∈ F(p) ⊆ B . Thus, 
p ⋅ z = p ⋅ y − 1 and p ⋅ y ≤ ‖p‖‖y‖ ≤ 1 . Consequently, p ⋅ z ≤ 0 , which proves that 
Z satisfies (the strong) Walras’ law. Hence, Z satisfies the assumptions of Theo-
rem  1. Thus, there exists p∗ ∈ B such that � ≠ Z(p∗) ∩ P0 = Z(p∗) ∩ {0} since 
P0 = (ℝ�)0 = {0} . Hence, 0 ∈ Z(p∗) and p∗ ∈ F(p∗) . 	� ◻
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