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Abstract We study binary relations (preferences) and ordinal games in the casewhere
no continuity-like properties are assumed at all. We introduce generalizations of the
maximal element and Nash equilibrium, called, respectively, the weak maximal ele-
ment and weak equilibrium, and give existence results when binary relations satisfy
only convexity conditions. The weak maximal element (weak equilibrium) is equiv-
alent to the maximal element (Nash equilibrium) if and only if a generalization of
continuity is given. Moreover, we obtain the existence of quasi-Pareto optimal allo-
cations in exchange economies.
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1 Introduction

As it is well known, in order to obtain the existence of maximal elements of binary
relations and Nash equilibria in ordinal games, one needs to assume properties of
convexity and continuity. The aim of this paper was to study binary relations and
ordinal gameswhere the sets of alternatives (strategies) are convex and compact subsets
of Hausdorff topological vector spaces and binary relations satisfy only convexity
properties. We introduce new concepts for binary relations and ordinal games, called,
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30 V. Scalzo

respectively, theweakmaximal element and theweak equilibrium and prove that the set
of weak maximal elements and the set of weak equilibria are non-empty and compact
in our framework.

An alternative x̄ is a weak maximal element if, for any x and any open neighbor-
hood O of x̄ , there exists some z ∈ O such that x is not preferred to z (so, a maximal
element is a weak maximal element). We prove that the set of weak maximal ele-
ments coincides with the set of maximal elements if and only if a general topological
property introduced by Tarafdar (1977) is satisfied. This allows us to clarify the role
of topological assumptions on binary relations (that is, the continuity and its general-
izations) in maximal element existence results. More precisely, convexity guarantees
the existence of maximal elements in an weak sense and continuity allows such weak
points to be optimal ones.

A strategy profile x̄ of an ordinal game is a weak equilibrium if, for any strategy
profile x and any open neighborhood O of x̄ , there exists some z ∈ O such that
(xi , z−i ) is not preferred to z for each player i (so, every Nash equilibrium is a weak
equilibrium). We give an example to show that the convexity condition used in several
Nash equilibrium existence results (see Shafer and Sonnenschein 1975; Yannelis and
Prabhakar 1983; Wu and Shen 1996; Scalzo 2015; He and Yannelis 2016) is not
sufficient to obtain the existence of weak equilibria. Hence, we introduce a stronger
condition which implies that the set of weak equilibria is non-empty and compact (we
show that the condition is not connected with generalizations of continuity used in
Nash equilibrium existence results). Moreover, we prove that every weak equilibrium
is a Nash equilibrium if and only if the game has the single deviation property (Reny
2009). So, convexity guarantees the existence ofweak Nash equilibria, while the single
deviation property allows such weak equilibria to be Nash equilibria. Let us remark
that the single deviation property is a very general topological condition and does
not guarantee the existence of Nash equilibria under standard convexity assumptions
(Reny 2009). If the binary relations of players are represented by payoff functions,
we obtain that the set of weak equilibria is included in both the set of Reny equilibria
(Bich and Laraki 2012) and the set of quasi-Nash equilibria (Scalzo 2016).

Finally, we apply the results to finite exchange economies and introduce a general-
ization of Pareto optimal allocations that we call quasi-Pareto optimal allocations. An
allocation x̄ is quasi-Pareto optimal if, for any open neighborhood O of x̄ , there are
no allocations which improve upon each allocation which belongs to O . We obtain
that the set of quasi-Pareto optimal allocations is non-empty and compact whether the
preferences of consumers are complete and strictly convex. Moreover, when the pref-
erences are also transitive, there exist quasi-Pareto optimal allocations which belong
to the topological closure of the set of individually rational allocations.

2 Preliminaries and the weak maximal element

Let X be a non-empty subset of a Hausdorff topological vector space and � be an
asymmetric (but not necessarily complete or transitive) binary relation on X . Define
the correspondence (map) P : X ⇒ X by P(x) = {y ∈ X : y � x}1 for all

1 As usual, y � x denotes that (y, x) ∈�.
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x ∈ X . So, P(x) is the set of elements which are better than x (we identify the binary
relation � with the correspondence P). An element x∗ ∈ X is said to be maximal
for � if P(x∗) = ∅; we also say that x∗ is a P-maximal element. Suppose that X
is convex and compact. In order to obtain the existence of P-maximal elements, one
needs to assume convexity and continuity properties: we refer to the seminal work
by Yannelis and Prabhakar (1983), where, for any x ∈ X , (1) x /∈ coP(x) and (2)
P−1(x) = {z ∈ X : x ∈ P(z)} is open in X .2 Using the property below (see Tarafdar
1977)3

P(x) �= ∅ �⇒
{
there exists x ′ ∈ X and an open neighborhood Ox of x
such thatx ′ ∈ P(z) for all z ∈ Ox ∩ X,

(1)

condition (2) can be relaxed, and one obtains the following result (see Wu and Shen
1996, where (1) is called the local intersection property):

Lemma 1 Let X be a convex and compact subset of a Hausdorff topological vector
space and P : X ⇒ X. Assume that x /∈ coP(x) for each x ∈ X and property (1) is
satisfied. Then, the set of P-maximal elements is non-empty and compact.

Remark 1 In a recent paper (Scalzo 2015), the existence of P-maximal elements has
been obtained for maps which satisfy (i) above and a generalization of (1), that is, there
exists a well-behaved map ξx : Ox ⇒ X such that ξx (z) ⊆ P(z) for all z ∈ Ox ∩ X
(well-behaved means that the map is upper hemicontinuous with non-empty, convex
and compact values). This new property is an extension of a condition introduced
by Corson and Lindenstrauss (1966) which characterizes the existence of continuous
selections from a map (see page 495, where ξx is a single valued and continuous
function).

It is easy to find examples of correspondences which satisfy every assumption of
Lemma 1 except (1) andmaximal elements fail to exist. In these cases, onewould know
if there are elements that, in some sense, can be looked as weak maximal elements.
More precisely, it would be interesting to obtain the existence of a non-empty set
which includes the maximal elements and coincides with the set of maximal elements
when the property (1) is satisfied. A positive answer to the question is given through
the definition below:

Let P : X ⇒ X be a correspondence. The set of P-maximal elements is denoted
by EP . Given an element x ∈ X , with τ(x) we denote the set of open neighborhoods
of x relative to X .

Definition 1 x̄ ∈ X is said to be a weak P-maximal element if for all x ∈ X and
all O ∈ τ(x̄), there exists z ∈ O such that x /∈ P(z). The set of weak P-maximal
elements is denoted by EW

P .

It is clear that EP ⊆ EW
P . The converse does not hold: for instance, consider the

function u : [0, 1] −→ [0, 1] defined by u(x) = x if x ∈ [0, 1[ and u(1) = 0, and let

2 Given A ⊆ X , we denote by coA and clA, respectively, the convex hull and the topological closure in X
of the set A.
3 I thank Nicholas Yannelis for the reference of Tarafdar (1977).
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P : [0, 1] ⇒ [0, 1] such that P(x) = {z ∈ [0, 1] : u(z) > u(x)}. We have EP = ∅
and EW

P = {1}. The next proposition shows some properties of EW
P .

Proposition 1 Assume that X is a convex and compact subset of a Hausdorff topo-
logical vector space. The following statements hold:

1. EP = EW
P if and only if P satisfies (1).

2. If x /∈ coP(x) for any x ∈ X, then EW
P �= ∅.

3. EW
P is a closed (and compact) set.

Proof Let DP be the subset of X where the property (1) does not hold for the map P ,
that is the set of all x ∈ X such that P(x) �= ∅ and, for all x ′ ∈ X and all O ∈ τ(x),
there exists some z ∈ O such that x ′ /∈ P(z). So, one has EW

P = EP ∪ DP , which
proves (1). Concerning (2), if EW

P = ∅, we get EP = EW
P and P has the property (1).

Hence, in light of Lemma 1, we obtain EP �= ∅, which is a contradiction. Finally, if
x /∈ EW

P , for some x ′ and an open neighborhood O of x , we get x ′ ∈ P(z) for any
z ∈ O . But O ∈ τ(z) for each z ∈ O; so, O ∩ EW

P = ∅, which proves (3). ��

3 The weak equilibrium in ordinal games

An ordinal game is a collection � = 〈Xi , Pi 〉i∈N where N is the set of players, that
we assume to be finite, and, for any i ∈ N , Xi is a non-empty subset of a Hausdorff
topological vector space. The set of strategy profiles is denoted by X = ∏

i∈N Xi

and, for any i ∈ N , X−i = ∏
j �=i X j ; given x ∈ X , we set x = (xi , x−i ). We

assume that each player i compares strategy profiles by means of an asymmetric
binary relation �i . So, Pi : X ⇒ Xi is the correspondence so that zi ∈ Pi (x) if and
only if (zi , x−i ) �i x . A Nash equilibrium (equilibrium in short) of � is a strategy
profile x∗ such that Pi (x∗) = ∅ for each i ∈ N ; the set of equilibria of � is denoted by
E� . Sufficient conditions for the existence of equilibria have been recently provided
by Carmona and Podczeck (2016), He and Yannelis (2016), Prokopovych (2013) and
(2016), Reny (2016), Scalzo (2015).

Our purposewas to study ordinal gameswhere some convexity condition is satisfied
and no topological assumptions on the correspondences Pi are given at all. We aim to
identify a non-empty set of weak equilibria. So, we give the following definition:

Definition 2 x̄ ∈ X is said to be a weak equilibrium of � if for all x ∈ X and all
O ∈ τ(x̄) there exists z ∈ O such that xi /∈ Pi (z) for each i ∈ N . The set of weak
equilibria of � is denoted by EW

� .

We have E� ⊆ EW
� , and E� = EW

� under the topological property introduced below
(see Reny 2009):

Definition 3 � has the single deviation property if whenever x ∈ X is not an equilib-
rium, there exists x ′ ∈ X and O ∈ τ(x) such that for every z ∈ O there is a player i
for whom x ′

i ∈ Pi (z).

Proposition 2 E� = EW
� if and only if � has the single deviation property.
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Weak maximal elements and weak equilibria... 33

Proof First, assume that E� = EW
� . If x is not an equilibrium, since x /∈ EW

� , we have
that � has the single deviation property. On the other hand, suppose that � has the
single deviation property and x ∈ EW

� \E� . From the definition of weak equilibrium,
we obtain that, for any strategy profile x ′ and any open neighborhood O of x , there
exists z ∈ O such that x ′

i /∈ Pi (z) for each i ∈ N , which is in contrast with the single
deviation property. ��
Remark 2 The following condition is used in several equilibrium existence results (see
Shafer and Sonnenschein 1975; Yannelis and Prabhakar 1983; Wu and Shen 1996;
Scalzo 2015; He and Yannelis 2016):

xi /∈ coPi (x) for all x ∈ X and all i ∈ N. (2)

Now, assume that the sets of strategies are convex and compact subsets of Hausdorff
topological vector spaces. We note that the single deviation property and (2) are
not sufficient conditions for the existence of equilibria. Indeed, consider the ordinal
game � with 3 players and the correspondences Pi defined by Pi (x) = {yi ∈ Xi :
ui (yi , x−i ) > ui (x)}, where the sets Xi and the functions ui are given by Reny (2009)
(pages 4 and 5). The function ui (·, x−i ) is quasi-concave for all x−i and all i ; so, the
correspondences Pi satisfy the property (2).4 Moreover, � has the single deviation
property and E� = ∅ (Reny 2009).

Remark 3 Prokopovych (2013) identified a convexity condition which guarantees the
existence of equilibria in ordinal games having the single deviation property (see
Theorem 2). More precisely, assume that � has the single deviation property: for any
x which is not an equilibrium, d(x) and Ox are, respectively, the deviations profile
and the open neighborhood of x as given by Definition 3. The condition introduced
by Prokopovych (which supposes that the game has the single deviation property) is
the following:5

for all {x1, ..., xk} such that {x1, ..., xk} ∩ E� = ∅ and for all z ∈ ∩k
h=1Oxh

there exists i ∈ N such that zi /∈ co
{
d(xh)i : h ∈ {1, ..., k}}. (3)

Remark 4 Consider the setting of ordinal gameswhere the sets of strategies are convex
and compact subsets of Hausdorff topological vector spaces. We have that: property
(2) is not a sufficient condition for the existence of weak equilibria. In fact, if EW

� �= ∅
for any � which satisfies property (2), for games that have also the single deviation
property, we obtain E� �= ∅ (see Proposition 2), which contradicts Remark 2.

In light of Remark 4, we need a condition different from (2) in order to obtain the
existence of weak equilibria in ordinal games where no other assumptions on the

4 Let G = 〈Xi , ui 〉i∈N be a normal form game and � = 〈Xi , Pi 〉i∈N be the ordinal game where Pi (x) =
{yi ∈ Xi : ui (yi , x−i ) > ui (x)} for any x ∈ X and any i ∈ N . It is easy to prove that property (2) holds if
and only if ui (·, x−i ) is quasi-concave for any x−i ∈ X−i and any i ∈ N .
5 For our purpose, it is sufficient to refer to the version of Theorem 2 by Prokopovych (2013) for ordinal
games. However, this theorem has been given for games which satisfy a condition more general than the
single deviation property (see also Theorem 5 ibidem).
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correspondences are given. First, for any � = 〈Xi , Pi 〉i∈N , let us consider the corre-
spondence P : X ⇒ X defined as below:

y ∈ P(x) ⇐⇒ there exists i ∈ N such that yi ∈ Pi (x) (4)

It is easy to see that P satisfies property (1) if and only if � has the single deviation
property.

Proposition 3 Given � = 〈Xi , Pi 〉i∈N , assume that any Xi is a convex and compact
subset of a Hausdorff topological vector space. Let P be the correspondence defined
by (4) and assume that

x /∈ coP(x) ∀ x ∈ X. (5)

Then, EW
� is non-empty and compact.

Proof It is sufficient to note that E� = EP and EW
� = EW

P . So, Proposition 1 applies
and the thesis follows. ��

The connections between (5) and properties (2) and (3) are given in the proposition
below (let us emphasize that, differently from (3), (5) does not suppose any topological
property on �).

Proposition 4 Assume that � satisfies property (5). Then, (2) holds, and, when � has
the single deviation property, also (3) holds.

Proof First, if (2) is not true, there exists x ∈ X and i ∈ N such that xi ∈ co{x1i , ..., xki }
with xhi ∈ Pi (x) and h = 1, ..., k. So, (xhi , x−i ) ∈ P(x) for h = 1, ..., k, and we get
x ∈ co{(xhi , x−i ) : h = 1, ..., k} ⊆ coP(x), which is in contrast with (5).

Finally, assume that � has the single deviation property. If (3) is not satisfied, for
at least one finite set {x1, ..., xk} of strategy profiles which are not equilibria, taken
the corresponding set of deviations

{
d(x1), ..., d(xk)

}
and the open neighborhoods

Ox1, ...Oxk given by the single deviation property, there exists z ∈ ∩k
h=1Oxh such that

zi ∈ co
{
d(x1)i , ..., d(xk)i

}
for all i ∈ N ; so, z ∈ co

{
d(x1), ..., d(xk)

}
. On the other

hand, from the single deviation property we have that, for every h ∈ {1, ..., k}, there
exists ih ∈ N such that d(xh)ih ∈ Pih (z), which implies d(xh) ∈ P(z) for any h. So,
we have z ∈ coP(z), which contradicts (5). ��

If � does not satisfy the single deviation property, condition (5) does not imply (3),
as it is shown by the example below:

Example 1 Let u1 : [0, 1] × [0, 1] −→ [0, 1] be such that u1(x1, x2) = 1 if x1 > x2,
u1(x1, x2) = 0 if x1 < x2 and x1 = x2 = 0, u1(x1, x2) = 1 if x1 = x2 > 0, and let
u2 be defined by u2(x1, x2) = 1 − u1(x1, x2) if x1 �= x2 and u2(x1, x2) = u1(x1, x2)
otherwise. Consider the ordinal game � = 〈Xi , Pi 〉i=1,2 where X1 = X2 = [0, 1]
and Pi (x) = {yi ∈ Xi : ui (yi , x−i ) > ui (x)} for all x ∈ X and i = 1, 2.

If x ∈ X and x1 > x2, one has P1(x) = ∅ and P2(x) = [x1, 1]; so, P(x) =
[0, 1] × [x1, 1] which is a convex set and x /∈ [0, 1] × [x1, 1]. If x1 < x2, one has
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Weak maximal elements and weak equilibria... 35

P1(x) = [x2, 1] and P2(x) = ∅; so, x /∈ P(x) = [x2, 1] × [0, 1]. For x1 = x2 > 0
we have P(x) = ∅. Finally, we get

P(0, 0) = (]0, 1] × [0, 1]) ∪ ([0, 1]×]0, 1]) = ([0, 1] × [0, 1])\{(0, 0)}
Hence, � satisfies (5). On the other hand, it is easy to see that the single deviation
property fails to be verified for x = (0, 0). However, we have that E� = {x : x1 =
x2 > 0} and EW

� = {x : x1 = x2}. So, in light of Proposition 2, we know that � does
not have the single deviation property. Finally, property (3) is not satisfied.

Remark 5 The game introduced in the example above satisfies property (5) but not the
assumptions of the equilibrium existence results given by Scalzo (2015), He and Yan-
nelis (2016), Reny (2009). Indeed, these assumptions imply that the set of equilibria
is closed, differently from the game presented in Example 1.

Remark 6 From Propositions 2 and 3, we obtain the following equilibrium existence
result: assume that � = 〈Xi , Pi 〉i∈N is an ordinal game where, for each player i , Xi

is a convex and compact subset of a Hausdorff topological vector space. If � has the
single deviation property and condition (5) is satisfied, then the set of equilibria of � is
non-empty and compact. Indeed, (5) implies that EW

� is non empty and compact and
the single deviation property provides E� = EW

� . However, in light of Proposition 4,
this result is a corollary of Theorem 5 by Prokopovych (2013).

4 The weak equilibrium in strategic form games

LetG = 〈Xi , ui 〉i∈N be a strategic form game and�(G) = 〈Xi , Pi 〉i∈N be the ordinal
game such that Pi (x) = {yi ∈ Xi : ui (yi , x−i ) > ui (x)} for every x ∈ X and i ∈ N
(with N we denote also the number of players). The set of Nash equilibria of G is
E�(G). With EW

G we denote the set of weak equilibria of �(G), that we call weak
equilibria of G.6

In this section, we compare the weak equilibrium in strategic form games with
other generalizations of the Nash equilibrium. The following definitions have been
introduced by Bich and Laraki (2012) and Scalzo (2016), respectively:

Definition 4 A strategy profile x̄ is said to be a Reny equilibrium of G if there exists
w̄ ∈ R

N such that (x̄, w̄) belongs to the closure of the graph of the function u =
(u1, ..., uN ) and lim inf z→x̄ ui (xi , z−i ) ≤ w̄i for any xi ∈ Xi and any i ∈ N . The set
of Reny equilibria is denoted by REG .7

Definition 5 A strategy profile x̄ is said to be a quasi-Nash equilibrium of G if

lim inf
z→x̄

�G(x, z) ≤ 0 ∀ x ∈ X,

6 The weak equilibrium in strategic form games was introduced by Bich and Laraki (2012). Differently
from what was stated in their paper, weak equilibria do not exist in every quasi-concave game (see the
previous Remark 4).
7 The definition of Reny equilibrium is connected with the definition of better-reply secure games given
by Reny (1999).
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where the function �G is defined on X × X by

�G(x, z) =
∑
i∈N

[
ui (xi , z−i ) − ui (z)

]

The set of quasi-Nash equilibria is denoted by QG .8

Proposition 5 EW
G ⊆ REG ∩ QG.

Proof Assume that x̄ ∈ EW
G . If x ∈ X , for any O ∈ τ(x̄) there is z ∈ O such that

ui (xi , z−i ) − ui (z) ≤ 0 ∀ i ∈ N (6)

This implies that, fixed i ∈ N , lim inf z→x̄ ui (xi , z−i ) ≤ w̄i for all xi ∈ Xi , where
w̄i = lim supz→x̄ ui (z). So, x̄ ∈ REG . Moreover, (6) leads to lim inf z→x̄ �G(x, z) ≤
0 for all x ∈ X , that is, x̄ ∈ QG . ��

The inclusion in Proposition 5 can be strict, as the example below shows:

Example 2 Let G be the 1-player game where X1 = [0, 1], u1(0) = 1, u1(x1) = x1
if x1 ∈]0, 1[ and u1(1) = 0. One has EG = EW

G = {0} and REG = QG = {0, 1}.
In the previous section, we have showed that property (5) implies (2), and (2) is
equivalent to the quasi-concavity of ui (·, x−i ) for any x−i and any i ∈ N . Baye et al.
(1993) introduced a property called diagonal transfer quasi-concavity, that is, for any
{x1, ..., xk} there exists {z1, ..., zk} such that, if z = ∑s

j=1 λi j z
i j with λi j > 0 for

any j , we have min
{
�G(xi j , z) : j = 1, ..., s

} ≤ 0. The connection between (5) and
diagonal transfer quasi-concavity is given below.

Proposition 6 Property (5) implies the diagonal transfer quasi-concavity.

Proof Assume that {x1, ..., xk} and z = ∑k
h=1 λhxh , with λh > 0 for any h, are

such that min
{
�G(xh, z) : h = 1, ..., k

}
> 0. So, for any h there exists ih ∈ N so

that uih (x
h
ih

, z−ih ) > uih (z), that is, x
h
ih

∈ Pih (z) (Pih is the correspondence of player
ih in �(G)). Using the arguments of the proof of Proposition 4, we get z ∈ coP(z),
which contradicts (5). Hence, (5) implies the following property: for any {x1, ..., xk}, if
z = ∑s

j=1 λi j x
i j withλi j > 0 for any j , we havemin

{
�G(xi j , z) : j = 1, ..., s

} ≤ 0.

Now, it is sufficient to set {z1, ..., zk} = {x1, ..., xk} and the proposition is proved. ��

5 Quasi-Pareto optimality in exchange economies

In this section, we introduce a weakening of Pareto optimality in exchange economies.
It is known that Pareto optimal allocations existence results include continuity and
convexity assumptions on the preferences of consumers (see, for example, Aliprantis
et al. 1990). Now, we focus on economies where the preferences are convex and not

8 A strategy profile x∗ is a Nash equilibrium of G if and only if �G (x, x∗) ≤ 0 for all x ∈ X .
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necessarily continuous. In this setting, we obtain the existence of quasi Pareto optimal
allocations, that are allocations x̄ such that, for any allocation x , there is at least one
consumer that prefers an approximation of x̄ to x . Moreover, we get the existence of
quasi Pareto optimal allocations which belong to the closure of the set of individually
rational allocations.

Assume that E is an exchange economy with a finite number � of commodities and
a finite set I of consumers. The set of bundles, denoted byK, is a convex and compact
subset of R�+ containing the null vector and with non-empty interior.9 We suppose
that any consumer i ∈ I is endowed with a complete but not necessarily transitive
binary relation �i defined on R

�+ (�i denotes the asymmetric part of �i ) and no
topological assumptions, like continuity ant its generalizations, are assumed at all.
Let ei ∈ K\{the null vector} be the endowment of i and A(E) be the set of feasible
allocations (in short allocations), that is, the set of x = (xi )i∈I ∈ K

|I | such that∑
i∈I xi ≤ ∑

i∈I ei .10 It is easy to see that A(E) is non-empty, convex and compact.
We recall that an allocation x is said to be Pareto optimal, if there are no allocations

y such that (a) yi �i xi for all i ∈ I and (b) y j � j x j for some j ∈ I ; individually
rational, if xi �i ei for all i ∈ I . We denote by PO(E) the set of Pareto optimal
allocation of E and by Ar (E) the set of individually rational allocations.

Definition 6 An allocation x̄ of E is said to be quasi-Pareto optimal if for every
allocation x and every open neighborhood O of x̄ , there exists an allocation z ∈ O
such that either z j � j x j for some j ∈ I or zi �i xi for any i ∈ I . The set of
quasi-Pareto optimal allocations is denoted by QPO(E).

Proposition 7 Assume that the preferences of consumers are complete and strictly
convex,11 that is

yi �i xi and zi �i xi with yi �= zi �⇒ (1 − t)yi + t zi �i xi ∀ t ∈]0, 1[
(7)

Then

1. QPO(E) is non-empty and compact;
2. QPO(E) ∩ clAr (E) is non-empty and compact providing that �i is transitive for

any i ∈ I .

Proof In order to prove (1), consider the binary relation � defined onA(E) by y � x
if and only if (a) and (b) above hold: we have that the quasi-Pareto optimal allocations
are nothing but the weak maximal elements of �. Property (7) implies that P(x) is
convex; moreover, x /∈ P(x). So, Proposition 1 applies and (1) follows.

Let us prove (2). First, note that clAr (E) is convex and compact. Hence, in light of
(7) and Proposition 1, there exists at least one weak maximal element x̄ of� restricted
to clAr (E). If x̄ is not a quasi-Pareto optimal allocation, there exists an allocation x
and an open neighborhood O of x̄ such that x ∈ P(z) for all z ∈ O ∩ A(E). Since

9 In real-life markets, the quantity of each commodity is limited. So, it is reasonable to assume that the
space of bundles is compact.
10 Given two elements x and y of R�, the inequality x ≤ y means xi ≤ yi for each i ∈ {1, ..., �}.
11 See Aliprantis et al. (1990).
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O ∩ Ar (E) �= ∅, for at least one individually rational allocation z belonging to O we
have x � z, which implies x ∈ Ar (E). Because x̄ is a weak maximal element of � on
clAr (E), there exists z′ ∈ clAr (E) ∩ O such that x /∈ P(z′). But clAr (E) ⊂ A(E),
and we get a contradiction. So, (2) is proved. ��

6 Conclusion

In this paper, we have studied binary relations and ordinal games when only some
convexity assumption was given. In this setting, we have obtained the existence of
weak maximal elements for binary relation (Proposition 1) and weak equilibria for
ordinal games (Proposition 3). Any maximal element is a weak maximal element and
the converse holds for binary relations that satisfy a condition introduced by Tarafdar
(1977) (Proposition 1). Similarly, any Nash equilibrium is a weak equilibrium; Nash
equilibria and weak equilibria coincide in ordinal games which have the single devia-
tion property (Reny 2009) (Proposition 2). These results have permitted us to clarify
the role of the topological assumptions on binary relations in maximal element and
Nash equilibrium existence results. In fact, we have obtained that convexity guarantees
the existence of maximal elements and Nash equilibria in a weak sense (weak max-
imal elements and weak equilibria), while generalizations of continuity allow such
weak elements to be optimal points. Finally, we have applied the results to exchange
economies where the preferences of consumers were assumed to be complete and
strictly convex; in this setting, we have obtained the existence of quasi-Pareto optimal
allocations.
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