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Abstract
Ania (J Econ Behav Organ 65:472–488, 2008) shows that in the class of symmetric
games with weak payoff externalities, symmetric Nash equilibria are equivalent to
symmetric evolutionary equilibria (Schaffer in J Econ Behav Organ 12:29–45, 1989).
We introduce a notion of a game with partial weak payoff externalities. We show that
the class of games with partial weak payoff externalities includes most of previously
known classes of games in which the equivalence prevails. We also establish a number
of pure strategy Nash equilibrium existence results for a game with weak payoff
externalities, and for a class of games that includes games with partial weak payoff
externalities. The results include, in particular, the existence of pure strategy Nash
equilibrium in some finite games.

Keywords Existence of equilibrium · Evolutionary equilibrium · Weak payoff
externalities · Weakly unilaterally competitive games · Weakly competitive games ·
Potential games

JEL Classification C72 (Noncooperative games) · C73 (Evolutionary games)

The authors thank valuable comments from an anonymous referee and an associate editor. An earlier
version of this paper was presented at UECE Lisbon Meetings in Game Theory and Applications 2016.
This work is supported by JSPS Grant-in-Aid for Scientific Research (C) (KAKENHI) 25380233,
16K0355301, and 17K03631.

B Takuya Iimura
t.iimura@tmu.ac.jp

Toshimasa Maruta
maruta.toshimasa@nihon-u.ac.jp

Takahiro Watanabe
contact_nabe10@nabenavi.net

1 Faculty of Economics and Business Administration, Tokyo Metropolitan University, Tokyo
192-0397, Japan

2 College of Economics, Nihon University, Tokyo 101-8360, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40505-018-0157-4&domain=pdf
http://orcid.org/0000-0003-0299-8890


246 T. Iimura et al.

1 Introduction

The notion of a gamewithweak payoff externalities (henceforth,WPE)was introduced
by Ania (2008) as an n-person symmetric game in which “the effect of any unilateral
deviation on the deviator’s payoff is always greater than the effect on the opponents’
payoffs” (Ania 2008, p. 478). She showed that in a WPE game or in a constant-sum
game, a symmetric Nash equilibrium (SNE) is equivalent to a symmetric evolutionary
equilibrium (SEE, Schaffer 1989). Hehenkamp et al. (2010) subsequently showed that
either WPE or the “weak competitiveness” at symmetric profiles is sufficient for the
equivalence. Recently, Iimura and Watanabe (2016) pointed out that the equivalence
holds in any symmetric game that is weakly unilaterally competitive (Kats and Thisse
1992). In these games, a symmetric profile is a Nash equilibrium if and only if it is
stable under the evolutionary pressure driven by the relative payoff maximization.

In this paper, we offer an extensive analysis of the class of games in which the Nash-
Evolutionary equilibrium equivalence holds. First, by proposing a single condition,
we unify most of equilibrium equivalence results obtained thus far. A symmetric game
is a game with partial weak payoff externalities if in any unilateral deviation in which
the deviator’s payoff increases (decreases, respectively), the payoff increase (decrease,
respectively) of the deviator is greater than that of any other player (see Sect. 3 for
the precise definition). We show that the class of games with partial WPE strictly
extends many of previously known “competitive” games in which the equilibrium
equivalence prevails. We interpret this result as a further extension of the proposition
that in a competitive game, own-payoff maximization is equivalent to relative payoff
maximization.

Second, we investigate the existence of pure strategy SNE in partial WPE games.
We start by showing that in this class of games, a strategy constitutes an SNE if and
only if it is a maximal element of a binary relation of strategies defined by profitable
deviations at symmetric profiles. It turns out that WPE games (to be precise, a class
of games that slightly extends WPE games in the sense of Ania) and partial WPE
games call for different treatments. We show that in a WPE game, the binary relation
is transitive. This result immediately leads to existence of SNE in a WPE game in
which a transitive relation of strategies is guaranteed to have a maximal element, e.g.,
a finiteWPE game.1 For games with partialWPE, in contrast, we adopt a different line
of reasoning. For an n-person symmetric (more generally, quasi-symmetric) game, we
begin by associating it with a two-person symmetric game, which we call the two-
person reduction.2 It has the critical property that a strategy forms an SNE in the
two-person reduction if and only if the strategy does so in the original n-person game.
Moreover, it turns out that the two-person reduction of an n-person partial WPE game
belongs to a special class of two-person games,whichwe have called pairwise solvable
(PS) games (Iimura et al. 2016). Consequently, we are able to establish equilibrium
existence in n-person partial WPE games by deriving new existence results for two-
person PS games.

1 A game is finite if there are only finitely many strategies. We always assume that the number of players
is finite.
2 Moulin (1986, pp. 115–116) is an early example of such a treatment.
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To be specific, we establish two types of existence results for two-person PS games.
First, we focus on games in which the strategy set is partially ordered. We show that
a two-person PS game has an SNE whenever the strategy set has the least upper
bound property, the upper contour set at any symmetric profile is a closed interval,
and some of which are bounded. It follows that if the game is finite then it has an
SNE whenever the strategy set is a lattice and the upper contour set at any symmetric
profile is an interval. This result extends one in Iimura and Watanabe (2016), which
showed, in an attempt to generalize a result by Duersch et al. (2012), the existence
of pure strategy SNE in an n-person symmetric weakly unilaterally competitive finite
game that satisfies a quasiconcavity condition. The results for finite games merit a
special attention since there are few results in the literature that ensure the existence
of pure strategy Nash equilibrium in finite games. Second, invoking a generaliza-
tion of Knaster–Kuratowski–Mazurkiewicz lemma by Fan (1961), we derive an SNE
existence result for a two-person PS game in which the strategy set is a subset of a
topological vector space. Note that each existence result for two-person PS games
immediately implies corresponding result for n-person partial WPE games through
PS two-person reduction.

The rest of the paper is organized as follows. In Sect. 2, we introduce notations
and definitions. In Sect. 3, we define a game with partial WPE, and show the equiva-
lence of SNE and SEE in such a game. In Sect. 4, we establish equilibrium existence
results for n-person WPE games and two-person PS games, from the latter of which
corresponding results for n-person partial WPE games follow. In Sect. 5, we sug-
gest an interpretation of the equivalence result, and discuss the nature of evolutionary
equilibria in partial WPE games in a dynamic context.

2 Preliminaries

Notations and equilibrium concepts

An n-person strategic game is an n-tuple of pairs (Si , ui ), i = 1, . . . , n, where Si is
player i’s strategy set and ui : S1 × · · · × Sn → R his payoff function. It is symmetric
if Si = S j for all i, j ∈ {1, . . . , n}, and for any permutation π on {1, . . . , n}

uπ(i)(s1, . . . , sn) = ui (sπ(1), . . . , sπ(n)) ∀i ∈ {1, . . . , n}

for any s = (s1, . . . , sn) ∈ S1×· · ·×Sn . Such a symmetric n-person game is concisely
described by a pair (Sn, u), where Sn is the n-product of S = S1 and u = u1. We
assume that S has at least two elements. We call the game finite if S is finite.

For i = 1, . . . , n, let πi be the permutation on {1, . . . , n} such that πi (1) = i ,
πi (i) = 1, and πi ( j) = j for every j /∈ {1, i}. With a slight abuse of nota-
tion, let πi (s) = (sπi (1), . . . , sπi (n)) for any s = (s1, . . . , sn) ∈ Sn . Then ui (s) =
u(πi (s)). Denote by xk the k-repetition of x , i.e., xk = x, . . . , x (k times). In
s = (xi−1, y, xn−i ) ∈ Sn , player i chooses y and all the others x . Applying πi

for this s, we have ui (s) = u(y, xn−1), and u j (s) = u(xn−1, y) for every j �= i by
symmetry.
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A strategy profile s ∈ Sn is symmetric if s = (xn) for some x ∈ S. A strategy
profile (xn) is a symmetric Nash equilibrium (SNE) if

u(x, xn−1) ≥ u(y, xn−1) ∀y ∈ S.

A strategy profile (xn) is a weak symmetric evolutionary equilibrium (Schaffer 1989)
if

u(xn−1, y) ≥ u(y, xn−1) ∀y ∈ S.

For simplicity, we call a weak symmetric evolutionary equilibrium a symmetric evolu-
tionary equilibrium (SEE). The definition of an SEE says that if some player changes
his strategy from x to y then his payoff never exceeds the payoff of the opponents.

Weak payoff externalities

Ania (2008) calls a symmetric game (Sn, u) a game with weak payoff externalities if
for any x, y ∈ S such that x �= y and for any ξ ∈ Sn−1

|u(y, ξ) − u(x, ξ)| > |u(πi (y, ξ)) − u(πi (x, ξ))| ∀i �= 1.

Note that if there are distinct x, y ∈ S such that u(x, ξ) = u(y, ξ), i.e., a payoff tie,
then this condition is violated. Thus, a game has WPE in Ania’s sense if and only if
for any x, y ∈ S such that x �= y and for any ξ ∈ Sn−1

u(y, ξ) �= u(x, ξ) and |u(y, ξ) − u(x, ξ)| > |u(πi (y, ξ)) − u(πi (x, ξ))| ∀i �= 1.

Let us modify the definition in the following way.We say that a game (Sn, u), possibly
with payoff ties, has weak payoff externalities if

(WPE0) for any x, y ∈ S and ξ ∈ Sn−1

u(y, ξ) − u(x, ξ) �= 0 ⇒ |u(y, ξ) − u(x, ξ)| > |u(πi (y, ξ)) − u(πi (x, ξ))|
u(y, ξ) − u(x, ξ) = 0 ⇒ u(πi (y, ξ)) − u(πi (x, ξ)) = 0

}

∀i �= 1.

We call (WPE0) the weak-or-zero payoff externality condition.3 Suppose that (xn) is
an SNE and y ∈ S is an alternative best response to (xn−1). If it were the case that
u(y, xn−1) > u(xn−1, y), then (xn) would not be an SEE. The second condition in
(WPE0) excludes this possibility. Note that any game with weak payoff externalities
in the sense of Ania must satisfy (WPE0).

Figure 1 shows two examples of games satisfying (WPE0). Clearly, the game G1
has a dominant strategy SNE (z, z) (in fact, any two-strategy game with WPE has a

3 One might also call this condition weak payoff externalities with TDI (transference of decisionmaker
indifference; Marx and Swinkels 1997).
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x y z
x 0,0 1,2 1,3
y 2,1 3,3 3,3
z 3,1 3,3 3,3

(a) 2-person 3-strategy gameG1

x y z
x 23,23,23 17,30,17 29,11,29
y 30,17,17 24,24,14 16,1,22
z 11,29,29 1,16,22 7,7,18

x

x y z
17,17,30 14,24,24 22,1,16
24,14,24 20,20,20 15,4,15
1,22,16 4,15,15 8,8,9

y

x y z
x 29,29,11 22,16,1 18,7,7
y 16,22,1 15,15,4 9,8,8
z 7,18,7 8,9,8 5,5,5

z

(b) 3-person 3-strategy gameG2

Fig. 1 Examples of games satisfying (WPE0)

dominant strategy SNE; see Lemma 4.1 below). However, this is not always the case.
The three-person game G2 has an SNE that consists of a non-dominant strategy y.

3 Equivalence of SNE and SEE in games with ‘partial’ WPE

Consider the following condition that generalizes (WPE0).

Definition 3.1 A game (Sn, u) has partial weak payoff externalities4 if

(pWPE) for any x, y ∈ S and ξ ∈ {x, y}n−1

u(y, ξ) − u(x, ξ) > 0 �⇒ u(y, ξ) − u(x, ξ) > u(πi (y, ξ)) − u(πi (x, ξ))

u(y, ξ) − u(x, ξ) < 0 �⇒ u(y, ξ) − u(x, ξ) < u(πi (y, ξ)) − u(πi (x, ξ))

u(y, ξ) − u(x, ξ) = 0 �⇒ u(πi (y, ξ)) − u(πi (x, ξ)) = 0

⎫⎪⎬
⎪⎭

∀i �= 1.

Note that (pWPE) requires (WPE0) to hold only for any other player whose payoff
increases (resp. decreases) when the deviator’s payoff increases (resp. decreases), and
not in the whole game but in its two-strategy subgames ({x, y}n, u), where x, y ∈ S,
x �= y, and u is restricted to {x, y}n (note that ξ ∈ {x, y}n−1). Note also that the three
conditions in (pWPE) can be combined into a single bi-conditional:

u(y, ξ) − u(x, ξ) > 0 ⇐⇒ u(y, ξ) − u(x, ξ) > u(πi (y, ξ)) − u(πi (x, ξ)). (1)

Therefore, if ξ = (xn−1), in particular, then u(y, xn−1) − u(xn) > 0 if and only if
u(y, xn−1) > u(xn−1, y), i.e.,

u(y, xn−1) ≤ u(xn) ⇐⇒ u(y, xn−1) ≤ u(xn−1, y).

4 The partial WPE is always with TDI, allowing payoff ties.
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Fig. 2 A game satisfying
(pWPE) but not (WPE0) nor
(WUC)

x y z
x 2,2 0,3 1,−1
y 3,0 1,1 1,−1
z −1,1 −1,1 0,0

Varying y ∈ S, this says that (xn) is an SNE if and only if it is an SEE. We thus have:

Proposition 3.2 For any game with partial WPE, an SNE is equivalent to an SEE.

In what follows, we show how games with partialWPE relate to weakly unilaterally
competitive games and weak competitive games. A game (Sn, u) is said to be weakly
unilaterally competitive (Kats and Thisse 1992)5 if

(WUC) for any x, y ∈ S and ξ ∈ Sn−1

u(y, ξ) > u(x, ξ) �⇒ u(πi (y, ξ)) ≤ u(πi (x, ξ))

u(y, ξ) = u(x, ξ) �⇒ u(πi (y, ξ)) = u(πi (x, ξ))

}
∀i �= 1.

It is straightforward to see that (WUC) implies (pWPE) (but not (WPE0)). Hence,
the class of games with partial WPE includes not only games satisfying (WPE0), but
also games satisfying (WUC).6 These inclusions are strict. For example, the game
of Fig. 2 satisfies (pWPE) but not (WPE0) because u(y, x) − u(x, x) �= 0 and
|u(y, x)− u(x, x)| < |u(x, y)− u(x, x)|; also not (WUC) because u(x, x) > u(z, x)
and u(x, x) > u(x, z).

A game (Sn, u) is said to be weakly competitive (Hehenkamp et al. 2010) if

(WC) for any x, y ∈ S and ξ ∈ Sn−1

u(y, ξ) > u(x, ξ) �⇒ u(πi (y, ξ)) ≤ u(πi (x, ξ))

u(y, ξ) ≤ u(x, ξ) �⇒ u(πi (y, ξ)) ≥ u(πi (x, ξ))

}
∃i �= 1.

Letting ξ = (xn−1), we find that (WC) implies the equivalence of SNE and SEE: for
any y ∈ S, u(y, xn−1) ≤ u(xn) if and only if u(y, xn−1) ≤ u(xn−1, y). Also, it can
be shown that (WUC) implies (WC), and (WC) is equivalent to (WUC) in two-person
games. However, (WC) does not imply (pWPE).7 Hence a game satisfying (WC) need
not be a game with partial WPE. See Fig. 3 for the relationship among the classes of
games.

5 The original definition ofweakly unilaterally competitive game byKats and Thisse (1992) accommodates
asymmetric games.
6 In particular, the class includes two-person symmetric zero-sum games, since any such game satisfies
(WUC).
7 Iimura and Watanabe (2016, Fig. 7) contains a game satisfying (WC) with no SNE that fails to satisfy
(pWPE).
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Fig. 3 Relationship among the classes of games

4 Existence of SNE

4.1 Preliminary considerations

In this section, we show several equilibrium existence results. We start with a result
that forms the basis of the analysis.

Lemma 4.1 Let G = (Sn, u) be a game with partial WPE. Then for all distinct x, y ∈
S,

u(y, ξ) > u(x, ξ) ⇐⇒ u(y, ξ ′) > u(x, ξ ′) ∀ξ, ξ ′ ∈ {x, y}n−1. (D)

Proof By symmetry, we only need to show (D) for ξ, ξ ′ ∈ {x, y}n−1 such that ξ =
(x p, yq) and ξ ′ = (x p−1, yq+1), where q = 0, . . . , n − 2 with p = n − 1 − q (note
that p ≥ 1). Let η = (x p−1, yq), which is void if n = 2. It follows from (1) that

u(y, x, η) > u(x, x, η) ⇐⇒ u(y, x, η) − u(x, x, η) > u(x, y, η) − u(x, x, η),

u(x, y, η) < u(y, y, η) ⇐⇒ u(x, y, η) − u(y, y, η) < u(y, x, η) − u(y, y, η).

The right-hand sides of these equivalences are equivalent. Thusu(y, x, η) > u(x, x, η)

⇐⇒ u(y, y, η) > u(x, y, η). By symmetry u(y, x, η) > u(x, x, η) ⇐⇒
u(y, η, y) > u(x, η, y), which is equivalent to

u(y, x p, yq) > u(x, x p, yq) ⇐⇒ u(y, x p−1, yq+1) > u(x, x p−1, yq+1).

�
Consider a subgame of an n-person game in which strategies are restricted in

{x, y} ⊆ S, x �= y. The condition (D) states that in any such subgame, either y strictly
dominates x , x strictly dominates y, or they are equivalent. Thus any two-strategy
game with partial WPE has a dominant strategy SNE, in particular.

Lemma 4.1 allows us to characterize an SNE in terms of binary relation on the
strategy set S. To do this and for later use, let us review relevant definitions. A binary
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relation � on a set X is asymmetric if x � y implies not y � x for every x, y ∈ X .
For any Y ⊆ X , an element x ∈ Y is �-maximal on Y if there is no y ∈ Y such that
y � x . A binary relation � on X is transitive if x � y and y � z imply x � z for
all x, y, z ∈ X ; acyclic if every finite subset Y ⊆ X has a �-maximal element. A
transitive relation � is acyclic.

Now, define a binary relation �u on the strategy set S as follows. For x, y ∈ S,

x �u y ⇐⇒ u(x, yn−1) > u(y, yn−1). (2)

This relation is asymmetric by (D). Clearly, a symmetric profile (xn) is an SNE if and
only if x ∈ S is �u-maximal on S. Let

U (y) = {z ∈ S | u(z, yn−1) ≥ u(y, yn−1)},

which we call the upper contour set of y at (yn) ∈ Sn . For games satisfying (D), we
have x ∈ U (y) or y ∈ U (x) for any x, y ∈ S, since u(x, yn−1) < u(y, yn−1) ⇐⇒
u(x, xn−1) < u(y, xn−1); symmetric profile (xn) is an SNE if and only if x ∈⋂

y∈S U (y), since u(x, yn−1) ≥ u(y, yn−1) ⇐⇒ u(x, xn−1) ≥ u(y, xn−1). Let
us summarize these observations.

Lemma 4.2 Let G = (Sn, u) be a game with partial WPE. Then �u is asymmetric,
and (xn) is an SNE if and only if x ∈ S is �u-maximal on S. For every x, y ∈ S,
x ∈ U (y) or y ∈ U (x), and (xn) is an SNE if and only if x ∈ ⋂

y∈S U (y).

4.2 Games with weak payoff externalities

In this subsection, we show that a game with WPE has an SNE under a reasonable
condition. In particular, any finite game with WPE must have an SNE. Consider a
WPE game possibly with payoff ties, satisfying (WPE0).

Theorem 4.3 Let G = (Sn, u) be a game with WPE. Then �u is transitive.

Proof We begin with proving claims. For an arbitrary (n − 2)-profile8 ζ ∈ Sn−2,
set ρ(x, y | ζ ) = u(x, y, ζ ) + u(y, x, ζ ) for every x, y ∈ S. Note that ρ(x, y | ζ ) =
ρ(y, x | ζ ).

Claim 1. u(x, z, ζ ) > u(y, z, ζ ) ⇐⇒ ρ(x, z | ζ ) > ρ(y, z | ζ ).

This follows from the conditions in (WPE0).

Claim 2. If u(x, y, ζ ) > u(y, y, ζ ) > u(z, y, ζ ), then there exists w ∈ {x, z} such
that u(x, w, ζ ) > u(y, w, ζ ) > u(z, w, ζ ).

Recall (D) in Lemma 4.1. Then it follows from (WPE0) and u(x, y, ζ ) > u(y, y, ζ )

that u(x, x, ζ ) > u(y, x, ζ ). Similarly, u(y, z, ζ ) > u(z, z, ζ ). By Claim 1,
ρ(x, y | ζ ) > ρ(y, y | ζ ) > ρ(y, z | ζ ). But if it were the case that u(z, x, ζ ) >

u(y, x, ζ ) and u(y, z, ζ ) > u(x, z, ζ ), then Claim 1 would imply that ρ(y, z | ζ ) >

8 If n = 2 then set ζ to be the empty string.
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ρ(z, x | ζ ) > ρ(x, y | ζ ). Therefore either u(y, x, ζ ) > u(z, x, ζ ) or u(x, z, ζ ) >

u(y, z, ζ ).
Now let x �u y and y �u z. Then by (D), u(x, y, yn−2) > u(y, y, yn−2) >

u(z, y, yn−2). By Claim 2, u(x, w, yn−2) > u(y, w, yn−2) > u(z, w, yn−2),
where w ∈ {x, z}. By symmetry of the payoff function, u(x, y, w, yn−3) >

u(y, y, w, yn−3) > u(z, y, w, yn−3). Applying Claim 2 successively, we arrive at
u(x, ξ) > u(y, ξ) > u(z, ξ), where ξ ∈ {x, z}n−1. By (D), x �u z. �

The next lemma is standard.

Lemma 4.4 Let � be a binary relation on a compact topological space X. If � is
acyclic and the set {y ∈ X | x � y} is open for every x ∈ X, then X has a �-maximal
element.

Proof See Walker (1977). �
Proposition 4.5 Let G = (Sn, u) be a game with WPE. If S is a compact topological
space and the upper contour set U (x) is closed for every x ∈ S, then there is an SNE.
In particular, if S is finite then there is an SNE.

Proof Let �u be as defined by (2). By Theorem 4.3, this relation is transitive, and
hence acyclic. Observe that the set {y | x �u y} = {y | u(x, yn−1) > u(y, yn−1)} is
the complement of U (x) = {y | u(x, xn−1) ≤ u(y, xn−1)} by (D), so {y | x �u y}
is open for every x ∈ S. Hence by Lemma 4.4, there exists a �u-maximal element
x ∈ S. Then (xn) is an SNE by Lemma 4.2. �

If the payoff function is upper semicontinuous in own strategy at any symmetric
profile of the others, then the upper contour setsU (x) are closed. Neither the convexity
of S or U (x), nor the continuity in strategies of the others, is required.9 Note that a
strategy that forms an SNE in a game with WPE need not be a dominant strategy. See
Fig. 1b.

A technical remark is in order. In the proof of Theorem 4.3, the function ρ(x, y | ζ )

works as a potential function. More precisely, given any ζ ∈ Sn−2, consider the two-
person symmetric game on S defined by u(x, y, ζ ). The function ρ(x, y | ζ ) is an
ordinal potential function (Monderer and Shapley 1996) of this game. In particular, a
two-person symmetric game satisfying (WPE0) is an ordinal potential game.

4.3 Games with partial weak payoff externalities

In a partial WPE games, the binary relation�u need not be transitive, nor even acyclic
(e.g., “Rock–Paper–Scissors”).10 Hence we take a different approach. Let us call

9 In a game G = (Sn , u) satisfying (WPE0), assume that u is continuous in own strategy. Then one can
prove that it is continuous in any other’s strategy.
10 One can show that in a partial WPE game the relation is acyclic if the strategy set is totally ordered. It
follows that such a game has an SNE if it is finite, or it does with some additional topological conditions
as in Proposition 4.5. If the strategy set is only partially ordered, the relation need not be acyclic. We shall
consider such games in Sect. 4.3.1.
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an n-person strategic game with a common strategy set S quasi-symmetric (Reny
1999, p. 1040) if u1(x, y, . . . , y) = u2(y, x, y, . . . , y) = · · · = un(y, . . . , y, x) for
all x, y ∈ S. Any symmetric game is quasi-symmetric, and the quasi-symmetry is
equivalent to symmetry in two-person games. By letting u = u1, we also denote by
(Sn, u) an n-person quasi-symmetric game.

Definition 4.6 Two-person reduction of n-person quasi-symmetric game G = (Sn, u)

is a two-person symmetric game Gτ = (S2, uτ ) such that

uτ (x, y) = u(x, yn−1) ∀x, y ∈ S.

By construction, G and Gτ have identical strategy set and identical upper contour
sets at symmetric profiles, and (xn) is an SNE in G if and only if (x, x) is an SNE
in Gτ . What does Gτ of an n-person partial WPE game G look like? The following
definition is given in Iimura et al. (2016).

Definition 4.7 A two-person symmetric game (S2, u) is pairwise solvable (PS) if

(PS) for any distinct x, y ∈ S

u(x, y) > u(y, y) ⇐⇒ u(x, x) > u(y, x).

See Iimura et al. (2016) for the analysis of this class of games. Now, if G = (Sn, u)

is a partial WPE game, then by (D) in Lemma 4.1 u(x, yn−1) > u(y, yn−1) ⇐⇒
u(x, xn−1) > u(y, xn−1), i.e., uτ (x, y) > uτ (y, y) ⇐⇒ uτ (x, x) > uτ (y, x): Gτ

is PS. Note that, since (PS) equals (D) with n = 2, any PS game has all the properties
stated in Lemma 4.2. In what follows, we offer SNE existence results for PS games,
from which the corresponding results follow for n-person partial WPE games.11

4.3.1 Partially ordered strategies

Abinary relation≤ on a set L is a partial order if it is reflexive, anti-symmetric (x ≤ y
and y ≤ x imply x = y), and transitive. A set L is partially ordered if it has a partial
order. For a subset J of a partially ordered set L , x ∈ L is a lower bound (resp. upper
bound) if x ≤ y (resp. y ≤ x) for all y ∈ J . J is bounded from below (resp. from
above) if it has a lower bound (resp. an upper bound); bounded if it has both.Whenever
they exist, the greatest lower bound and the least upper bound are denoted by

∧
J

and
∨

J , respectively. If
∧

J ∈ J (resp.
∨

J ∈ J ) then it is the minimum (resp.
maximum) of J . A subset I of L is a closed interval if I =↑ a = {x ∈ L | a ≤ x}
or I =↓ b = {x ∈ L | x ≤ b}, or I = [a, b] = {x ∈ L | a ≤ x ≤ b} for some
a, b ∈ L . In addition, we regard L as a closed interval. While ↑a and ↓b are never
empty, [a, b] is nonempty if and only if a ≤ b. A nonempty closed interval I �= L has
the minimum or the maximum. If I = [a, b] with a ≤ b then it has both. Note that
↑a and ↓b may well have both.

11 Our existence results apply to any n-person game that has a pairwise solvable two-person reduction.
Hence they may apply to a WC game if its two-person reduction is pairwise solvable.
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A partially ordered set L is said to have the least upper bound property (lubp for
short) if any nonempty subset J has the least upper bound whenever J is bounded
from above; or equivalently, if J has both

∧
J and

∨
J whenever J is bounded. L

is a lattice if it has
∧{a, b} and ∨{a, b} for all a, b ∈ L . L is a complete lattice if

it has
∧

J and
∨

J for any J ⊆ L . Any complete lattice has the minimum and the
maximum, and hence is bounded. Any finite lattice is complete.

Theorem 4.8 Let I = {Iλ | λ ∈ 	} be a nonempty set of closed intervals in a
partially ordered set L such that for all λ, λ′ ∈ 	, Iλ ∩ Iλ′ �= ∅. Then

⋂
λ∈	 Iλ �= ∅

if L has lubp and the minimum of Iλ and the maximum of Iλ′ exist for some λ, λ′ ∈ 	.
In particular, the intersection is nonempty if L is a complete lattice.

Proof If Iλ ∈ I has a minimum, denote it by b(λ). If it has a maximum, t(λ).
By assumption, neither 	(b) = {λ | b(λ) exists} nor 	(t) = {λ | t(λ) exists} is
empty. For every λ ∈ 	(b) and κ ∈ 	(t), b(λ) ≤ t(κ), since Iλ ∩ Iκ �= ∅ and
≤ is transitive. Fixing λ, this is true for any κ ∈ 	(t). Therefore b(λ) is a lower
bound of {t(κ) | κ ∈ 	(t)}. By lubp, b(λ) ≤ t∗ = ∧{t(κ) | κ ∈ 	(t)}. Since
this is true for any λ ∈ 	(b), t∗ is an upper bound of {b(λ) | λ ∈ 	(b)}. By lubp,
b∗ = ∨{b(λ) | λ ∈ 	(b)} ≤ t∗. Thus [b∗, t∗] is nonempty. Let a ∈ [b∗, t∗] and
consider Iλ ∈ I . If Iλ = L , a ∈ Iλ. If not, either b(λ) or t(λ) exists. If b(λ) exists,
then b(λ) ≤ b∗ ≤ a. If there is no t(λ), then a ∈ Iλ =↑ b(λ). If t(λ) exists, then
a ∈ Iλ = [b(λ), t(λ)] since a ≤ t∗ ≤ t(λ). Similarly, a ∈ Iλ if t(λ) exists. Therefore
[b∗, t∗] ⊆ Iλ for any Iλ ∈ I . Finally, note that any complete lattice is bounded, and
possesses lubp. �
Proposition 4.9 Let S be a partially ordered set and G = (S2, u) be a PS game in
which the upper contour set U (x) is a closed interval for every x ∈ S. Then G has
an SNE if S has lubp and the minimum of U (x) and the maximum of U (y) exist for
some x, y ∈ S. In particular, G has an SNE if S is a finite lattice, or more generally,
a complete lattice.

Proof Let I = {U (x) | x ∈ S}. By assumption, it is a collection of closed intervals.
By Lemma 4.2, U (x) ∩ U (y) �= ∅ for all x, y ∈ S, and (x, x) is an SNE if and only
if x ∈ ⋂

y∈S U (y). Now the results follow from Theorem 4.8. �
The crucial assumption in Proposition 4.9 is that the upper contour set is a closed

interval. This is satisfied, for example, if S is a finite lattice and u is order-closed-
quasiconcave in own strategy in the sense of Cigola and Licalzi (1997, p. 29): letting
fx (y) = u(y, x), fx (z) ≥ min{ fx (y), fx (y′)} for every z ∈ [y ∧ y′, y ∨ y′] for all
y, y′ ∈ S, for every x ∈ S. Note that in Proposition 4.9, S need not be a lattice.

In passing, we note that in the proof of Theorem 4.8, we showed that [b∗, t∗] ⊆⋂
λ∈	 Iλ. One can verify the converse inclusion as well. It follows then that the set

of strategies that appear in some SNE in the game of Proposition 4.9 forms a closed
interval.

4.3.2 The KKM-type argument

By Lemma 4.2, a PS game G = (S2, u) has an SNE if and only if
⋂

x∈S U (x) is
nonempty. This suggests the following application of Fan’s generalization of Knaster–
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Kuratowski–Mazurkiewicz lemma (Fan 1961). For any subset Y of a vector space X ,
let co Y denote the convex hull of Y .12 Following Aliprantis and Border (2006, p.
577), we call a correspondence ψ : Y � X a KKM correspondence if co{x1, . . . , xK }
⊂ ⋃K

i=1 ψ(xi ) for every finite subset {x1, . . . , xK } of Y .
Proposition 4.10 Let G = (S2, u) be a PS game in which S is a compact subset of a
topological vector space. ThenG has an SNE ifU (x), as a correspondenceU : S � S,
is a closed-valued KKM correspondence.

Proof ByFan (1961,Lemma1), the assumptions imply that
⋂

x∈S U (x) is nonempty.13

Hence an SNE exists by Lemma 4.2. �
The question is under what conditionU (x) becomes a KKM correspondence. Inspired
by Aliprantis and Border (2006, Lemma 17.47, p. 579), we have the following result.

Proposition 4.11 Let G = (S2, u) be a PS game in which S is a compact subset of a
topological vector space. Then G has an SNE if U (x) is closed and x /∈ co P(x) for
each x ∈ S, where P(x) = {y ∈ S | u(y, x) > u(x, x)}.
Proof By Proposition 4.10, it suffices to show that ifU is not a KKM correspondence,
then there is x ∈ S such that x ∈ co P(x). Assume that there are xi ∈ S, αi ≥
0, and

∑
i αi = 1, i = 1, . . . , K , such that x = ∑

i αi xi ∈ co{x1, . . . , xK } but
x /∈ ⋃K

i=1U (xi ). Then it follows that x /∈ U (xi ), or u(xi , xi ) > u(x, xi ). By (PS),
u(xi , x) > u(x, x), or xi ∈ P(x). Since this is true for all i , x = ∑

i αi xi ∈ co P(x).
�

In fact, it follows from Aliprantis and Border (2006, Lemma 17.47, p. 579) that
the condition x /∈ co P(x) is not only sufficient but also necessary to make U (x)
a KKM correspondence.14 It is satisfied if P(x) = co P(x), as in a game with the
payoff function that is quasiconcave in own strategy at symmetric profiles. Notice,
however, that neither U (x) nor P(x) is required to be convex in Proposition 4.11.
It is straightforward to verify that if U : S � S is a KKM correspondence, then
S is convex. It is clear that U (x) is closed whenever the payoff function is upper
semicontinuous in own strategy. No continuity is required in the opponent’s strategy.

For results in this subsection (in particular, Propositions 4.9 and 4.11), assumptions
are concerned with either the strategy set or the upper contour sets at symmetric pro-
files. As noted earlier, an n-person quasi-symmetric game and its two-person reduction
have identical strategy set and identical upper contour sets at symmetric profiles, and
the two-person reduction of an n-person partial WPE game is a PS game. Therefore,
we now have corresponding existence results for n-person partial WPE games.

Corollary 4.12 (to Proposition 4.9) Let S be a partially ordered set and G = (Sn, u)

be a partial WPE game in which the upper contour set U (x) is a closed interval for

12 Recall that x ∈ co Y if and only if there are xi ∈ Y , αi ≥ 0, and
∑

i αi = 1, i = 1, . . . , K , such that
x = ∑

i αi xi .
13 The topological vector space need not be Hausdorff. On this, see, for example, Yuan (1998, p. 6).
14 We can see this as well by reversing the argument in the proof of Proposition 4.11.
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every x ∈ S. Then G has an SNE if S has lubp and the minimum of U (x) and the
maximum of U (y) exist for some x, y ∈ S. In particular, G has an SNE if S is a finite
lattice, or more generally, a complete lattice.

Corollary 4.13 (to Proposition 4.11) Let G = (Sn, u) be a partial WPE game in which
S is a compact subset of a topological vector space. Then G has an SNE if U (x) is
closed and x /∈ co P(x) for each x ∈ S, where P(x) = {y ∈ S | u(y, x) > u(x, x)}.

5 Concluding remarks

The notion of weakly unilaterally competitive game (Kats and Thisse 1992) is an
extension of the notion of a competitive game, which is exemplified in a two-person
zero-sum game. Recall from Sect. 3 that these games need not have weak payoff
externalities, but they must exhibit a partial form of weak payoff externalities. This
observation leads us to regard the notion of a game with partial weak payoff exter-
nalities as a further extension of the notion of a competitive game. Viewed in this
way, and together with the fact that an evolutionary equilibrium is a Nash equilib-
rium in the relative payoff game (Schaffer 1989), an intuitive understanding suggests
itself: in a competitive game, own-payoff maximization is equivalent to relative payoff
maximization.

Given an n-person game with partial WPE, let us examine a strategy revision
process,whichmaybedescribed as “beat the others or imitate if beaten”. For simplicity,
let the game be a three-person finite game with partial WPE. The process starts from
(x, x, x), which we assume is not an SEE. Sooner or later, a player finds (and switches
to) a strategy y that beats the others in that u(y, x, x) > u(x, y, x). Note that by
(pWPE), y beats the others if and only if u(y, x, x) > u(x, x, x). Since the payoff
of the deviator is higher than that of the others, the others may have an incentive to
imitate. So a second player switches to y to bring about (y, y, x). The imitator realizes
a payoff improvement by the imitation, i.e., u(y, y, x) > u(x, y, x) by Lemma 4.1.
Also by Lemma 4.1, u(y, y, y) > u(x, y, y), thus the third player still has an incentive
to switch to y. In this way, they arrive at a new symmetric profile (y, y, y). Now, does
the iteration of this process lead to an SEE, which we know is also an SNE? If the
game has WPE, the process does lead to an SEE by Theorem 4.3. For the games with
partial WPE, however, the process need not reach an SEE in general.15

In the above process each strategy revision involves revising player’s payoff
improvement, both absolutely and relatively. It need not be the case, however, that
the new symmetric profile Pareto-dominates the old. To see this, look at the three-
person game in Fig. 1b. From (x, x, x) to (y, x, x), the revising player gains by 7 but
the others lose by 6. From (y, x, x) to (y, y, x), the revising player gains by 7 but the
others lose by 6 or 3. From (y, y, x) to (y, y, y), the revising player gains by 6 but the
others lose by 4. At each step, the gain of the revising player is greater than the loss(es)
of the others. This is a consequence of weak payoff externalities. Each player enjoys,
however, the payoff increase once, but suffers a loss twice. Consequently, they find
themselves impoverished at equilibrium (y, y, y). This argument reveals that in two-

15 But see footnote 10.
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person games with weak payoff externalities, no symmetric profile Pareto-dominates
a symmetric equilibrium.16 In a game with partial weak payoff externalities, by con-
trast, a symmetric equilibrium may well be Pareto-dominated even in a two-person
game, e.g., see Fig. 2.
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