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Abstract We show that the logit-response dynamics converges to a subset of (strict)
Nash equilibria for any weakly acyclic, N -player normal form game. The result holds
independently of whether revision opportunities arise as in asynchronous learning
or in other ways, as long as the dynamics is regular. Our analysis generalizes and
organizes recent convergence results in the literature. Further, it provides a simple
selection criterion, because convergence to strict Nash equilibria obtains even in the
presence of non-strict, pure-strategy Nash equilibria.
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1 Introduction

The logit dynamics of Blume (1993, 1997) has received a great deal of attention in the
game-theoretical literature. In the original specification of the dynamics, a single player
is randomly selected every period to revise his or her strategy, while the other players
must uphold their strategies. In this asynchronous case, the dynamics converges to a
specific subset of Nash equilibria in exact potential games, namely the set of potential
maximizers. Alós-Ferrer and Netzer (2010) showed that this is a knife-edge result. On
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the one hand, the result fails if larger classes of games are considered, e.g., it does not
extend to weighted potential games, and for generalized ordinal potential games, not
even convergence to Nash equilibria is guaranteed. On the other hand, the result hinges
upon the assumption of asynchronous learning, and it fails even for exact potential
games if more general revision processes are allowed for.

As pointed out by Alós-Ferrer and Netzer (2015), it is important to establish robust
results, i.e., resultswhich are independent of details such as the specification of revision
opportunities. For instance, that work showed that the selection of potential maximiz-
ers is robust for the subclass of supermodular, symmetric binary-action games. Starting
with Alós-Ferrer and Netzer (2010), a recent literature has examined the issue of con-
vergence to the set of (pure-strategy) Nash equilibria for the logit-response dynamics
with general revision processes (see also Marden and Shamma 2012; Coucheney et al
2014). This note organizes that literature by providing a simple result. Young (1993)
introduced the class of weakly acyclic games, which are those where an iteration of
one-sided best replies reaches a strict Nash equilibrium, starting at any possible strat-
egy profile.We prove that for this class of games, robust convergence to the set of strict
Nash equilibria obtains. Unlike previous results, ours does not require an assumption
of unique best replies or strictness of all Nash equilibria. An immediate consequence
is that in weakly acyclic games with both strict and non-strict Nash equilibria, the
logit-response dynamics will select the former.

2 Definitions

We adopt the following notation throughout. The tuple � = (I, (Si , ui )i∈I ) denotes a
finite normal form game. Each player i ∈ I = {1, . . . , N } has a finite set Si of pure
strategies and a payoff function ui : S → R, with S = S1 × · · · × SN denoting the
set of strategy profiles s = (s1, . . . , sn) = (si , s−i ).

Different classes of games have been characterized in the literature through proper-
ties of the best-reply correspondence, involving best-reply paths and cycles. A path is
a sequence (s0, . . . , sm) of strategy profiles, where for each k = 0, . . . ,m − 1, there
exists ik ∈ I such that skik �= sk+1

ik
and sk−ik

= sk+1
−ik

, so that one and only one player
changes strategy at each step. A path is a best-reply path if, additionally,

sk+1
ik

∈ arg max
sik∈Sik

uik (sik , s
k
−ik )

holds for each k = 0, . . . ,m − 1, so that the updating player chooses a best reply to
the other players’ fixed strategies. A cycle is a path (s0, . . . , sm) withm ≥ 2 such that
sm = s0. A best-reply cycle is a cycle which is a best-reply path. The class of weakly
acyclic games was introduced by Young (1993, 1998).

Definition 1 � is weakly acyclic if for every s ∈ S, there exists a best-reply path
(s0, . . . , sm) such that s0 = s and sm is a strict Nash equilibrium.

The intuition is that strict Nash equilibria are the “sinks” of the best-reply cor-
respondence, and hence weakly acyclic games ensure a basic form of stability for
elementary dynamics based on best replies (Young 1993, p. 64).
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We now briefly introduce the logit-response dynamics, which goes back to Blume
(1993). The presentation follows Alós-Ferrer and Netzer (2010). Time is discrete.
Every period, a subset of players receives the chance to revise their strategies. Players
behave as myopic best-repliers, but their decisions are subject to mistakes. The prob-
ability that a revising player i chooses strategy si , given the profile s−i , is described
by the logit choice function:

pi (si , s−i ) = eβui (si ,s−i )

∑
s′i∈Si e

βui (s′i ,s−i )
,

where 0 < β < ∞ measures the degree of noise in best-reply behavior. This choice
function converges to a (myopic) best-reply rule when β → ∞. For any fixed 0 <

β < ∞, players choose all strategies with strictly positive probabilities, but those
that yield smaller payoffs are chosen with smaller probability. Further, as β → ∞,
the choice probability of a non-best reply goes to zero faster for a strategy that yields
smaller payoffs.

Alós-Ferrer and Netzer (2010, 2015) showed that results can depend on the speci-
fication of revision opportunities. A revision process is a probability measure q on the
set of all subsets of I , with the property that

∀ i ∈ I, ∃J ⊆ I with i ∈ J and q(J ) > 0.

The interpretation is that, each period, the updating players are those in J with prob-
ability q(J ), and there are no “dummy players” that never revise their strategies. We
call J a revising set if q(J ) > 0, i.e., if there is a positive probability that exactly
the players in J revise their strategies simultaneously. Asynchronous learning, for
instance, refers to revision processes where the revising sets are the singletons {i} for
all i ∈ I (as in Blume 1993). Independent learning refers to revision processes where
all subsets J ⊆ I are revising sets. A particular case thereof is independent inertia,
where each player revises with a fixed, independent probability 0 < p < 1 (as in
Sandholm 1998, in a framework with uniformmistakes). A revision process is regular
if q({i}) > 0 for all i ∈ I . This minimal condition requires that each player has a
positive probability of being the only one who updates. It excludes examples such as
simultaneous learning, where only the complete player set I is a revising set (also
discussed in Sandholm 1998).1

The resulting stochastic process (with or without regularity) is an ergodic Markov
chain on the state space S, which has a unique invariant distribution μβ . We say that a
strategy profile s ∈ S is stochastically stable if limβ→∞ μβ(s) > 0, analogously to the
convergence criterion in the so-called “mistakes models” (Kandori et al 1993; Young
1993; Ellison 2000). Alós-Ferrer and Netzer (2010) established a general character-
ization of stochastic stability for the logit-response dynamics. Since we will provide
an elementary proof of our main convergence result based on this characterization, we

1 See Alós-Ferrer and Kirchsteiger (2015) for a discussion of revision opportunities in buyers–sellers
models.
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briefly repeat it here. Let s, s′ ∈ S be two states (strategy profiles) such that there is
a revising set J that contains all players j with s′

j �= s j , so that the revision process
allows for a direct transition from s to s′. The waste W (s, s′, J ) of this transition with
revising set J is defined as:

W (s, s′, J ) =
∑

j∈J

[(

max
s′′j ∈S j

u j (s
′′
j , s− j )

)

− u j (s
′
j , s− j )

]

,

i.e., as the sum, player by player, of the difference between the payoff of a best response
and the payoff of the prescribed move to s′. Given any s∗ ∈ S, a revision s∗-tree is a
directed tree on the set S flowing toward s∗ (the unique root), where all arrows s → s′
must be allowed by the revision process and are labeled with an admissible revising
set. The waste of such a tree is the sum of the wastes of its arrows. The stochastic
potential of s∗ is the minimum waste among all revision s∗-trees. Alós-Ferrer and
Netzer (2010, Theorem 1) proved that a state is stochastically stable if and only if it
minimizes stochastic potential in S (in particular, stochastically stable states exist).

3 Convergence result

Theorem 1 Let � be a weakly acyclic game. Then, the set of stochastically stable
states of the logit-response dynamics with any regular revision process is contained
in the set of strict Nash equilibria.

Proof Fix any s0 ∈ S which is not a strict Nash equilibrium, and consider any revision
s0-tree T 0 with waste W (T 0). Since the game is weakly acyclic, there exists a best-
reply path (s0, . . . , sm) ending in a strict Nash equilibrium sm . Construct a revision
sm-tree Tm bymodifying T 0 iteratively as follows. For each k = 0, . . . ,m−1, add the
arrow sk → sk+1 with revising set {ik} for the unique player ik who changes strategy
at this step of the best-reply path. This is possible under any regular revision process.
Further, delete the arrow leaving sk+1. The added arrows cause no waste by definition
of best-reply path. The arrow deleted in the final step left the strict Nash equilibrium
sm , so it must have caused strictly positive waste. Hence, W (Tm) is strictly smaller
than W (T 0), which implies that s0 is not stochastically stable. Since stochastically
stable states always exist, the conclusion follows. �


As pointed out in Alós-Ferrer and Netzer (2015), special attention should be given
to results which do not depend on the specification of revision opportunities. In this
sense, the convergence result above is robust with respect to revision processes.

The hypothesis of weak acyclicity cannot be dispensedwith. At the same time, there
are games which are not weakly acyclic but in which convergence to the set of strict
Nash equilibria still obtains for every regular revision process. Hence, weak acyclicity
is a sufficient property for convergence, but does not lend itself to a characterization.
This is not surprising. Weak acyclicity relies exclusively on the ordinal properties of
the best-reply correspondence,while the characterization of stochastically stable states
relies on the cardinal concept of waste. Game 1 illustrates this point. Let 0 < x, y < 1.
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The profile (C,C) is the only strict Nash equilibrium. There is, however, a best-reply
cycle (A, A) → (A, B) → (B, B) → (B, A) → (A, A) among four non-strict Nash
equilibria. The game is not weakly acyclic, because with x > 0, the best-reply cycle
cannot be left with a best reply, hence the states in the cycle cannot be connected to
a strict Nash equilibrium. With any regular revision process, a transition involving a
single revising player from the cycle to (A,C) can be achieved with a waste of x < 1,
while other transitions leaving the cycle have a waste of at least 1. All states outside the
cycle can be connected to (C,C)with a single best reply, so the stochastic potential of
(C,C) is exactly x . The transition (C,C) → (C, B), again involving a single revising
player, has waste y < 1, and from the latter state a best reply leads to the cycle. Hence,
the stochastic potential of the states in the cycle is y. We conclude that, if x > y, the
states in the cycle are stochastically stable for any regular dynamics, while the unique
strict Nash equilibrium is not. In contrast, if y < x , the dynamics always converges
to the unique strict Nash equilibrium.

A B C
A 1,1 0,1 0,1− x
B 1,0 0,0 0, −1
C 0,0 −1,0 1, y

Game 1

Marden and Shamma (2012) define a game to be weakly acyclic under best replies
if every strategy profile can be connected to some (not necessarily strict) Nash equi-
librium by a best-reply path. They show the following (Theorem 4.1): If � is a
weakly acyclic game under best replies in which all pure-strategy Nash equilibria
are strict, then the set of stochastically stable states of the logit-response dynamics
with any regular revision process is contained in the set of Nash equilibria. This is
an immediate corollary to Theorem 1 above. If all Nash equilibria are strict, then
the definition of weak acyclicity under best replies coincides with the definition
of weak acyclicity by Young (1993). However, the hypothesis of weak acyclicity
employed in Theorem 1 does not require all Nash equilibria to be strict. Theorem
1 shows that, in the presence of both strict and non-strict Nash equilibria, all regu-
lar versions of the logit-response dynamics select the former. The result of Marden
and Shamma (2012), in contrast, does not allow for non-strict Nash equilibria and,
hence, is not a selection result in this sense. Consider, for instance, Game 2. Again,
(A, A) → (A, B) → (B, B) → (B, A) → (A, A) forms a best-reply cycle among
four non-strict Nash equilibria. However, state (C, B) can be reachedwith a single best
reply from that cycle, and then a further best reply leads to the strict Nash equilibrium
(C,C). Hence, Game 2 is weakly acyclic, but due to its non-strict Nash equilibria, it
is not covered by Marden and Shamma (2012).

A B C
A 1,1 0,1 0,0
B 1,0 0,0 0,0
C 0,0 0,0 1,1

Game 2
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6 C. Alós-Ferrer, N. Netzer

4 Corollaries and relation to the literature

4.1 Best-response potential games

The game � is a best-response potential game (Voorneveld 2000) if there do not
exist best-reply cycles in which at some step the updating player experiences a strict
improvement.

Marden and Shamma (2012) showed that any such game is weakly acyclic under
best replies. Strictness of all Nash equilibria then additionally implies that any such
game is weakly acyclic. Hence, it follows from our Theorem 1, or from Theorem 4.1
in Marden and Shamma (2012), that the set of stochastically stable states of the logit-
response dynamics with any regular revision process is contained in the set of (strict)
Nash equilibria, for any best-response potential game in which all pure-strategy Nash
equilibria are strict. This generalizes Theorem 2 in Alós-Ferrer and Netzer (2010). We
remark here that, regrettably, one hypothesis was missing in Alós-Ferrer and Netzer
(2010). The result as stated there incorrectly asserts convergence for all best-response
potential games. For the proof to be correct, however, the additional hypothesis of
unique best replies is needed (see Coucheney et al 2014). The arguments above show
that the assumption of unique best replies is in fact too strong, since robust convergence
already obtains in the more general case where not all best replies are unique, but
merely all pure-strategy Nash equilibria are strict.

A B
A 1,1 1,1
B 1,1 0,0

Game 3

It is easy to see that the hypothesis that all pure-strategy Nash equilibria are strict
cannot be relaxed. Consider Game 3 (Example 7 in Coucheney et al 2014). This game
is an exact potential game, and hence best-response potential (see Voorneveld 2000).
If the regular revision process gives positive probability to the set {1, 2}, the transition
(A, A) → (B, B) has zero waste, and all profiles, including the non-Nash equilibrium
(B, B), are stochastically stable.

4.2 Generalized ordinal potential games

An improvement path is a path (s0, . . . , sm) such that at each k = 0, . . . ,m − 1 the

updating player ik improves strictly, i.e., uik
(
Sk+1
ik

, sk−ik

)
> uik

(
Skik , S

k
−ik

)
. A game

has the finite improvement property if every improvement path is finite (in particular,
there can be no cyclic improvement paths). Monderer and Shapley (1996) defined the
class of generalized ordinal potential games and proved that a finite game belongs
to this class if and only if it has the finite improvement property. Generalized ordinal
potential games are neither a subset nor a superset of best-response potential games
Voorneveld (2000).
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On the convergence of logit-response to (strict) Nash equilibria 7

We first note that any (finite) generalized ordinal potential game where all Nash
equilibria are strict is weakly acyclic.2 Hence, it follows from Theorem 1 that the set
of stochastically stable states of the logit-response dynamics with any regular revision
process is contained in the set of (strict) Nash equilibria, for any generalized ordinal
potential game in which all pure-strategy Nash equilibria are strict. To the best of our
knowledge, this is a new insight.

A B
A B

A 2,1,0 0,1,0
B 1,0,0 0,0,0

A B
A 0,0,1 0,1,1
B 1,0,1 2,2,2

Game 4

Coucheney et al (2014) pointed out that any generalized ordinal potential game is
a best-response potential game under the assumption that all best replies are unique,
so that already the arguments in Sect. 4.1 apply. This is not the case under our weaker
assumption of strictness of all Nash equilibria. Consider the three-player Game 4,
where the third player chooses tables. The game has the unique Nash equilibrium
(B, B, B), which is strict. There is a best-reply cycle with a strict improvement in
the left table, (A, A, A) → (A, B, A) → (B, B, A) → (B, A, A) → (A, A, A),
hence this is not a best-response potential game. There are no infinite improvement
paths, however. Starting in the left-hand table, any such path must eventually move
to the right-hand table, where it ends in the Nash equilibrium (B, B, B). Hence, this
is a generalized ordinal potential game in which all equilibria are strict, but not a
best-response potential game.

5 Conclusion

We have presented a simple result which organizes recent developments in the liter-
ature. For the class of weakly acyclic games, any specification of the logit-response
dynamics, that is, any combination of the logit choice rule at the individual level
together with a regular revision process, will converge to the set of strict Nash equi-
libria, in the stochastic stability sense.

The fact that the convergence result obtains for the class of weakly acyclic games is
interesting in itself.Weakly acyclic games are those for which an iterative specification
of a simple best-response process would converge to strict Nash equilibria. Young
(1993) relied on weak acyclicity to analyze the convergence of adaptive dynamics,
which is a form of truncated fictitious play where players choose best responses to a
sample of observations of opponents’ play within recent memory. It seems safe to say

2 Fix a generalized ordinal potential game inwhich all Nash equilibria are strict, and suppose it is notweakly
acyclic. Then, there exists s0 ∈ S that cannot be connected to a strict Nash equilibrium by a best-reply
path. Construct an improvement path starting at s0 by letting single players switch to strict best replies. By
the finite improvement property, this path is finite, hence it must end at a Nash equilibrium which, by the
choice of s0, cannot be strict. Since all Nash equilibria are strict, this is a contradiction.
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8 C. Alós-Ferrer, N. Netzer

at this point that the class of weakly acyclic games plays an important role for several,
not closely-related game dynamics, and is worthy of further attention.
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