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Abstract Consider the problem of distributing a fixed amount of a divisible resource
among agents whose preferences are single-peaked. The uniform rule has been widely
characterized under an ordinal utility approach. Instead, in a cardinal utility approach,
we show that the uniform rule is the only consistent rule that maximizes the worst-case
surplus among strategy-proof and ordinally efficient mechanisms.
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1 Introduction

Consider the problem of allocating a divisible resource among agents with single-
peaked preferences. Single-peaked preferences have been extensively studied in the
social choice literature, with much concern about ordinal information in the resource
allocation problem. A solution to the problem that has garnered much attention is the
uniform rule (Benassy 1982), which entitles agents to obtain a share at least as good as
an equal division of the resource. This solution has been widely characterized by ordi-
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nal efficiency and various properties including strategy-proofness (Sprumont 1991;
Ching 1994), consistency (Thomson 1994b; Dagan 1996), monotonicity (Thomson
1994a, 1995, 1997; Sönmez 1994) and no-envy (Ching 1992; Chun 2000).

Our work differs from the literature by quantifying the quality of an outcome in the
allocation problem. We focus on the case where agents report their cardinal intensi-
ties over their share, therefore incentive compatibility of the mechanism is desirable.
Our incentive compatibility requirement is truth-telling in dominant strategy, that is,
strategy-proofness. The traditional impossibility result of finding strategy-proofmech-
anisms that maximize economic surplus still holds in the limited domain of concave
single-peaked preferences that we study in this paper (Hurwicz 1972; Holmström
1979). To overcome this impossibility, our paper refines the optimality criteria and
provides a novel characterization of the uniform rule in this setting.

When cardinal utilities matter, an optimality criterion used to rank allocation rules
in the recent literature is the worst relative surplus (WS). The worst relative surplus
of an allocation rule is the smallest ratio of economic surplus to maximal surplus over
all utility profiles. An optimal mechanism will generate the greatest worst relative
surplus within a group of strategy-proof mechanisms. With this robustness metric, the
social planner does not need to know specific utility functions of agents or to have
a prior belief about their distributions. Thus, the index WS appeals to an extremely
conservative planner who aims to select a mechanism for the best performance in the
worst-case. In the domain of single-peaked preferences, Procaccia and Tennenholtz
(2013) and Alon et al. (2010) explore worst-case strategy-proof rules for the problem
of locating a public good on a line and on general networks, respectively.1 The worst-
case analysis is also adopted in Aggarwal et al. (2005), Goldberg et al. (2001, 2006),
Hartline and McGrew (2005), Johari and Tsitsiklis (2004), Cavallo (2006), Moulin
(2009), Moulin and Shenker (2001), Guo and Conitzer (2009, 2010), You (2015),
Juarez and Kumar (2013), and Fischer and Klimm (2015).2

Here, our optimality criterion strengthens the worst relative surplus as it requires
optimal mechanisms to satisfy consistency in the worst-case. Once an optimal mecha-
nism decides the allocation to each agent in a group N , for any subgroup S ⊆ N , there
should not be a redistribution of the resource that makes every agent in S better off in
the worst-case scenario. Thus, our optimal mechanism guarantees the greatest worst
relative surplus not only for a group N but also for any subgroup of N . Strengthen-
ing the criterion with consistency, we show that the uniform rule is uniquely optimal
among strategy-proof and ordinally efficient rules. It guarantees the greatest surplus
at any coalition of agents when the good is either overdemanded or underdemanded
(Theorem 1). Furthermore, our characterization is tight, as removing either of themain
assumptions in the Theorem provides a fairly large class of efficient rules (Remarks
1–4).

1 The worst-case optimal mechanisms in Procaccia and Tennenholtz (2013) are variants of choosing any
kth order statistic of agents’ peaks.
2 The worst-case analysis that adopts an absolute instead of relative measure has been explored in Juarez
(2008, 2015) and Moulin and Shenker (2001).
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2 Model

Consider a group of agents N = {1, . . . , n} for n ≥ 2. For any C > 0, a utility
function ui ∈ U(C) is a function ui : [0,C] → R+ that is continuous, concave, and
single-peaked: there exists a peak, x∗

i (ui ) ∈ [0,C], such that for all yi , zi ∈ [0,C],
if either x∗

i (ui ) < yi < zi or zi < yi < x∗
i (ui ), then ui (x∗

i ) > ui (yi ) > ui (zi ). We
denote by U(S,C) = U(C)S the set of utility functions in U(C) for the agents in S.
For the profile u ∈ U(S,C), let x∗

S(u) = ∑
i∈S x∗

i (ui ) be the sum of the peaks of u.
If x∗

S(u) > C or x∗
S(u) < C , then a resource is overdemanded or underdemanded,

respectively. Let Ū(S,C) and U(S,C) be the set of utility profiles in U(S,C) that are
overdemanded and underdemanded for the agents in S and the amount of resource C ,
respectively.

Definition 1 A problem (S,C, uS) consists of

• a group of participants S ⊆ N ,
• an amount to divide C > 0, and
• a profile of utility functions uS ∈ U(S,C).

We denote by P the set of problems. For any C > 0 and S ⊆ N , the set of feasible
allocations Y (S,C) = {y ∈ [0,C]S| ∑i∈S yi = C} is the set of vectors that distribute
C among the agents in S.

Definition 2 Amechanism F is a function that associates to eachproblem (S,C, uS) ∈
P a feasible allocation F(S,C, uS) ∈ Y (S,C).

The uniform rule FU is a well-known mechanism that associates the following
feasible allocation to problem (S,C, uS) : for all i ∈ S, if x∗

S(uS) ≥ C , then
FU
i (S,C, uS) = min{x∗

i (ui ), μ}whereμ solves the equation
∑

i∈S min{x∗
i (ui ), μ} =

C . If x∗
S(uS) ≤ C , then FU

i (S,C, uS) = max{x∗
i (ui ), ν} where ν solves∑

i∈S max{x∗
i (ui ), ν} = C .

Definition 3 • A mechanism F is strategy-proof if for any problem (S,C, uS),
i ∈ S, and u′

i ∈ U(C),

ui (F(S,C, [ui , uS\{i}])) ≥ ui (F(S,C, [u′
i , uS\{i}])).

• A mechanism F is same-sided if for any problem (S,C, uS), whenever x∗
S(uS) ≤

C , x∗
i (ui ) ≤ Fi (S,C, uS) holds for all i ∈ S, andwhenever x∗

S(uS) ≥ C , x∗
i (ui ) ≥

Fi (S,C, uS) holds for all i ∈ S.
• A mechanism F is consistent if for all C > 0, all u ∈ U(N ,C) and all S ⊆ N ,

Fi (N ,C, u) = Fi (S,
∑

i∈S Fi (N ,C, u), uS) for all i ∈ S.

Amechanism is strategy-proof if agents do not gain by reporting any utility function
different than their true preferences.Amechanism is same-sided if no agent is allocated
more than their peak when the good is overdemanded, and no less than their peak
when the good is underdemanded. Same-sidedness is equivalent to ordinal efficiency
for strategy-proof mechanisms. A mechanism is consistent if after any subgroup of
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agents have been allocated their share of the resource, the allocations for the remaining
agents do not change upon reassessing their allocation with the remaining resource.
These three properties have been well studied in the literature of resource allocation.

Given a problem (S,C, uS), each allocation y ∈ Y (S,C) generates economic
surplus of

∑
i∈S ui (yi ). If y ∈ Y (S,C) satisfies y ∈ argmaxz∈Y (S,C)

∑
i∈S ui (zi ),

the allocation y is efficient. When y is efficient, the economic surplus is said to be
the efficient surplus. We denote by E f f (u, S,C) the efficient surplus given the utility
profile u, the coalition S and the amount of resource C .

We measure the performance of a mechanism by computing the worst relative
surplus at every coalition and resource. Given a utility profile u ∈ U(S,C), the relative
surplus at an allocation is the ratio of the economic surplus to efficient surplus.

The worst relative surplus of the mechanism F at a coalition S ⊆ N and resource
C for the overdemanded case is

WS(F, S,C) = inf
u∈Ū(S,C)

∑
i∈S ui (Fi (S,C, u))

E f f (u, S,C)

The worst relative surplus of the mechanism G at a coalition S ⊆ N and resource
C for the underdemanded case is

WS(G, S,C) = inf
u∈U(S,C)

∑
i∈S ui (Gi (S,C, u))

E f f (u, S,C)

Definition 4 (Optimality of a mechanism)

• A strategy-proof and same-sided mechanism F∗ is optimal for the overdemanded
case if for any other strategy-proof and same-sided mechanism F , any group S ⊆
N and any amount of resourceC > 0wehave thatWS(F, S,C) ≤ WS(F∗, S,C).

• A strategy-proof and same-sidedmechanismG∗ is optimal for the underdemanded
case if for any other strategy-proof and same-sided mechanism G, any group
S ⊆ N and any amount of resource C > 0 we have that WS(G, S,C) ≤
WS(G∗, S,C).

Theorem 1 (i) The uniform rule FU is the unique optimal and consistent mecha-
nism for the overdemanded case.Moreover, W S(FU , S,C) = 1

|S| for any S ⊆ N
and any C > 0.

(ii) The uniform rule FU is the unique optimal and consistent mechanism for the
underdemanded case. Moreover, W S(FU , S,C) = |S|−1

|S| for any S ⊆ N such
that |S| > 1, and any C > 0.

Proof A critical characterization of strategy-proof and same-sidedmechanisms due to
Barberà et al. (1997) is introduced below. The class of strategy-proof and same-sided
mechanisms includes an enormous number of quite varied mechanisms. 	

Lemma 1 A mechanism F is strategy-proof and same-sided if and only if for each
i ∈ N there exists ai : U(N \ i,C) → [0,C] and bi : U(N \ i,C) → [0,C],
such that ai (u−i ) ≤ bi (u−i ) and

∑
i∈N min[x∗

i (ui ), bi (u−i )] = C f or all u such
that x∗

N (u) > C,
∑

i∈N max[x∗
i (ui ), ai (u−i )] = C for all u such that x∗

N (u) ≤
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Optimality of the uniform rule... 31

C, and Fi (N ,C, u) = min[x∗
i (ui ), bi (u−i )] if x∗

N (u) > C, Fi (N ,C, u) =
max[x∗

i (ui ), ai (u−i )] i f x∗
N (u) ≤ C.

Lemma 1 states that each agent will receive his or her most preferred share or
personalized cap (floor) for the case of overdemanded (underdemanded, respectively)
resource if and only if the mechanism is strategy-proof and same-sided. We use this
lemma to prove our main theorem. We split this proof into the overdemanded and
underdemanded cases.

Proof for the underdemanded case Step A1 W S(FU , S,C) = 1
|S| for any coalition

S ⊆ N and any C > 0. First, we show that WS(FU , S,C) ≥ 1
|S| for all S ⊆ N and

all C > 0. Consider vS ∈ Ū(S,C) and suppose that Ei is the peak of vi on [0,C] for
each i ∈ S. Since vi is non-decreasing and concave in the interval [0, Ei ], we have
vi (min{ C

|S| , Ei }) ≥ vi (min{C,Ei })|S| . This implies

∑
i∈S vi (min{ C

|S| , Ei })
∑

i∈S vi (min{C, Ei }) ≥ 1

|S|

Furthermore, since FU
i (S,C, vS) ≥ min{ C

|S| , Ei } for each i ∈ S, we have

∑
i∈S vi (FU

i (S,C, vS))
∑

i∈S vi (min{C, Ei }) ≥
∑

i∈S vi (min{ C
|S| , Ei })

∑
i∈S vi (min{C, Ei }) ≥ 1

|S|

Finally, from E f f (vS, S,C) ≤ ∑
i∈S vi (min{C, Ei }), we have

∑
i∈S vi (FU

i (S,C, vS))

E f f (vS, S,C)
≥

∑
i∈S vi (FU

i (S,C, vS))
∑

i∈S vi (min{C, Ei }) ≥ 1

|S|

Hence, WS(FU , S,C) ≥ 1
|S| for all S ⊆ N and all C > 0.

Next, we show that WS(FU , S,C) ≤ 1
|S| for all S ⊆ N and all C > 0. In order to

do so, for S ⊆ N and C > 0, we construct a set of overdemanded utility profiles

uδ
S ∈ Ū(S,C) for each δ > 0 such that limδ→0

∑
i∈S uδ

i (F
U
i (S,C,uδ

S))

E f f (uδ
S ,S,C)

= 1
|S| .

Indeed, let S = {i1, i2, . . . , is} where i1 < i2 < · · · < is . For each δ > 0 and
ik ∈ S, define the linear utility function uδ

ik
(x) = δk−1x for all x ∈ [0,C]. Since the

peak of uδ
ik
equals to C for all ik ∈ S, then uδ

S ∈ Ū(S,C) and the uniform rule makes

an allocation FU
ik

(N ,C, uδ
S) = C

s to each ik ∈ S where s = |S|. Thus, the uniform rule

FU (S,C, uδ
S) generates a surplus equal to

∑s
k=1 δk−1(Cs ). For each δ < 1, efficiency

in the problem (S,C, uδ
S) gives agent i1 the total resource C : E f f (uS, S,C) = C .

Thus, we have

WS(FU , S,C) ≤ lim
δ→0

∑s
k=1 δk−1(Cs )

C
= 1

s
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Hence, WS(FU , S,C) = 1
|S| for any coalition S ⊆ N and any C > 0.

Step A2 Suppose that a strategy-proof and same-sided mechanism F is optimal for
the agents in N and resource C > 0. Then for every utility profile u, we have that
bi (u−i ) ≥ C

n for any i ∈ N .
We prove step A2 by contradiction. Suppose there exists an overdemanded utility

profile u and agent i such that bi (u−i ) < C
n . Let agent i’s utility function be u

α
i (x) =

αx for 0 ≤ x ≤ C and α > 0. Since the peak of u is overdemanded and the peak
of uα

i is at C , then the profile (uα
i , u−i ) is also overdemanded. For a large enough α,

the efficient allocation is giving C to agent i . Thus, E f f ((uα
i , u−i ), N ,C) = αC for

large α. On the other hand, the surplus at F(N ,C, (uα
i , u−i )) satisfies,

αbi (u−i ) +
∑

k∈N\i
uk(Fk(N ,C, (uα

i , u−i ))) ≤ αbi (u−i ) +
∑

k∈N\i
uk(x

∗
k (uk)).

Thus,

WS(F, N ,C) ≤ lim
α→∞

αbi (u−i ) + ∑
k∈N\i uk(x∗

k (uk))

αC
= bi (u−i )

C
<

1

n
= WS(FU , N ,C),

where the last equality comes by step A1. This contradicts that F is optimal.
In particular, Lemma 1 and Step A2 imply the following two conditions for an

optimal, strategy-proof and same sided-mechanism F : (a) if x∗
i (ui ) ≤ C

n , then
Fi (N ,C, u) = x∗

i (ui ); (b) if Fi (N ,C, u) < x∗
i (ui ), then Fi (N ,C, u) ≥ C

n .
For the next two steps, we fix a strategy-proof and same-sided mechanism F that

is optimal for any coalition S ⊆ N and resource C > 0.
Step A3 For any profile u ∈ Ū(N ,C), the mechanism F either assigns the agents their
peak or a constant amount.

Consider the set S∗ = {i ∈ N |Fi (N ,C, u) < x∗
i (ui )} composed of the

agents who receive allocations different from their peaks. Consistency implies
Fi (S∗, D, uS∗) = Fi (N ,C, u) for any i ∈ S∗ where D = ∑

i∈S∗ Fi (N ,C, u). Since
F is optimal at coalition S∗ and condition (b) in step A2 holds for coalition S∗,
we have Fi (S∗, D, uS∗) ≥

∑
i∈S∗ Fi (S∗,D,uS∗ )

|S∗| for any i ∈ S∗. Hence, by feasibility,

Fi (N ,C, u) = Fi (S∗, D, uS∗) =
∑

i∈S∗ Fi (S∗,D,uS∗ )

|S∗| for any i ∈ S∗.
Step A4 For any utility profile u, assume, without loss of generality, that x∗

1 (u1) ≤
x∗
2 (u2) ≤ · · · ≤ x∗

n (un). There exists k ≤ n such that S∗ = {k, k + 1, . . . , n}. That is,
the set of agents who do not receive their peaks is a set of consecutive agents with the
highest peaks.

Suppose for the sake of contradiction that there exists i < j such that Fi (N ,C, u) <

x∗
i (ui ) and Fj (N ,C, u) = x∗

j (u j ). Let D = Fi (N ,C, u) + Fj (N ,C, u). By consis-
tency, optimality on the set {i, j} and condition (b) in step A2, we have Fi (N ,C, u) =
Fi ({i, j}, D, u{i, j}) ≥ Fi ({i, j},D,u{i, j})+Fj ({i, j},D,u{i, j})

2 = Fi (N ,C,u)+Fj (N ,C,u)

2 . This
contradicts to Fj (N ,C, u) = x∗

j (u j ) ≥ x∗
i (ui ) > Fi (N ,C, u).
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Optimality of the uniform rule... 33

Finally, there is a unique rule that satisfies steps A3 and A4. This rule is the uniform
rule. 	

Proof for the underdemanded case The following steps parallel Steps A1-A4 above.
Step B1 W S(FU , S,C) = |S|−1

|S| for any coalition S ⊆ N with |S| > 1 and anyC > 0.

First, we show that WS(FU , S,C) ≥ |S|−1
|S| for C > 0 and |S| > 1. Consider

vS ∈ U(S,C) and suppose that Ei is the peak of vi on [0,C] for each i ∈ S.
Since vi is non-increasing, non-negative and concave in the interval [Ei ,C], we have
vi (max{ C

|S| , Ei }) ≥ vi (Ei )(|S|−1)
|S| . This implies

∑
i∈S vi (max{ C

|S| , Ei })
∑

i∈S vi (Ei )
≥ |S| − 1

|S|

Furthermore, since Ei ≤ FU
i (S,C, vS) ≤ max{ C

|S| , Ei } for each i ∈ S, we have

∑
i∈S vi (FU

i (S,C, vS))
∑

i∈S vi (Ei )
≥

∑
i∈S vi (max{ C

|S| , Ei })
∑

i∈S vi (Ei )
≥ |S| − 1

|S|

Finally, from E f f (vS, S,C) ≤ ∑
i∈S vi (Ei ), we have

∑
i∈S vi (FU

i (S,C, vS))
∑

i∈S E f f (vS, S,C)
≥

∑
i∈S vi (FU

i (S,C, vS))
∑

i∈S vi (Ei )
≥ |S| − 1

|S|

Hence, WS(FU , S,C) ≥ |S|−1
|S| for all C > 0 and S ⊆ N .

Next, we show that WS(FU , S,C) ≤ |S|−1
|S| for all C > 0, and S ⊆ N such that

|S| > 1.Wedo so by constructing a set of underdemanded utility profiles vδ
S ∈ U(S,C)

for each δ > 0 such that limδ→0

∑
i∈S vδ

i (F
U
i (S,C,vδ

S))

E f f (vδ
S ,S,C)

= |S|−1
|S| .

Indeed, let S = {i1, i2, . . . , is}, for s > 1, where i1 < i2 < · · · < is . For each
δ > 0 we define vδ

is
(x) = δ(C − x) and vδ

i1
(x) = vδ

i2
(x) · · · = vδ

is−1
(x) = (C − x) for

0 ≤ x ≤ C . The peak of each agent at the utility profile vδ
S = (vδ

i1
, . . . , vδ

is
) is at zero,

thus vδ
S ∈ U(S,C). Furthermore, since all agents have the same peak, the uniform

allocation FU allocates C
s to each agent. Thus, FU (S,C, vδ

S) generates a surplus equal

to (s − 1)(C − C
s ) + δ(C − C

s ) = (s−1)C(s−1+δ)
s .

On the other hand, for δ < 1, the efficient allocation at vδ
S allocates the full amount

C to agent is . It generates an efficient surplus E f f (vδ
S, S,C) = (s − 1)C .

Thus,

WS(FU , S,C) ≤ lim
δ→0

(s − 1)C(s − 1 + δ)/s

(s − 1)C
= s − 1

s
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Hence, WS(FU , S,C) = |S|−1
|S| for all C > 0 and S ⊆ N such that |S| > 1.

Step B2 Suppose that the strategy-proof and same-sided mechanism F is optimal for
the agents in N and resource C > 0. Then for every utility profile u, we have that
ai (u−i ) ≤ C

n for any i .
We prove step 2 by contradiction. Suppose there exists an underdemanded utility

profile u and agent i such that ai (u−i ) > C
n . Let agent i’s utility function be u

α
i (x) =

α − α
C x for 0 ≤ x ≤ C and α > 0. Since the peak of uα

i is at 0, then the profile
(uα

i , u−i ) is also underdemanded. Furthermore, for a large enough α, the efficient
allocation requires agent i to receive nothing and the other agents to split the resource
C . Thus, E f f ((uα

i , u−i ), N ,C) = α + ∑
j �=i u

j (E j ) ≥ α for large α, where E j is
the efficient allocation of the resource to agent j �= i . On the other hand, by Lemma
1 and ai (u−i ) > C

n , the surplus under F at the profile (uα
i , u−i ) satisfies

uα
i (Fi (N ,C, (uα

i , u−i ))) +
∑

k �=i

uk(Fk(N ,C, (uα
i , u−i )))

≤ α − α

C
ai (u−i ) +

∑

k �=i

uk(x
∗
k (uk))

from Lemma 1. Thus, we have

WS(F, N ,C) ≤ lim
α→∞

α − α
C ai (u−i ) + ∑

k �=i uk(x
∗
k (uk))

α
= 1 − ai (u−i )

C
<

n − 1

n

Therefore, this inequality and step B1 imply that F is not optimal, which is a
contradiction.

In particular, Lemma 1 and Step B2 imply the following conditions for an optimal,
strategy-proof and same-sided mechanism F : (a) if x∗

i (ui ) ≥ C
n , then Fi (N ,C, u) =

x∗
i (ui ); (b) if Fi (N ,C, u) > x∗

i (ui ), then Fi (N ,C, u) ≤ C
n .

For the next two steps, we fix a strategy-proof and same-sided mechanism F that is
optimal for any coalition S ⊆ N and resource C > 0.
Step B3 For any profile u ∈ U(N ,C), the mechanism F either assigns the agents their
peak or a constant amount.

Consider the set S∗ = {i ∈ N |Fi (N ,C, u) > x∗
i (ui )} composed of the agents

who receive an allocation different from their peak. Let D = ∑
i∈S∗ Fi (N ,C, u).

By applying optimality on S∗, consistency and condition (b) in step B2, we have

Fi (N ,C, u) = Fi (S∗, D, uS∗) ≤
∑

i∈S∗ Fi (S∗,D,uS∗ )

|S∗| for any i ∈ S∗. Hence, by feasi-

bility, Fi (N ,C, u) =
∑

i∈S∗ Fi (N ,C,u)

|S∗| for any i ∈ S∗.
Step B4 For any utility profile u, assume, without loss of generality, that x∗

1 (u1) ≤
x∗
2 (u2) ≤ · · · ≤ x∗

n (un). There exists k ≤ n such that S∗ = {1, . . . , k}. That is, the set
of agents who do not receive their peak is a set of consecutive agents with the lowest
peaks.

Suppose that there exists i > j such that Fi (N ,C, u) > x∗
i (ui ) and

Fj (N ,C, u) = x∗
j (u j ). Let D = Fi (N ,C, u) + Fj (N ,C, u). By consistency,

optimality on the set {i, j} and condition (b) in step B2, we have Fi (N ,C, u) =
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Optimality of the uniform rule... 35

Fi ({i, j}, D, u{i, j}) ≤ Fi ({i, j},D,u{i, j})+Fj ({i, j},D,u{i, j})
2 = Fi (N ,C,u)+Fj (N ,C,u)

2 . This
contradicts to Fj (N ,C, u) = x∗

j (u j ) ≤ x∗
i (ui ) < Fi (N ,C, u). Finally, there is a

unique rule that satisfies steps B3 and B4. This rule is the uniform rule. 	

(This characterization is tight, as shown in the next remarks.)

Remark 1 (Without same-sideness) The assumption of same-sideness is necessary to
derive the result. Without same-sidedness, the equal division rule F(S,C, u) = C

|S| is
another optimal mechanism for both the overdemanded and underdemanded cases. It
guarantees the same WS as FU for any group of agents.

Remark 2 (Without strategy-proofness) For each problem (S,C, u), consider the
mechanism that picks the allocation y ∈ Y (S,C) that is efficient. If there are
multiple efficient allocations, break ties lexicographically, by choosing the effi-
cient allocation that gives the largest share to agent 1, following by agent 2, etc.
This mechanism guarantees an economic surplus equal to the efficient surplus, thus
WS(FU , S,C) = WS(FU , S,C) = 1. Same-sidedness is implied by efficiency. It is
also consistent, as the subset of an efficient allocation is also efficient for the subset of
agents (and ties are broken lexicographically in case of multiplicity of efficient allo-
cations). This mechanism is not strategy-proof, as agent who are getting an allocation
under (above) their peak, have the incentive to arbitrarily inflate (deflate) their utility.

Remark 3 (Without consistency) Conditions bi (u−i ) ≥ C
n and ai (u−i ) ≤ C

n found
in steps A2 and B2, respectively, are sufficient to guarantee the optimality of the
mechanism. By Lemma 1, there is clearly a large class of mechanisms that satisfy
these conditions along with strategy-proofness and same-sideness, each of them is
optimal.

Remark 4 (Without concavity) The assumption of concavity of the utility function is
necessary in order to achieve a non-zeroWS. To show this for the overdemanded case,
consider a strategy-proof and same-sided mechanism and a utility profile u where
some agent i is allocated an amount yi strictly less than his peak x∗

i (ui ). Consider the
utility function vα

i (x) = ui (x) for x ≤ yi , vα
i (x) = αx−yi ui (x) for x∗

i (ui ) ≥ x ≥ yi ,
and vα

i (x) = α2x∗
i (ui )−yi−xui (x) for x ≥ x∗

i (ui ). Note that vα
i has the same peak as ui

for α ≥ 1, but the cardinal value at the peak tends to infinity as α tends to infinity. By
strategy-proofness and same-sidedness, the allocation of agent i at (vα

i , u−i ) is equal
to yi for any α ≥ 1. Thus, the mechanism generates zero WS as α goes to infinity. A
similar argument can be done for the underdemanded case.
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