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Abstract
This paper proposes a semi-uniform payment rule for selling multiple homogeneous
objects. Under the proposed auction, all bidders pay a uniform price equal to the
highest losing bid, except the bidder with the highest losing bid who, under some
circumstances, pays the second highest losing bid.We show that bidders in this auction
face an incentive, on the margin, to increase their bids vis-a-vis their bids in a uniform-
price auction. This incentive is sufficient to eliminate the zero revenue equilibrium that
has been identified in the multiple-object, uniform-price auction literature.
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JEL Classification: D44 · D82 · L10

1 Introduction

Uniform-price auctions are widely used in the allocation of multiple objects such as
treasury bills, emissions permits, and wholesale electricity. Under a uniform-price
auction, all successful bidders pay the same price. While our understanding of equi-
librium behavior in uniform-price auctions has evolved considerably since Vickrey’s
original work, there are still important concerns regarding the existence of undesirable
equilibria in these auctions.

For instance, Back and Zender (1993) and Menezes (1995) show that there exist
equilibria of uniform-price auctionswhere the auction price does not exceed the seller’s
valuation. In the special casewhere the seller’s value is equal to zero, thismeans that the
seller’s expected revenue is equal to zero.Whenbidders seekmore than one object, they
can impact the uniform price in the auction by bidding less than their value for some
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of the units. This demand reduction effect, which results in a zero-price equilibrium
in extreme cases, is a well-known disadvantage of uniform-price auctions. 1 However,
governments often favor uniform-price auctions in solving allocation problems as
these auctions have the clear advantage of yielding identical prices in cases where
price discrimination is not desirable.

Khezr and Menezes (2017) provided a new characterization of equilibrium bidding
behavior in amulti-unit uniform-price auctionwhen bidders demand up to two objects.
Under such an equilibrium, bidders with values below a certain threshold bid zero
for the second unit, which can result in zero revenue for the seller. Their analysis
corrected and completed that of Noussair (1995) and Engelbrecht-Wiggans and Kahn
(1998). Despite over 3 decades of research on multi-unit outcomes, there still remains
considerable interest on the implementation of uniform-price outcomes (Kagal and
Levin 2009).

In this paper, we provide an alternative payment rule that, in most instances, retains
the advantage of the uniform-price auction, but breaks down the zero-price equilib-
rium. In the next section, we provide an example that spells out the intuition for
such result. Section 3 then sets up the model, characterizes equilibrium behavior in
the semi-uniform auction, and shows that under certain conditions; this auction format
dominates the standard uniform-price auction in terms of the seller’s expected revenue
and efficiency. The conclusion is drawn in Sect. 4.

2 An illustrative example

Suppose that a seller has Q = 4 identical units of a good for sale to N = 4 buyers,
who each demands two units. Bidders have privates values for each of the units, which
are drawn independently and with equal probability from the set {1, 2, . . . , 10}. First,
suppose that the objects are sold through a sealed-bid uniform-price auction where
each bidder submits two bids, one for each unit, the bidders with the highest four bids
are allocated the objects, and all winners pay a uniform price equal to the fifth highest
bid.

In this auction, it is a weakly dominant strategy for bidders to submit a bid equal to
their value for their first unit. The reason for this is analogous to why bidders bid their
valuation in a single object Vickrey auction. By bidding their value for the first unit,
they will secure an object if their value is one of the highest four values. Therefore,
lowering or increasing their bid for the first unit does not change the probability of
winning. However, there are incentives to reduce the second bid below valuations. As
Engelbrecht-Wiggans and Kahn (1998) and Khezr and Menezes (2017) show, there is
an equilibrium where buyers with values below a certain threshold, bid zero for their
second unit.

Suppose that the realized values are as shown in Table 1, where we denote the
threshold value, in the context of this example, by v∗. Bidders’ values for their second
units are denoted by λi , i = 1, . . . , 4, and we assume that λi ≤ v∗ for every i . In
this case, there is an equilibrium where all bidders bid zero for their second unit, and

1 Back and Zender (1993).
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Table 1 An example Bidder 1 Bidder 2 Bidder 3 Bidder 4

(v1, v2) (5, λ1) (10, λ2) (1, λ3) (9, λ4)

(b1, b2) (5, 0) (10, 0) (1, 0) (9, 0)

Payoffs 5 10 1 9

the auction price is also equal to zero, as illustrated in Table 1. The existence of this
type of equilibrium is shown in Engelbrecht-Wiggans and Kahn (1998) and Khezr and
Menezes (2017).
The semi-uniform payment rule

Now, consider the following alternative payment rule. The bidders with the four
highest bids still win. However, the amount which they pay will depend upon whether
or not they have also placed the fifth highest bid. A bidder who has placed one of the
four highest bids, but not the fifth highest bid, will win one object and pays the fifth
highest bid. A bidder with one of the four highest bids, who has also placed the fifth
highest bid, will pay the sixth highest bid on their first unit.

In other words, under this semi-uniform payment rule, all successful bidders pay
the highest losing bid except the bidder who placed it. That particular bidder pays the
second highest losing bid, which cannot be her own bid when she had one of the four
highest bids and have secured an object. This is because bidders demand at most two
units. Therefore, if a bidder wins one unit, and she also has the highest losing bid, then
the second highest losing bid cannot be hers.2

We can readily check that this semi-uniform payment rule eliminates the zero-price
equilibrium. For instance, in our example, Bidder 2 now has an incentive to bid above
zero for her second unit. If all other bidders bid zero for the second unit, then Bidder
2 can increase the likelihood of displacing the bidder with the fourth highest bid by
raising her bid for the second unit, and in doing so, she does not increase the price it
may pay for her first unit. Given that values are private information, at least in some
cases where the fourth highest bid is low enough, Bidder 2 could win the second unit
and increase her overall payoff.

In contrast, Bidder 2 faces a risk of raising her bid for a second unit in a standard
uniform-price auction, as the price she pays for the first unit could rise, while she may
still not win a second item. However, in a semi-uniform case, her bid cannot increase
the price on the first unit without winning a second unit.

In the next section, we formally show that the intuition illustrated in the example
above holds true, and that a semi-uniform payment rule can potentially eliminate the
zero-price equilibrium of uniform-price auctions.

2 In general, with multiple unit demand, this payment rule can be generalized to the highest losing bid
among all bidders except the bidder with the marginal bid.
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3 Equilibrium of the semi-uniform-price auction

Suppose that there are Q ≥ 2 identical objects available for sale to N ≥ 2 potential
buyers, and each buyer demands two objects. Demand exceeds supply as Q < 2N .
Bidder i’s valuation for the two units are private information and given by a vector
vi = (vi

1, v
i
2).

The vectors vi = (vi
1, v

i
2) are distributed independently and identically according to

the distribution function F(., .) on the set V = {v ∈ [0, v̄]2 : vi
1 ≥ vi

2}, with positive
density f < ∞. That is, we assume that bidders’ valuations exhibit diminishing
marginal values. Each bidder submits two bids and the bidders with the highest Q
bids win. Under a uniform-price payment rule, winners pay the Q + 1 highest bid. In
contrast, under the semi-uniform payment rule, winners pay the Q + 1 highest bid,
except the bidder who placed that bid. This bidder would pay the highest losing bid
which is not placed by her; namely, she would pay the Q + 2 highest bid if she had a
bid among the Q highest bids. Otherwise, she would not be allocated an object, and
the outcome of the auction would be the same as in a standard uniform-price auction.

Suppose that each bidder i submits a vector of bids bi = (bi
1, bi

2) with bi
1 ≥ bi

2. It
is straightforward to check that bidders will not bid more than their values for each
unit.3 Let vector c−i = (c−i

1 , c−i
2 ) denote the Q − 1 and the Q highest bids faced by

bidder i . These bids determine how many units, if any, bidder i wins. Assume further
that c−i is distributed according to a distribution function H(.) with density h.

Consider any candidate symmetric equilibrium β = (β1(·), β2(·)), where β1(·) and
β2(·) are increasing in bidders’ valuations for their first and second units, respectively.
Assume that every bidder follows β except for bidder i .

If bidder i bids bi = (bi
1, bi

2), then her expected payoff under the uniform payment
rule is equal to:

�u(v,bi) =
∫

c−i
1 <bi

2

(vi
1 + vi

2 − 2c−i
1 )h(c−i)dc−i

+
∫

c−i
2 <bi

1,c
−i
1 >bi

2

(vi
1 − max{bi

2, c−i
2 })h(c−i)dc−i. (1)

For the semi-uniform payment rule, the expected payoff is equal to:

�su(v,bi) =
∫

c−i
1 <bi

2

(vi
1 + vi

2 − 2c−i
1 )h(c−i)dc−i

+
∫

c−i
2 <bi

1,c
−i
1 >bi

2

(vi
1 − c−i

2 )h(c−i)dc−i. (2)

The first integral is the same under both payment rules, and it refers to the case where
bidder i’s lowest bid (and, therefore her highest bid as well) is larger than the Q − 1
highest bid among her competitors, c−i

1 . In this case, bidder i is guaranteed to win two

3 See Krishna (2002) pages 190–192.
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units and pays c−i
1 , which, in this instance, is equal to the Q + 1 highest bid among

all bidders including bidder i .
The second integral represents the case in which bidder i only wins one unit. This

happens under both payment rules when bidder i’s highest bid is higher than c−i
2 ,

and her lowest bid is lower than c−i
1 . However, under a uniform payment rule, bidder

i pays in this instance the maximum of her second bid and c−i
2 , whereas under the

semi-uniform payment rule, her payment is equal to c−i
2 .

We denote by Ht
1 and Ht

2 the marginal distributions of random variables C−i
1 and

C−i
2 , respectively, for mechanism t . Also denote ht

1 and ht
2 as their densities.4 We

can express the probability of the various possible events in terms of H1 and H2 as
follows: ⎧⎪⎨

⎪⎩
H1(b2) Prob[winning two units]
H2(b1) Prob[winning at least one unit]
H2(b1) − H1(b2) Prob[winning exactly one unit].

(3)

Using (3), we can rewrite i’s expected payoff for the semi-uniform case, when her bid
vector is bi and her values given by vector v, as follows:

�su(v,bi) = H1(b2)(v
i
1 + vi

2) − 2
∫ b2

0
c−i
1 h1(c

−i
1 )dc−i

1

+ (H2(b1) − H1(b2))v
i
1 −

∫ b1

b2
c−i
2 h2(c

−i
2 )dc−i

2

−
∫ b2

0

∫ v̄

b2
c−i
2 h1(c

−i
1 )h2(c

−i
2 )dc−i

1 dc−i
2 . (4)

The first and second terms of (4) represent is expected value of winning two objects
and paying c−i

1 for each of the objects. The third term represents i’s expected value
of winning exactly one object, and the fourth and fifth terms represent the expected
payment of bidder i when she wins exactly one unit and pays c−i

2 . Although the
payment is always c−i

2 when she wins one unit, there are two possible events. The first
event corresponds to the case where her second bid is lower than the two competing
bids (fourth term), and the other event corresponds to the case where her second bid
is between the two competing bids (fifth term). We can rewrite the terms in (4) as
follows:

�su(v,bi) = H1(b2)(v
i
1 + vi

2) − 2
∫ b2

0
c−i
1 h1(c

−i
1 )dc−i

1

+ (H2(b1) − H1(b2))v
i
1 −

∫ b2

0

(∫ v̄

b2
h1(c

−i
1 )dc−i

1

)
c−i
2 h2(c

−i
2 )dc−i

2

4 For simplicity, we have omitted the superscript t inwhat follows. However, we note that these distributions
could be different for each of the two mechanisms.
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= H1(b2)(v
i
1 + vi

2) − 2
∫ b2

0
c−i
1 h1(c

−i
1 )dc−i

1

+ (H2(b1) − H1(b2))v
i
1 −

∫ b2

0

(
1 − H1(b2)

)
c−i
2 h2(c

−i
2 )dc−i

2 . (5)

Differentiating (5) with respect to b1 and b2 yields the following:

∂�su

∂b1
= h2(b1)v

i
1 − b1h2(b1) (6)

∂�su

∂b2
= h1(b2)(v

i
1 + vi

2) − 2b2h1(b2) − h1(b2)v
i
1 + h1(b2)E[c−i

2 |c−i
2 < b2]

+(1 − H1(b2))b2h2(b2). (7)

By setting (6) and (7) to zero, we have the following:

bi
1 = vi

1 (8)

and

bi
2 = vi

2

2 − �
+ c̃−i

2

2 − �
, (9)

where � = (1 − H1(b2))
h2(b2)
h1(b2)

, and c̃−i
2 = E[c−i

2 |c−i
2 < b2].

It is straightforward to check that 0 ≤ � ≤ 1 given that H1(.) stochastically dom-
inates H2(.). We can now characterize the symmetric equilibrium bidding behavior,
which is described in the following proposition.

Proposition 1 There is a symmetric bidding function for the semi-uniform payment
rule in which each bidder’s bid for the first unit is equal to their value for the first unit
and their bid for the second unit is given by the following:

bi
2 = vi

2

2 − �
+ c̃−i

2

2 − �

with 0 ≤ � ≤ 1.

The bidding behavior in a standard uniform-price auction in a similar set-up is
studied by Noussair (1995), Engelbrecht-Wiggans and Kahn (1998), and Khezr and
Menezes (2017). They focus on a symmetric undominated set of equilibria and charac-
terize the bidding functions. In what follows, we compare the revenue generated under
the twopayments rules in the respective undominated symmetric bidding strategy equi-
libria. To accomplish this, we first rewrite the expected payoff from the uniform-price
auction as follows:
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�u(v,bi) = H1(b2)(v
i
1 + vi

2) − 2
∫ b2

0
c−i
1 h1(c

−i
1 )dc−i

1 + (H2(b1) − H1(b2))v
i
1

− (H2(b2) − H1(b2))b2 −
∫ b1

b2
c−i
2 h2(c

−i
2 )dc−i

2 . (10)

The first-order condition is given by the following:

∂�u

∂b2
= vi

2h1(b2) − b2h1(b2) − H2(b2) + H1(b2) = 0, (11)

which yields the following equilibrium bidding strategy for the second unit (whereas
bidders bid their valuations for the first unit):

bu
2(v

i
2) = vi

2 − H2(bu
2) − H1(bu

2)

h1(bu
2)

. (12)

As Engelbrecht-Wiggans and Kahn (1998) and Khezr and Menezes (2017) show that
the equilibrium bidding is either given by the above equation or it is equal to zero.
Therefore, the bid for the second unit is either increasing in the value for the second
unit or equal to zero. Engelbrecht-Wiggans and Kahn (1998) and Khezr and Menezes
(2017) further characterize the conditions under which every bidder would bid zero
for the second unit, yielding zero revenue for the seller. As it is clear from the analysis
above, and as summarized in the followingCorollary, there is no zero-price equilibrium
under a semi-uniform auction.

Corollary 1 Unlike the uniform-price auction, the semi-uniform auction does not result
in a zero-price equilibrium.

Next, as in the aforementioned literature, we focus on the relationship between the
number of bidders and objects for sale. First, we assume that the number of bidders
is at least as large as the number of units. As Engelbrecht-Wiggans and Kahn (1998),
and Khezr and Menezes (2017) show, in this case, there exists a threshold value v∗,
such that bidders with a value lower than v∗ bid zero for the second unit. Hereafter,
we refer to v∗ as this threshold value.

Definition 1 Amulti-unit auction is efficient as long as the items are allocated to those
bidders who have the highest values for them.

The above definition suggests that as long the items are allocated to those who
place the highest value for them, the auction is efficient. In other words, in an efficient
auction, we would not observe a case where a bidder with a lower value receives an
object while there is a bidder with a higher value who still has an unsatisfied demand.
In the next definition, we clarify the dominance in terms of efficiency.

Definition 2 Amulti-unit auction is more efficient in a second-best allocation, as long
as there is a higher chance that a bidder with a higher value receives an item.
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Given the above two definitions, the next Proposition shows the conditions under
which the semi-uniform-price auction dominates the uniform-price auction in terms
of revenue and efficiency.

Proposition 2 If the number of bidders is at least as large as the number of units, and
v∗ = v̄, then the semi-uniform-price auction dominates the uniform-price auction in
terms of both the expected revenue and efficiency.

Proposition 2 show when the number of units is relatively smaller compared to the
number of bidders, the semi-uniform payment rule performs better. In this case, it is
more likely that the zero-price equilibrium with uniform payment rule, where bidders
bid zero for the second unit, will eventuate.

Note that as suggested by (Engelbrecht-Wiggans and Kahn 1998) in their Corollary
4.3, the condition v∗ = v̄ would consider a case where all bidders bid zero for the
second unit. This situation happens when the hazard rate function of values for each
bidder is sufficiently low.

4 Conclusion

This paper shows that an alternative payment rule, where the bidder with the marginal
bid can potentially pay a different price from other successful bidders, breaks down
the zero-price equilibrium of the uniform-price auction. More precisely, we pro-
vide sufficient conditions under which the semi-uniform-price auction dominates the
uniform-price auction in expected revenue and efficiency.

5 Appendix

Proof of Proposition 1 First, rewrite Eq. (7) as follows:

∂�su

∂b2
= h1(b2)

(
vi
2 − 2b2 + c̃i

2

) + b2h1(b2)�. (13)

For simplicity, we omit the term i in what follows. Differentiating with respect to
b2 gives the second-order condition as follows:

∂2�su

∂b22
= h1(b2)

( − 2 + c̃′
2

) + h′
1(b2)

(
v2 − 2b + c̃2

) + h1(b2)� + b2h′
1(b2)�

+b2h1(b2)�
′. (14)

After some manipulations, we have the following:

∂2�su

∂b22
= h1(b2)

( − 2 + c̃′
2 + � + b2�

′) + h′
1(b2)

(
v2 − 2b + c̃2 + b2�

)
. (15)
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To ensure that the bidding function for the second unit is a local maxima, we need
to show that the above expression is negative in the neighborhood of the optimal bid
given by the FOC. The first part of (15) is strictly negative, because c̃′

2 < 0,� ≤ 1, and
�′ < 0.Note that it is straightforward to check that�′ < 0 given that H1 stochastically
dominates H2. The second part of (15) is equal to zero in the neighborhood of b∗

2. It
follows that b∗

2 is a local maxima. �	
Proof of Proposition 2 Denote by p∗ the equilibrium clearing price in the uniform-
price auction. According to Engelbrecht-Wiggans and Kahn (1998) and Khezr and
Menezes (2017), when the number of bidders is at least as large as the number of
units, that is, N ≥ Q, all bidders bid zero for the second unit in the uniform-price
auction, irrespective of their values. Denote by v1(Q+1) the Q + 1th highest value for
the first unit. Since N ≥ Q and it is a weakly dominant strategy for bidders to bid their
value for the firs unit, then in the uniform-price auction, p∗ is either equal to zero or
equal to the v1(Q+1). In fact, in the case where the number of bidders is exactly equal
to the number of units, the Qth highest bid is equal to the lowest value for the first
unit among the bidders. Therefore, the clearing price, which is equal to the Q + 1th
highest bid, becomes zero: all bidders bid zero for the second unit, so the aggregation
of bids results in Q positive bids which are the values for the first units and Q zero
bids, which are bids for the second unit. Further note that when N > Q, then the
aggregation of bids results in N positive bids where the Q + 1th highest bid among
them sets the clearing price.

In the semi-uniform-price auction, there are two possibilities. Define ṽ2 as the
highest realized value for the second unit among bidders. First, if b2(ṽ) is larger than
v1(Q+1), then the semi-uniform-price auction results in a higher revenue for sure. To see
this, imagine the worst case scenario where only b2(ṽ) > v1(Q+1) and all other values
for the second units are such that b2(v) < v1(Q+1). In this case, the auction clearing
price is greater than v1(Q+1) and the bidder who has ṽ2 pays v1(Q+1). Therefore, the
overall auction revenue is strictly higher than the one for the uniform-price auction.
Second, is when b2(ṽ) is smaller than v1(Q+1). In this case, the two auctions become
equivalent. Thus, the semi-uniform-price auction has a higher expected payoff than
the uniform-price auction.

The proof for efficiency follows a similar argument. A mechanism is more efficient
as long as it allocates the objects to bidders with higher values. Of course, here, we are
analyzing a second-best case and neither of the two mechanisms are fully efficient,
that is, always allocate the objects to the buyers with the highest values.

In the first case identified above, the semi-uniform auction ismore efficient, because
there is a higher chance that it allocates objects to bidders with higher values. This is
because in the uniform-price auction, all bidders bid zero for the second unit, and if,
for instance, there exist a bidder, such that her value for the second unit is larger than
at least the value of some bidders for the first unit, she will never receive a second
object. However, given that b2 > 0 for the same bidder in the semi-uniform-price
auction, there is a positive probability that this bidder receives a second unit. In the
second case, where N > Q, both auctions allocate the object in the same way. Thus,
we can conclude that the semi-uniform-price auction would allocate the objects more
efficiently compared to the uniform-price auction. �	
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