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Abstract
We consider a two-person trading game in continuous time where each player chooses
a constant rebalancing rule b that he must adhere to over [0, t]. If Vt (b) denotes the
final wealth of the rebalancing rule b, then Player 1 (the “numerator player”) picks b
so as to maximize E[Vt (b)/Vt (c)], while Player 2 (the “denominator player”) picks c
so as to minimize it. In the unique Nash equilibrium, both players use the continuous-
time Kelly rule b∗ = c∗ = Σ−1(μ − r1), where Σ is the covariance of instantaneous
returns per unit time,μ is the drift vector, and 1 is a vector of ones. Thus, even over very
short intervals of time [0, t], the desire to perform well relative to other traders leads
one to adopt the Kelly rule, which is ordinarily derived by maximizing the asymptotic
exponential growth rate of wealth. Hence, we find agreement with Bell and Cover’s (
Manag Sci 34(6):724–733, 1988) result in discrete time.

Keywords Portfolio choice · Constant rebalanced portfolios · Continuous-time Kelly
rule · Minimax

JEL Classification C44 · D80 · D81 · G11

1 Introduction

1.1 Literature review

Kelly (1956) obtained the eponymous Kelly rule (“Fortune’s Formula”; Poundstone
2010) by maximizing the asymptotic growth rate of one’s capital when gambling on
repeated horse races where the posted odds diverge from the true win probabilities.
Famously (Thorp 2017), the Kelly rule was employed by card counter Edward O.
Thorp to size his bets at the Nevada blackjack tables. Thorp went on to use the same
principle (of the “log-optimal” constant-rebalanced portfolio) in money management
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on Wall Street. For the general discrete-time portfolio problem, the Kelly investor
willingly foregoes the tangency portfolio (of maximum Sharpe ratio) in exchange for
the highest possible asymptotic capital growth rate. Breiman (1961) showed that in
the long run, a Kelly gambler will almost surely outperform any “essentially different
strategy”, (by an exponential factor) and he has the shortest meanwaiting time to reach
a distant wealth goal.

In a pair articles,Bell andCover (1980, 1988) prove a short-termoptimality property
of the discrete-timeKelly rule. They show that theKelly rule emerges as the solution of
a wide class of “investment φ-games” where the goal is for one investor to outperform
the other (in the sense of an increasing function φ(·) of the ratio of the two players’
final wealths). Both papers use an artifice whereby, before the game itself, each player
is allowed to make a “fair randomization” of his initial dollar, by exchanging it for
any random variable distributed over [0,∞) whose mean is at most 1.

1.2 Contribution

This paper studies a similar game in continuous time, where each player commits to
a rebalancing rule that must be used continuously over the interval [0, t]. The unique
Nash equilibrium (that constitutes a saddle point of the expected ratio of wealths
at t) is for both players to use the continuous-time Kelly rule. This result, which
matches that of Bell and Cover (1988), holds for the general market with n correlated
stocks (i = 1, ..., n) in geometric Brownian motion. This being done, we show that
the continuous-time Kelly rule is the basis for the solution of a “continuous-time
investment φ-game” analogous to the discrete-time version solved by Bell and Cover.

2 Model

We consider a continuous-time trading game between two players. There is a risk-free
bond whose price Bt = er t evolves according to dBt/Bt = r dt and a single stock
whose price St follows the geometric Brownian motion

dSt/St = μ dt + σdWt , (1)

where μ is the drift, σ is the volatility, and Wt is a standard Brownian motion. At
t = 0 each player chooses a constant rebalancing rule b ∈ R that he must adhere to
for 0 ≤ t ≤ T . A rebalancing rule b is a fixed-fraction betting scheme that maintains
the fraction b of wealth in the stock and 1−b in the bond at all times. Let Vt (b) denote
the wealth at t of a $1 deposit into the rebalancing rule b. At instant t , the trader holds
bVt (b)/St shares of stock and (1−b)Vt (b)e−r t bonds. This portfolio will be held over
the differential time interval [t, t + dt], after which point it must be rebalanced again.
The players are free to use any amount of leverage (b > 1 or b < 0), if desired.

Player 1 (the “numerator player”) chooses the rebalancing rule b ∈ R and Player
2 (the “denominator player”) chooses a rebalancing rule c ∈ R. We consider the two-
person zero-sum game with payoff kernel E[VT (b)/VT (c)]. The numerator player
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seeks to maximize the expected ratio of his final wealth to that of the opponent’s. The
denominator player seeks to minimize this quantity.

2.1 Payoff computation

Each player’s wealth follows a geometric Brownian motion

dVt (b)/Vt (b) = b(dSt/St ) + (1 − b)dBt/Bt = (bμ + (1 − b)r)dt + bσdWt . (2)

Solving, we obtain

Vt (b) = e(r+b(μ−r)−σ 2b2/2)t+bσWt . (3)

The ratio of final wealths is

Vt (b)/Vt (c) = exp{(μ − r)(b − c)t + σ 2t/2(c2 − b2) + (b − c)σWt }. (4)

Thus, since the ratio of final wealths is log-normally distributed (Shonkwiler 2013),
we have, after simplification,

E[Vt (b)/Vt (c)] = exp{((μ − r)(b − c) + σ 2(c2 − bc))t}. (5)

After a monotonic transformation, we may rewrite the payoff kernel as

π(b, c) = (μ − r)(b − c) + σ 2(c2 − bc), (6)

which is the exponential growth rate of E[Vt (b)/Vt (c)].

2.2 Equilibrium

Player 1’s best response correspondence is

b∗(c) =

⎧
⎪⎨

⎪⎩

+∞ c < (μ − r)/σ 2

R c = (μ − r)/σ 2

−∞ c > (μ − r)/σ 2

.

Player 2’s best response function is

c∗(b) = b/2 + (μ − r)/(2σ 2). (7)

Thus, the unique Nash equilibrium is b = c = (μ − r)/σ 2, which happens to be the
continuous-time Kelly rule (Luenberger 1997). Ordinarily, the Kelly (1956) rule is
derived by maximizing the asymptotic continuously compounded capital growth rate

Γ (b) = lim
t→∞ log(Vt (b))/t = r + (μ − r)b − σ 2b2/2. (8)
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Hence, even over very short intervals of time [0, t] the desire to outperform other
traders in the market dictates the use of the Kelly rule b∗ = (μ − r)/σ 2. We have
thus derived a short-term optimality property of the continuous-time Kelly rule that
matches the results obtained by Bell and Cover (1988) in discrete time.

2.3 Several correlated stocks

We extend the above result to the general market with n correlated stocks that follow
the geometric Brownian motions (Bjork 1998)

dSit/Sit = μidt + σidWit , (9)

where μ = (μ1, ..., μn)
′ is the drift vector, σ = (σ1, ..., σn)

′ is the vector of
volatilities, and Σ is the covariance of instantaneous returns per unit time, e.g.
Σi j = Cov(dSit/Sit , dS jt/S jt )/dt . The Wit are correlated unit Brownian motions,
with ρi j = corr(dWit , dWjt ) and Σi j = ρi jσiσ j . We assume that Σ is invertible. In
this context, a rebalancing rule is a vector b = (b1, ..., bn)′ ∈ R

n , where the gambler
continuously maintains the fixed fraction bi of wealth in stock i at all times. He keeps
the fraction 1−∑n

i=1 bi of wealth in bonds. As in the univariate case, this permits the
freest possible use of leverage, if desired.

Each player’s final wealth Vt (b) follows the geometric Brownian motion

dVt (b)/Vt (b) =
n∑

i=1

bi
dSit
Sit

+
(

1−
n∑

i=1

bi

)

r dt = (r+(μ−r1)′b)dt+
n∑

i=1

biσidWit .

(10)
The solution of this stochastic differential equation is

Vt (b) = exp

{

(r + (μ − r1)′b − b′Σb/2)t +
n∑

i=1

biσiWit

}

. (11)

This can be verified directly by applying Ito’s Lemma for several diffusion processes
(Wilmott 2001) to the function F(W1, ...,Wn, t) = exp

{
(r+(μ−r1)′b−b′Σb/2)t+∑n

i=1 biσiWi
}
. The ratio of final wealths is

Vt (b)/Vt (c) = exp

{

(μ− r1)′(b− c)t + (t/2)(c′Σc− b′Σb)+
n∑

i=1

(bi − ci )σiWit

}

.

(12)
Thus, the ratio of final wealths is log-normally distributed, with

E[Vt (b)/Vt (c)] = exp{((μ − r1)′(b − c) + c′Σc − b′Σc)t}. (13)

After monotonic transformation, we obtain the simplified payoff kernel

π(b, c) = (μ − r1)′(b − c) + c′Σc − b′Σc. (14)
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Player 1’s best response correspondence is

b∗
i (c) =

⎧
⎪⎨

⎪⎩

+∞ (Σc)i < μi − r

R (Σc)i = μi − r

−∞ (Σc)i > μi − r ,

where (Σc)i = ∑n
j=1 ρi jσiσ j c j is the i th coordinate of the vector Σc. Assuming Σ

is invertible, Player 2’s best response function is

c∗(b) = b/2 + (1/2)Σ−1(μ − r1). (15)

Intersecting the best responses, we find that the unique Nash equilibrium is b = c =
Σ−1(μ − r1), which is the multivariate Kelly rule in continuous time. We thus have
the identity

Max
b

Min
c

E[Vt (b)/Vt (c)] = Min
c

Max
b

E[Vt (b)/Vt (c)] = 1. (16)

Thus, since theKelly ruleb∗ is Player 1’smaximin strategy,wehave E[Vt (b∗)/Vt (c)] ≥
1 for all c, and since the Kelly rule c∗ is Player 2’s minimax strategy, we have
E[Vt (b)/Vt (c∗)] ≤ 1 for all b.

3 Investment �-game

Based on the fact that the Kelly rule b∗ = c∗ guarantees E[Vt (b∗)/Vt (c)] ≥ 1 for all
c and E[Vt (b)/Vt (c∗)] ≤ 1 for all b, we can obtain a general result analogous to that
of Bell and Cover (1988). First we need some definitions.

Definition 1 By a “fair randomization” of the initial dollar is meant a random variable
W with support [0,∞) and E[W ] ≤ 1.

Definition 2 For any increasing function φ(·), the “primitive φ-game,” with value
vφ , is the two-person, zero-sum game with payoff kernel E[φ(W1/W2)], where
player 1 chooses a fair randomization W1 and player 2 chooses a fair randomiza-
tion W2. The value of the primitive φ-game is vφ = supW1

infW2 E[φ(W1/W2)] =
infW2 supW1

E[φ(W1/W2)]. The random wealths W1 and W2 are independent of
each other.

Definition 3 For any increasing function φ(·), the “investment φ-game” is the two-
person, zero-sum game with payoff kernel E[φ(

W1Vt (b)
W2Vt (c)

)], where player 1 chooses
a rebalancing rule b and a fair randomization W1 of the initial dollar, and player 2
chooses a rebalancing rule c and a fair randomization W2 of his initial dollar. The
random wealths W1 and W2 are independent of all stock prices and independent of
each other.

Theorem 1 The investment φ-game has the same value vφ as the primitive φ-game. In
equilibrium, both players use the continuous-time Kelly rule b∗ = Σ−1(μ − r1), and
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the players use the same minimax randomizations (W ∗
1 ,W ∗

2 ) that solve the primitive
φ-game.

Proof First, we show that E[φ(
W ∗

1 Vt (b
∗)

W2Vt (c)
)] ≥ vφ for any fair randomization W2 and

any rebalancing rule c, where b∗ is the Kelly rule. Note that W2Vt (c)/Vt (b∗) ≥ 0 is a
fair randomization, since E[Vt (c)/Vt (b∗)] ≤ 1. The inequality E[Vt (c)/Vt (b∗)] ≤ 1
follows from direct substitution of b∗ = Σ−1(μ − r1) into the expected wealth ratio.
Thus, sinceW ∗

1 , is Player 1’s minimax solution in the primitive φ-game, we must have

E[φ(
W ∗

1 Vt (b
∗)

W2Vt (c)
)] ≥ vφ .

Similarly, we show that E[φ(
W1Vt (b)
W ∗

2 Vt (c
∗) )] ≤ vφ for any fair randomization W1 and

any rebalancing rule b, where c∗ is the Kelly rule. Note that W1Vt (b)/Vt (c∗) ≥ 0 is a
fair randomization, since E[Vt (b)/Vt (c∗)] ≤ 1. Thus, sinceW ∗

2 is Player 2’s minimax
solution of the primitive φ-game, we must have E[φ(

W1Vt (b)
W ∗

2 Vt (c
∗) )] ≤ vφ .

Thus, we have shown that (W ∗
1 , b∗) forces the payoff to be ≥ vφ and (W ∗

2 , c∗)
forces the payoff to be ≤ vφ when b∗ and c∗ are equal to the Kelly rule and (W ∗

1 ,W ∗
2 )

are the minimax strategies from the primitive φ-game. This proves the theorem. 	


Example 1 As in Bell and Cover (1980), we let φ(x) = 1[1,∞)(x) be the indicator
function of [1,∞). This turns the payoff kernel into P{W1Vt (b) ≥ W2Vt (c)}. The
equilibrium amounts to the Kelly rule b∗ = c∗ and the fair exchange of the initial
dollar for a uniform(0, 2) variable. The value of the game is 1/2.

4 Simulation of a sample play of the game

To illustrate, we use the example of “Shannon’s Demon” in continuous time. In Shan-
non’s classic discrete-time example, there is cash (that pays no interest) and a “hot
stock” that each period either doubles or gets cut in half in price, each with 50%
probability. The continuous-time analogue is to set r = 0 and

dSt
St

= σ 2/2 dt + σdWt , (17)

with σ = log 2 = 0.693. The equilibrium of our game is for both players to use the
rebalancing rule b = 0.5. For the sake of argument, assume that Player 1 behaves
correctly, but Player 2 (perhaps confused by the 24% annual drift rate) chooses to put
all his money into the stock, and hold.

Player 1’s wealth at t is e0.06t+0.3465Wt , and Player 2’s wealth at t is e0.693Wt . The
expected wealth ratio is e0.12t . In Fig. 1 we have simulated a single play of the game,
with horizon T = 300. At time t , the probability that Player 1 has more wealth than
Player 2 is N (0.173

√
t), where N (·) is the cumulative normal distribution function.

At t = 50, there is an 89% chance that Player 1 has more wealth. At t = 100 this
number rises to 96%.
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Fig. 1 Simulation of one play of the game, with b = 0.5 and c = 1

5 The general stochastic differential game

Finally, we show that the restriction to constant rebalancing rules entails no loss of
generality. We do this below for the one-stock case; the proof for several stocks is
similar. Let M1t and M2t be the wealths of the numerator and denominator player,
respectively. We now allow the players’ portfolios to depend on the most general
state vector, which is (St , t, M1t , M2t ). Player 1’s trading strategy is now denoted
b(S, t, M1, M2), and Player 2’s strategy is c(S, t, M1, M2). We show that in equi-
librium, both players still adhere to the constant rebalancing rule b(S, t, M1, M2) =
c(S, t, M1, M2) = (μ − r)/σ 2.

First, assume that the denominator player uses the Kelly rule c = (μ − r)/σ 2.

We show that the numerator player’s best response is to use the same control policy.
Let J (S, t, M1, M2) be the numerator player’s maximum value function. His HJB
equation is

− ∂ J

∂t
= Max

b

{

μS
∂ J

∂S
+ (r + b(μ − r))M1

∂ J

∂M1
+ (r + c(μ − r))M2

∂ J

∂M2

+ σ 2

2
S2

∂2 J

∂S2
+ b2σ 2

2
M2
1

∂2 J

∂M2
1

+ c2σ 2

2
M2
2

∂2 J

∂M2
2

+ bσ 2SM1
∂2 J

∂S∂M1
+ cσ 2SM2

∂2 J

∂S∂M2
+ bcσ 2M1M2

∂2 J

∂M1∂M2

}

. (18)

Theboundary condition is J (S, T , M1, M2) = M1/M2.Weguess that J (S, t, M1, M2)

≡ M1/M2, which obviously satisfies the boundary condition. Under this guess, Player
1’s HJB equation simplifies to

0 = Max
b

{(μ − r)(b − c) + σ 2(c2 − bc)}, (19)
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where c = (μ − r)/σ 2. This value of c makes the maximand identically 0, so of
course b∗ = c is a maximizer. Thus, substitution of J ≡ M1/M2 has turned the HJB
equation into an identity. This proves that the numerator player’s best response to the
Kelly rule is to play the Kelly rule himself.

We can repeat the above calculation, this time assuming that the numerator player’s
policy is b(S, t, M1, M2) ≡ (μ − r)/σ 2. Using J again to denote the denominator
player’s (minimum) value function, we get the same HJB equation and boundary
condition, except that Maxb {· · ·} is replaced by Minc {· · ·}. We again make the guess
J ≡ M1/M2, which turns Player 2’s HJB equation into the identity

0 = Min
c

{(μ − r)(b − c) + σ 2(c2 − bc)}. (20)

The unique minimizer is c = b = (μ − r)/σ 2. This completes the proof that the
constant control policies b(S, t, M1, M2) = c(S, t, M1, M2) = (μ − r)/σ 2 are best
responses to each other. The proof for several stocks is similar, except that (μ−r)(b−
c) + σ 2(c2 − bc) is replaced by (μ − r1)′(b − c) + c′Σc − b′Σc.

6 Conclusion

For the continuous-time two-person trading game where Player 1 seeks to maximize
the expected ratio of his wealth to that of Player 2 (and Player 2 seeks to minimize this
ratio), the unique Nash equilibrium is for both players to use the (possibly leveraged)
Kelly rebalancing rule b = Σ−1(μ − r1). More generally, we showed that the Kelly
rule is the basis for the solution of a “continuous-time investment φ-game” that is
the analog of the discrete-time version solved by Bell and Cover (1980, 1988). For
practically any criterion φ((W1Vt (b))/(W2Vt (c))) of short-term relative performance,
the correct behavior is for both players to use theKelly rule b∗ = c∗ in conjunctionwith
appropriate fair randomizations (W ∗

1 ,W ∗
2 ) of the initial dollar. Thus, the continuous-

time Kelly rule (which is renowned for its optimal asymptotic growth rate) is desirable
even for a trader whose goal is to perform well relative to other traders over very short
periods of time.

Acknowledgements I thank the Editor and an anonymous reviewer for helpful comments that improved
the paper.
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