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Abstract This work analyzes a price choice game with discontinuous payoffs in
which sellers may have asymmetric information about the state of the market. The
prices which sellers post in the market must be measurable with respect to their private
information and sellers are assumed to have ex ante maximin expected utilities. Easily
verified conditions upon the primitiveswhich guarantee the existence of a pure strategy
price equilibrium in the game, under both equal sharing and winner-takes-all sharing
at price ties, are presented. The existence proofs are direct and constructive.

Keywords Asymmetric information · Discontinuous payoffs · Ambiguity · Maximin
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1 Introduction

A persistent foundational problem in economic theory is the explanation of how prices
are formed. In most Walrasian models, it is assumed that there is an individual outside
the model, the “auctioneer”, who establishes the market prices and prevents trading at
disequilibrium prices. An attempt to remedy this foundational problem comes from the
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literature on price competition, the class of Bertrand and Bertrand–Edgeworth games,
in which sellers choose which prices to post in the market. This research has provided
important insights into the conditions under which the competitive equilibrium can be
achieved as the Nash equilibrium outcome of an appropriate price game.

A general theory of price competition would include the possibility that sellers
may have asymmetric information when posting prices in the market place. However,
little work has been done in this direction.1 One of the reasons why little research has
been done in this direction is that homogeneous-good price games have discontinuous
payoffs and there are few existence results for discontinuous games with asymmet-
ric information. Only recently, He and Yannelis (2015b, 2016) have demonstrated
the existence of Nash equilibria in particular discontinuous games with asymmetric
information by generalizing the existence results of Reny (1999).2

This work presents a theory of price competition under asymmetric information of
the type usually studied in the general equilibrium context. In the model, sellers post
prices for a single perfectly homogeneous good, and both themarket demand and costs
functions are state contingent. Sellers have private information which is modelled by
a partition of the finite set of states of the world. Given these information restrictions,
the prices which sellers post in the market must be measurable with respect to their
private information. At the ex ante stage, the sellers are assumed to have maximin
expected utilities (MEU) consistent with ambiguity aversion. It is demonstrated that if
two conditions are satisfied (i) the sellers have symmetric cost functions (ii) there are
at least two sellers of each information type, then the game possesses a pure strategy
price equilibrium under both equal-sharing and winner-takes-all sharing at price ties.
In Sect. 3.1, it is shown that if any of these conditions are relaxed, then a pure strategy
price equilibriummay fail to exist. Therefore, it does not appear possible to relax these
conditions any further.

There is both an economic motivation, and a technical requirement, behind the two
conditions. The first condition, that there be at least two sellers of the same information
type, is equivalent to no seller having a monopoly over their information in the market.
It is standard in many economic models to consider the case where the set of sellers
is replicated so no seller is a monopolist.3 If one were to fix a price game, then for
any replication of the set of sellers, this condition would be satisfied. The technical
requirement which having at least two sellers of each information type meets, is that
it solves the well-known “open-set” problem in which a seller’s best response may
not be well defined.4 When there are at least two sellers of each information type,
it is possible to construct equilibria in which sellers of the same type post the same

1 A step in this direction was taken by Spulber (1995) and Wambach (1999). These works studied prices
games in which sellers had uncertain costs. However, both of these papers assume that the uncertainty is
symmetric amongst the sellers, and they look for symmetric Nash equilibria.
2 Unfortunately, these recent existence results are not easy to apply to the model here because Bertrand
games tend not to be payoff secure as tied payoffs can be greater than non-tied payoffs. Interestingly, the
discussion in Reny (1999) regarding Bertrand competition under constant and symmetric marginal costs,
is one of the few special cases in which the Bertrand price game is payoff secure and quasiconcave.
3 Debreu and Scarf (1963) were the first to consider markets in which the set of sellers is replicated.
4 See Vives (1999, p.123) and the discussion of footnote 8 on page 368 for details of the open-set problem.
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prices in the market. Therefore, each seller knows they will tie with at least one other
seller, and they cannot benefit from increasing their price. The second condition, that
sellers have symmetric cost functions, means that sellers have access to a common
production technology which generates their symmetric cost functions. As the paper
imposes convexity on the cost function, the reader can imagine that the sellers have
access to a common concave production function which generates their convex cost
function. The technical requirement which this condition meets, is that it ensures that
the ex post games possess a pure strategy Nash equilibrium. If sellers have asymmetric
costs, then even without asymmetric information being introduced into the model, a
pure strategy Nash equilibrium may fail to exist.5

In this work, it is assumed that sellers are maximin expected utility (MEU) maxi-
mizers. Although this is a widely used model of choice under ambiguity, one might
reasonably ask whether the results would hold if one were to adopt standard Bayesian
expected utilities (BEU) instead. This is an interesting, but technically difficult, open
question. As was noted earlier, existence results for discontinuous games, in which
players’ strategies must be measurable with respect to their private information, and
players have Bayesian expected utilities, have only recently been provided by He and
Yannelis (2015b, 2016). However, these general results are not easily applicable to
the model studied here because the price game can fail to be payoff secure. Even if
there were no asymmetric information in the model, the one-shot Bertrand game of
the type studied in Dastidar (1995), and generalized here, is not payoff secure. Instead,
existence results have tended to be obtained by directly examining the primitives of
the model.With asymmetric information, however, this is not easy to do. This explains
why there has been an absence of research in this direction. There is a technical advan-
tage whichMEU has over standard Bayesian utilities which this work has been able to
exploit. In price games, it is necessary to stop sellers wanting to undercut their rivals’
prices. If sellers have maximin expected utilities, and are uncertain about the state of
the world, when considering undercutting they consider only the worst outcome. As a
consequence, this makes it easier to find price vectors at which sellers are not willing
to risk undercutting other sellers’ prices.

1.1 Related literature

This work brings together two different areas of research in economic theory. First,
there is a literature analyzing the existence of Nash equilibria in games where sellers
post prices in homogeneous-good markets. Second, there is a literature on ambiguity,
when individuals may not be able to assign probabilities to relevant outcomes, and the
implications of this problem for canonical economic models.6

Dastidar (1995) studied a one-shot model of price competition in a homogeneous-
good market in which sellers had strictly convex costs and demand was equally shared

5 Blume (2003) gives an example where a pure strategy Nash equilibrium fails to exist, but shows that a
continuum of mixed strategy Nash equilibria do exist.
6 A detailed discussion of price competition in homogeneous-good markets can be found in Baye and
Kovenock (2008). An accessible introduction to the theory of choice under uncertainty, including ambiguity
and related paradoxes, such as the Newcomb problem, is Allingham (2002, Ch.3).
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at minimum price ties. It was proved that with symmetric cost functions there exists a
continuum of pure strategy price equilibria. When the sellers have asymmetric costs,
a pure strategy Nash equilibrium exists, but may be unique. Baye and Morgan (2002)
considered price competition in a model with winner-takes-all sharing at minimum
price ties. With this sharing rule at minimum price ties, the existence of a pure Nash
equilibrium is guaranteed under weak conditions on the market primitives, including
possible discontinuities in the monopoly profit function. Hoernig (2007) studied the
general properties of sharing rules at minimum price ties which guarantee the exis-
tence of pure and mixed Nash equilibria. By applying an existence result of Reny
(1999) to the price game, it was proved that if the sharing rule is coalition monotone
and weakly tie-decreasing, the non-tied payoffs are continuous and the sum of the
payoffs upper semicontinuous, then the game possesses a pure strategy Nash equilib-
rium. Bagh (2010) considered a model of price competition with possibly asymmetric
convex costs, discontinuous demand, and an arbitrary but deterministic sharing rule
under prices ties. Conditions upon the primitives which guaranteed the existence of
a continuum of pure strategy Nash equilibria were presented. Saporiti and Coloma
(2010) studied a model with symmetric sellers who had convex variable costs, and
a possibly avoidable fixed cost of production. They established necessary and suf-
ficient conditions for the existence of a pure strategy Nash equilibrium based upon
the property of subadditivity of the cost function. Dastidar (2011) also examined the
implications of subadditive symmetric cost functions for the existence of pure and
mixed Nash equilibria. This work confirmed the suspected non-existence of both pure
and mixed strategy Nash equilibria when sellers have symmetric increasing returns to
scale cost functions.

The literature on ambiguity in economic models began with Ellsberg’s (1961)
famous urn experiments which demonstrated that, when individuals cannot assign
probabilities to particular outcomes, then their choices may be inconsistent with stan-
dard subjected expected utility theory.Gilboa andSchmeidler (1989) proposed a theory
of choice under ambiguity which can explain the observations in the Ellsberg experi-
ments, and is analytically tractable enough to be applied to a wide variety of contexts.
The model of maximin expected utility assumes that individuals evaluate ambiguous
outcomes by considering the minimum utility across the set of probabilities which
agree with their information. In recent years, the implications of this model have
been explored in some detail. Correia-da-Silva and Hervés-Beloso (2009) analyzed an
Arrow–Debreu economy with private information in which individuals chose from a
list of bundles of goods. By choosing from a list of bundles, individual consumption
did not need to be measurable with respect to each individual’s information. When
individuals were unsure which bundle of goods would be delivered, it was assumed
that they considered theminimumpossible utility. In de Castro andYannelis (2011) the
model of maximin expected utility was applied to asymmetric information economies
and mechanism design scenarios.7 They emphasized that one of the advantages of the
maximin expected utility model is that it solves the usual conflict between ex ante
efficient allocations and ex post incentive compatibility. In essence, with maximin

7 They also presented an excellent discussion of the relevance and shortcomings of the maximin expected
utility in Section 7.
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expected utilities, individuals equalize utilities across different states of the world. As
a consequence, after individuals receive their private information about the state of the
world, they have no incentive to misrepresent the information they have received. He
and Yannelis (2015a) established equivalence theorems for the maximin expectations
equilibrium and the core with an atomlessmeasure space of individuals usingmaximin
expected utilities to evaluate state-contingent allocations.

2 The model

Consider a finite set of sellers N = {1, . . . , n}, n ≥ 2, who produce a single perfectly
homogeneous good. There is a finite set � = {ω1, . . . , ωm} which is the set of states
of the world, and a probability distribution, μ, over the set �. It shall be assumed that
μ(ω) > 0 for every ω ∈ � so no state of the world is redundant. The state-contingent
cost function of seller i is Ci : �+ ×� → �+. The following conditions are imposed
upon the cost functions.

Assumption 2.1 For every i ∈ N , and every ω ∈ �, Ci (·, ω) is C2, convex, strictly
increasing and satisfies Ci (0, ω) = 0.

The state-contingent market demand function for the homogeneous good is D :
�+ × � → �+. The following conditions are imposed upon the demand function.

Assumption 2.2 For every ω ∈ � there exist positive finite real numbers x̄ and ȳ
such that D(x, ω) = 0 for all x ≥ x̄ , and D(0, ω) = ȳ. The function D(·, ω) is C2

and strictly decreasing on (0, x̄).

The private information of seller i is given by Pi which is a partition of the set
�. If two states of the world are in the same element in the partition Pi , then seller
i is unable to distinguish between those two states. A function f : � → �+ will
be called Pi -measurable8 if, whenever ωp ∈ E and ωq ∈ E for some E ∈ Pi , then
f (ωp) = f (ωq). Given these information restrictions upon the sellers, the strategy
set of seller i is

Li = { f : � → �+ : f is Pi -measurable}.

Let L = ×i∈N Li be the joint strategy set.
If some seller’s cost function were not Pi -measurable, thenCi (·, ω) �= Ci (·, ω′) for

someω,ω′ ∈ E ∈ Pi . However, as sellers can observe their costs before posting prices
in the market, this would mean seller i could infer more information about the state of
the world than their information partition provides. To rule this out, Pi -measurability
will be imposed upon the cost functions.

Assumption 2.3 For every i ∈ N , the function Ci (·, ω) is Pi -measurable.

8 To be mathematically precise, measurable with respect to the algebra generated by the elements in Pi .
However, as the set � is finite, there is no loss of generality in using partitions to model the information
restrictions.
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In the price choice game sellers post prices in the market and commit to meeting
all the demand forthcoming at the prices posted, so there is no rationing of the market
demand. As the sellers produce a perfectly homogeneous good, buyers only consume
from the sellerswho post theminimumprice in themarket. If sellers tie at theminimum
price then a sharing rule determines how the market demand is split between the
sellers. Two well-known rules are equal sharing and winner-takes-all sharing. Under
equal sharing themarket demand is split equally between sellers tieing at theminimum
price, and under winner-takes-all sharing one seller is chosen at random to meet all the
market demand.9 Themonopoly profit of seller i in stateω ∈ �when posting price x is

πi (x, ω) = xD(x, ω) − Ci (D(x, ω), ω),

the equal shared profit when seller i ∈ N ties at the minimum price with r − 1,
2 ≤ r ≤ n, other sellers is

πES
i,r (x, ω) = 1

r
xD(x, ω) − Ci

(
1

r
D(x, ω), ω

)
,

and the winner-takes-all shared profit when seller i ∈ N ties at the minimum price
with r − 1, 2 ≤ r ≤ n, other sellers is

πWS
i,r (x, ω) = 1

r
πi (x, ω).

The following standard assumptions are imposed upon themonopoly and equal shared
profit functions.

Assumption 2.4 For every i ∈ N and every ω ∈ �, the functions πi (·, ω) and
πi,r (·, ω) are strictly concave on (0, x̄) and are strictly positive valued at their maxi-
mum.

One might wonder when the conditions in Assumption 2.4 are satisfied. As the
cost functions are convex, the monopoly and tied profit functions will be concave
with piecewise-affine (linear) market demand. More generally, as long as the market
demand is sufficiently concave, Assumption 2.4 will be satisfied. Given a vector of
strategies f = ( f1, . . . , fn) ∈ L the payoff which seller i obtains in state ω ∈ �

under equal sharing is

uESi ( f, ω) =

⎧⎪⎨
⎪⎩

πi ( fi (ω), ω), if fi (ω) < f j (ω) for all j �= i;
πES
i,r ( fi (ω), ω), if i ties with r − 1 sellers at min. price;

0 if there is a js.t. f j (ω) < fi (ω).

9 A broad coverage of the classical model of price competition with complete information, including recent
results on the implications of different sharing rules, can be found in Baye and Kovenock (2008), and in
Vives (1999, pp. 117–123).
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and the payoff which seller i obtains in state ω ∈ � under winner-takes-all sharing is

uWS
i ( f, ω) =

⎧⎪⎨
⎪⎩

πi ( fi (ω), ω), if fi (ω) < f j (ω) for all j �= i;
πWS
i,r ( fi (ω), ω), if i ties with r − 1 sellers at min. price;

0 if there is a j s.t. f j (ω) < fi (ω).

Let X be the set of probability distributions over �:

X =
{
x ∈ �� : x(ω) ≥ 0 for everyω ∈ � and

∑
ω∈�

x(ω) = 1

}

and let Mi be the set of probability distributions which agree with seller i’s private
information:

Mi = {x ∈ X : x(E) = μ(E) for every E ∈ Pi }.

As seller i cannot distinguish between different states of the world in each E ∈ Pi we
consider the case of maximin expected utilities (MEU) at the ex ante stage. That is,
for each E ∈ Pi seller i considers the minimum payoff which could occur across the
set of probability distributions which agrees with his private information. Therefore,
given a vector of strategies f = ( f1, . . . , fn) ∈ L and equal sharing the ex ante payoff
of seller i is:

Ui ( f ) = min
x∈Mi

[∑
ω∈�

x(ω)uESi ( f, ω)

]
.

This expression for ex ante payoff is equivalent to:

Ui ( f ) =
∑
E∈Pi

μ(E)

[
min
ω∈E u

ES
i ( f, ω)

]
.

If one replaces uESi ( f, ω) with uWS
i ( f, ω) then one obtains the expressions for ex ante

payoff in the price game with winner-takes-all sharing at price ties.

Remark 2.1 The expressions for ex ante payoff are the same as those used in de Castro
andYannelis (2011) andHe andYannelis (2015a). As is well-known, these preferences
are able to explain the Ellsberg (1961) violations of standard expected utility theory.
If the information partition of a seller contains only singletons then the maximin
expected utility coincides with standard Bayesian utilities in which seller i can assign
a probability to each state of the world. However, if ω,ω′ ∈ E for some E ∈ Pi , and
seller i cannot distinguish between states ω and ω′ it is not unreasonable to assume
that they consider the minimum utility consistent with their private information.
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A vector of strategies f = ( f1, . . . , fn) ∈ L is a pure strategy price equilibrium
if, for every i ∈ N ,

Ui ( f ) ≥ Ui ( f
′
i , f−i ) for every f ′

i ∈ Li .

In other words, a vector of strategies f = ( f1, . . . , fn) ∈ L is a pure strat-
egy price equilibrium if it is a Nash equilibrium in the game with ex ante payoffs
U (·). The price game with asymmetric information can be summarized by G =
(N ,�, (Ci , Pi )i∈N , D, μ).

Throughout the rest of the paper it shall be assumed that all elements of the price
game with asymmetric information G = (N ,�, (Ci , Pi )i∈N , D, μ) are common
knowledge amongst the sellers, except for the prior μ over �. As a consequence,
even though seller i does not know the individual probabilities assigned to different
states within each E ∈ Pi , he may know that other sellers do knowwhich probabilities
are assigned to the individual states, depending upon the specifics of the information
partitions of the other sellers.

In a price game with asymmetric information, G, two sellers i, j ∈ N will be said
to be of the same information type if Pi = Pj . That is, sellers i and j are the same
information type if their information partitions are the same. For any game G let TG

be the unique partition of the player set N with the two properties: (i) if T ∈ TG and
i, j ∈ T then i and j are of the same information type (ii) if T, T ′ ∈ T G and i ∈ T ,
j ∈ T ′ then i and j are not of the same information type.
Let xBω be the unique positive real number satisfying πi (xBω, ω) = 0 and

D(xBω, ω) > 0. The number xBω is the monopoly break-even price of seller i in
state ω. The following lemma states some useful properties of the payoffs under equal
sharing which are proved in Dastidar (1995, 2011), and discussed in detail in Vives
(1999, pp. 120–122).

Lemma 2.1 Fix a price game with asymmetric information G = (N ,�, (Ci , Pi )i∈N ,

D, μ). Suppose Ci (·, ω) = C j (·, ω) for every i, j ∈ N in state ω ∈ �. There exists a
unique real number x∗ω ≤ xBω such that:

(i) πES
i,r (x, ω) ≥ πi (x, ω) for every x ∈ [x∗ω, xBω] and every 2 ≤ r ≤ n

(ii) πES
i,r (x, ω) ≥ 0 for every x ∈ [x∗ω, xBω] and every 2 ≤ r ≤ n.

The interval in Lemma 2.1 is a subset of the Bertrand equilibrium set of the price
game with two sellers. As is demonstrated in Dastidar (1995), with symmetric sellers
the monopoly break-even price is always an element of the Bertrand equilibrium set.
The lower bound of the equilibrium set decreaseswith the number of sellers. Therefore,
if one considers the interval with the lower bound given by the lower bound of the two-
seller Bertrand equilibrium set, and the upper bound being the monopoly break-even
price, this set has all the properties described in Lemma 2.1.10

10 To see a specific interval, consider the following example fromVives (1999, p. 122). The market demand
is D(x) = max{0, a−bx} and the cost functions of the sellers areC(x) = cx2/2. Themonopoly break-even
price is xB = ac/(2+bc), andwith n sellers the lower bound on theBertrand equilibrium set is ac/(2n+bc).
Setting n = 2 in the lower bound one obtains the interval in Lemma 2.1 to be [ac/4 + bc, ac/2 + bc].
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3 The results

In this section two important conditions are introduced. The next subsection demon-
strates that if either of these conditions is relaxed then a pure strategy price equilibrium
may fail to exist. The following subsection presents themain results of the paper which
show that if a game satisfies both of the conditions then the game possesses a pure
strategy price equilibrium.

3.1 Two indispensable conditions for existence of pure strategy price
equilibrium

Consider a price game with asymmetric information G = (N ,�, (Ci , Pi )i∈N , D, μ).
Condition (i) requires that for every T ∈ TG , |T | ≥ 2. The intuition behind the
condition is that no seller has amonopoly over their information.Condition (ii) requires
that Ci (·, ω) = C j (·, ω) for every i, j ∈ N and every ω ∈ �. The intuition behind
this condition is that the sellers have access to a common production function which
generates their symmetric cost functions.

3.1.1 A game satisfying (i) but not (ii)

Consider a game with two sellers, N = {1, 2}, and two states of the world, � =
{ω1, ω2}. The probability distribution μ is μ(ω1) = μ(ω2) = 1/2. The information
partitions of the sellers are:

P1 = P2{{ω1}, {ω2}} for i = 1, 2.

The state-contingentmarket demands are D(x, ω1) = max{0, 10−x} and D(x, ω2) =
max{0, 15 − x}. The state-contingent cost functions of the sellers are C1(x, ω) = x
for every ω ∈ �, and C2(x, ω) = 2x for every ω ∈ �.

Clearly, this game satisfies (i) but not (ii). To see that this game fails to possess a
pure strategy price equilibrium, under either equal sharing or winner-takes-all sharing,
note that seller 2 will always set f2({ω}) = 2 for every ω ∈ � in any equilibrium.
However, seller 1 would then prefer to post f1({ω}) = 2− ε, ε > 0. As seller 1’s best
response is not defined, the game fails to possess a pure strategy equilibrium.

3.2 A game satisfying (ii) but not (i)

Consider a game with two sellers, N = {1, 2}, and two states of the world, � =
{ω1, ω2}. The probability distribution μ is μ(ω1) = μ(ω2) = 1/2. The information
partitions of the sellers are:

Pi = {{ω1}, {ω2}} for i = 1

and
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Pi = {�} for i = 2.

The state-contingent market demands are D(x, ω1) = max{0, 4 1
20 − 1

8 x} and
D(x, ω2) = max{0, 24 − x}. The state-contingent cost function of the sellers is
Ci (x, ω) = x2 for every ω ∈ � and every i ∈ N .

Clearly, this game satisfies (ii) but not (i). This game does not possess a pure strategy
equilibrium under the equal sharing rule. To see this, first note that the monopoly price
of sellers is the same in both states of the world xM = 18. Given the information
partitions, seller 2’s strategy is of the type:

f2({ω1}) = f2({ω2}) = y.

Seller 2 would never set y < 8 because this is the lower bound on tied profit being
non-negative in state ω2. If seller 2 chooses y ∈ [8, 18], then in state ω1 seller 1 would
choose f1({ω1}) = y − ε, ε > 0, and seller 1′s best response is not well-defined.
If seller 2 chooses y > 18, then seller 1 would choose f1({ω1}) = f2({ω2}) = 18.
However, seller 2’s best response would be to choose y = 18 − ε, ε > 0, and
consequently, 2’s best response is not well-defined.

To see that the game fails to possess a pure equilibrium under the winner-takes-all
sharing rule, note that seller 2 would always set

f2({ω1}) = f2({ω2}) = 12

because this is the higher of the two monopoly break-even prices. However, in state
ω1 seller 1’s best response would be to choose f1({ω1}) = 12 − ε, ε > 0, and
consequently, seller 1’s best response is not well-defined.

3.3 Existence of equilibrium

The following results show that the two conditions previously discussed guarantee the
existence of a pure strategy price equilibrium under equal-sharing andwinner-takes-all
sharing.

Proposition 3.1 Fix a price game with asymmetric information G = (N ,�, (Ci ,

Pi )i∈N , D, μ) and equal sharing at prices ties. If the following two conditions are
satisfied:

(i) For every T ∈ T G, |T | ≥ 2
(ii) Ci (·, ω) = C j (·, ω) for every i, j ∈ N and every ω ∈ �.

Then the game G possesses a pure strategy price equilibrium.

Proof Let G = (N ,�, (Ci , Pi )i∈N , D, μ) be a game satisfying the conditions in the
Proposition.We shall construct one price equilibrium of the game. The numbers (xBω)

can be ordered using the complete order ≤. Suppose, without loss of generality, that

xBω1 ≤ xBω2 ≤ · · · ≤ xBωm .
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Let (yω)ω∈� be a set of real numbers with the two properties: (i) yω ∈ [x∗ω, xBω] (ii)
if xBω ≤ xBω′ then yω ≤ yω′ .

Let the strategies of the sellers be as follows. For every i ∈ N and E ∈ Pi

f ∗
i (E) = max

ω∈E yω.

The strategies f ∗ = ( f ∗
1 , . . . , f ∗

n ) are a pure strategy price equilibrium of the game
G. To see this, note that for every i ∈ N , and every ω ∈ �, we have

uESi ( f ∗, ω) ≥ 0

because across all the states of the world i either ties at the minimum price and, from
Lemma 2.1, obtains non-negative profit, or i does not post the minimum price and
obtains zero profit. Therefore, for every E ∈ Pi

min
ω∈E u

ES
i ( f ∗, ω) ≥ 0

and as μ(E) > 0

μ(E)

[
min
ω∈E u

ES
i ( f ∗, ω)

]
≥ 0.

Hence, Ui ( f ∗) ≥ 0 for every i ∈ N .
Suppose, for some E ∈ Pi , seller i decided to deviate to a strategy f ′

i with f ′
i (E) =

y′ < f ∗
i (E). In event E their payoff is

μ(E)

[
min
ω∈E u

ES
i ( f ′

i , f ∗−i , ω)

]
.

However

min
ω∈E u

ES
i ( f ′

i , f ∗−i , ω) < 0

because for at least one state in E seller i posts the unique minimum price in the
market, and y′ is less than the monopoly break-even price. As μ(E) > 0,

μ(E)

[
min
ω∈E u

ES
i ( f ′

i , f ∗−i , ω)

]
< 0.

Suppose, for some E ∈ Pi , seller i decided to deviate to a strategy f ′
i with f ′

i (E) =
y′ > f ∗

i (E). Then,

μ(E)

[
min
ω∈E u

ES
i ( f ′

i , f ∗−i , ω)

]
= 0
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because |T | ≥ 2 for every T ∈ TG and i never posts the minimum price in the market
in any state in E . 
�
Remark 3.1 If each seller’s cost function is strictly convex, then x∗ω < xBω for every
ω ∈ �, and it follows from the proof of Proposition 3.1 that the game possesses a
continuum of pure strategy price equilibria. This is an interesting analogue of the stan-
dard complete information game. Dastidar (1995) demonstrated that with symmetric
strictly convex costs there is a continuum of pure strategy price equilibria. Proposi-
tion 3.1 shows that, even requiring the Pi -measurability of each seller’s prices, with
symmetric strictly convex costs, there may exist a continuum of pure strategy price
equilibria.

Example 3.2 Consider a game with four sellers, N = {1, 2, 3, 4}, and two states of
the world, � = {ω1, ω2}. The probability distribution, μ, is μ(ω1) = μ(ω2) = 1/2.
There is equal sharing at price ties. The information partitions of the sellers are:

Pi = {{ω1}, {ω2}} for i = 1, 2

and

Pi = {�} for i = 3, 4.

The state-contingent market demands are D(x, ω1) = max{0, 6− x} and D(x, ω2) =
max{0, 12 − x}. The state-contingent cost function of the sellers is C(x, ω) = x2 for
every ω ∈ �. Given these market primitives, the intervals discussed in Lemma 2.1
are:

[x∗ω1 , xBω1 ] = [2, 3]

and

[x∗ω2 , xBω2 ] = [4, 6].

One pure strategy price equilibrium of the game is:

f ∗
i ({ω1}) = 3 and f ∗

i ({ω2}) = 4 for i = 1, 2

and

f ∗
i ({ω1}) = f ∗

i ({ω2}) = 4 for i = 3, 4.

Proposition 3.3 Fix a price game with asymmetric information G = (N ,�, (Ci ,

Pi )i∈N , D, μ) and winner-takes-all sharing at prices ties. If the following two condi-
tions are satisfied:

(i) For every T ∈ T G, |T | ≥ 2
(ii) Ci (·, ω) = C j (·, ω) for every i, j ∈ N and every ω ∈ �.
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Then the game G possesses a pure strategy price equilibrium.

Proof Let G = (N ,�, (Ci , Pi )i∈N , D, μ) be a game satisfying the conditions in the
Proposition. Consider the numbers (xBω)ω∈�.

Define the strategies of the sellers be as follows. For every i ∈ N and E ∈ Pi ,

f ∗
i (E) = max

ω∈E xBω.

The strategies f ∗ = ( f ∗
1 , . . . , f ∗

n ) are a pure strategy price equilibrium of the game
G. To see this, note that for every i ∈ N and E ∈ Pi ,

μ(E)

[
min
ω∈E u

WS
i ( f ∗, ω)

]
= 0.

because for every i ∈ N and ω ∈ � each seller either does not post the minimum
price in the market, or ties at the monopoly break-even price. Therefore, Ui ( f ∗) = 0
for every i ∈ N .

Suppose, for some E ∈ Pi , seller i decided to deviate to a strategy f ′
i with f ′

i (E) =
y′ < f ∗

i (E). Then,

μ(E)

[
min
ω∈E u

WS
i ( f ′

i , f ∗−i , ω)

]
< 0

because the minimum across the states in E includes one state when i posts the unique
minimum price in the market and obtains the monopoly profit. However, y′ is less than
the monopoly break-even price.

Suppose, for some E ∈ Pi , seller i decided to deviate to a strategy f ′
i with f ′

i (E) =
y′ > f ∗

i (E). Then,

μ(E)

[
min
ω∈E u

WS
i ( f ′

i , f ∗−i , ω)

]
= 0

because |T | ≥ 2 for every T ∈ TG , and consequently, i does not post the minimum
price in the market across the states in E and obtains zero profit. 
�

Remark 3.2 The result in Proposition 3.3 still holds even of one dispenses with the
assumption of convex costs imposed in Assumption 2.1. This is because under the
winner-takes-all sharing rule the payoffs are determined by the monopoly profit func-
tion.Dastidar (2011) has demonstrated thatwith symmetric sub-additive cost functions
(which generalizes the concept of concave costs), and equal sharing at price ties, there
does not exist a pure or mixed strategy price equilibrium. However, under the winner-
takes-all sharing rule and decreasing returns to scale costs, Baye and Morgan (2002),
showed that a pure strategy price equilibrium may exist (even with certain types of
discontinuities in the profit function).
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Example 3.4 Consider a market with four sellers, N = {1, 2, 3, 4}, and three states
of the world, � = {ω1, ω2, ω3}. The probability distribution, μ, is μ(ω1) = μ(ω2) =
μ(ω3) = 1/3. The winner-takes-all sharing rule is used at price ties. The information
partitions of the sellers are:

Pi = {{ω1, ω2}, {ω3}} for i = 1, 2

and

Pi = {{ω1}, {ω2, ω3}} for i = 3, 4.

The state-contingent market demands are D(x, ω1) = max{0, 4 − x}, D(x, ω2) =
max{0, 8 − x} and D(x, ω3) = max{0, 12 − x}. The state-contingent cost function
of the sellers is C(x, ω) = x2 for every ω ∈ �. Given these market primitives, the
monopoly break-even prices are xBω1 = 2, xBω2 = 4 and xBω3 = 6.

A pure strategy price equilibrium of the game is:

f ∗
i ({ω1, ω2}) = 4 and f ∗

i ({ω3}) = 6 for i = 1, 2

and

f ∗
i ({ω1}) = 2 and f ∗

i ({ω2, ω3}) = 6 for i = 3, 4.

4 Concluding remarks

This work has analyzed a price choice game in a homogeneous-good market in which
the sellers may have asymmetric information about the state of the world and have
maximin expected utilities. Unlike other models which have studied price competition
under symmetric uncertainty, themodel presented here permits general asymmetries of
information of the kind usually studied in the context of general equilibrium models.
The results indicate that if the sellers have symmetric costs, and there are at least
two sellers of each information type then there exists a pure strategy price equilibrium
under both equal sharing andwinner-takes-all sharing at price ties. Inmany gameswith
discontinuous payoffs it is often possible to prove that an equilibrium exists, but finding
specific examples of such equilibria can be difficult. In contrast, the existence proofs
presented here are both direct and constructive. This should help make it possible to
study the equilibria of the model under different extensions. To conclude, two possible
extensions of the model, which could yield further interesting results, are presented
below.

• If sellers have strictly convex costs, and the game satisfies the conditions of
Proposition 3.1, then there exists a continuum of pure strategy price equilib-
ria (see Remark 3.1). It would be interesting to know whether some of these
equilibria are more plausible than others. One refinement of the Nash equilib-
rium which has been applied to price games is the coalition-proof refinement of
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Bernheim et al. (1987). This refinement is appropriate in games where the play-
ers can communicate with each other but cannot write binding agreements. In
Chowdhury and Sengupta (2004) it was shown that Bertrand games possess a
coalition-proof equilibrium under quite general conditions. Whether the asym-
metric information game studied here possesses a coalition-proof equilibrium is
an interesting open question.11 More recently, Andersson et al. (2014) have also
proposed a Nash equilibrium refinement based upon strategic uncertainty. They
applied this refinement to standard complete information price games and showed
that it selected a unique price equilibrium- different from the coalition-proof
equilibrium. This alternative refinement could also be applied to the asymmet-
ric information game.

• Throughout the paper it has been assumed that sellers know their costs before they
posted prices in the market. This was why the assumption of Pi -measurability was
imposed upon the cost functions. However, in many real-world scenarios, sellers
have to post prices without being fully aware of their costs. In Wambach (1999) it
was assumed that sellers were uncertain of their costs and were also risk-averse. A
consequence of this is that, even with constant marginal costs, the usual Bertrand
paradox fails to hold, with prices being posted above marginal cost-even as the
number of sellers becomes large. It would be interesting to extend the asymmetric
information game studied here to consider the possibility that sellers are uncertain
about their costs when posting prices in the market.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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