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Abstract We consider a Hotelling location game where retailers can choose one of a
finite number of locations. Consumers have strict preferences over the possible avail-
able store locations and retailers aim to attract themaximumnumber of consumers.We
prove that a pure strategy equilibrium exists if the number of retailers is large enough.
Moreover, as the number of retailers grows large, in equilibrium the distribution of
retailers over the locations converges to the distribution of consumers’ preferences.
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1 Introduction

Starting with Hotelling (1929), many papers have considered location games where
retailers decide where to set up their shop to attract the largest amount of consumers.1

Several of these papers focus on the existence of pure equilibria of the game for
different number of retailers. For instance, Eaton andLipsey (1975) provided a detailed
analysis of the case where retailers are distributed on an interval or on a circle. The
case of the circle was studied also by Salop (1979). Different topologies of the space

1 We refer to Fournier and Scarsini (2014) for a recent extensive bibliography on the topic.
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where consumers are distributed and different distributions have been considered. For
instance,Mavronicolas et al. (2008), Feldmann et al. (2009), Pálvölgyi (2011), Heijnen
and Soetevent (2014) and Fournier and Scarsini (2014) have considered the case of
consumers distributed on a graph.

In this paper, we completely abstract from any topological structure and simply
assume that consumers have strict preferences over a finite number of possible store
locations. Moreover, the distribution of these preferences is completely arbitrary. In
this way, we do not even need to make any explicit hypothesis about the number
(finite or infinite) of consumers. Each retailer chooses a possible location for her store
to maximize the amount of consumers that she can attract. The aim of the paper is
to provide sufficient conditions for the game to have a pure Nash equilibrium. In
particular, we will prove that, given a fixed distribution of consumers’ preferences,
there exists an integer n̄ such that any game where the number of retailers is larger
than n̄ has a pure equilibrium. Moreover, as the number of retailers increases, their
distribution over locations tends to match the distribution of consumers’ preferences.
This phenomenon was first observed by Osborne and Pitchik (1986) for mixed equi-
libria in a model where consumers are distributed in the interval [0, 1] under some
differentiability conditions on the consumers’ distribution. A similar result is present
in Laster et al. (1999) and Ottaviani and Sorensen (2006) in the context of professional
forecasting.

Our model would apply also to political competition, as studied by Downs (1957)
and many others after him. For the sake of clarity, we decided to stick to the
retailer/consumer language.

Existence of pure equilibria in non-cooperative games is a topic that has been studied
in different contexts. In congestion games, players, in order to achieve their goal, can
choose a subset of an available set of facilities. The cost of a facility is increasing in the
number of players who use it. Congestion games are potential games; therefore, they
have pure Nash equilibria, see, for instance, the seminal papers of Rosenthal (1973)
and Monderer and Shapley (1996). Although they bear strong similarities to conges-
tion games, our location games are different: it is true that the utility of using a certain
location decreases in the number of players who use it, but the utility depends also on
whether the other locations are used rather than not. There are, therefore, externalities.
For this reason, location games with few players may fail to have pure equilibria. As
we prove in this paper, as the number of players becomes large, a necessary condition
for an equilibrium is that all locations be occupied; therefore, location games behave
like congestion games and hence have pure equilibria. Nevertheless, even with a large
number of players the payoff function of a location game is not the one of a congestion
game. The similarity is only in the equilibriumbehavior. That iswhy a proof of the exis-
tence of pure equilibria in large location games is needed and it is not possible to resort
to the property of a potential function: there is no potential function in these games.

Another family of games with good properties is the class of supermodular games.
Conditions for pure equilibria in supermodular games were established in Topkis
(1979), see also Milgrom and Roberts (1990), among others. In general, in infinite
games existence of equilibria is guaranteed under some topological assumptions on
the action space and some continuity assumptions on the payoff function, see, for
instance, Glicksberg (1952) and Debreu (1952). The classical Hotelling-type models
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where retailers can choose any location where consumers live are infinite games with
discontinuous payoff functions. Starting with Reny (1999), conditions for equilibria
in discontinuous games have been studied, see, for instance, Jackson and Swinkels
(2005), McLennan et al. (2011), Balder (2011), Carmona (2011), de Castro (2011),
Reny (2011), Barelli and Meneghel (2013) and He and Yannelis (2014a, b, c).

Our results bear also some connections with the literature on large games in the
tradition of Schmeidler (1973) and Kalai (2004), among others. In particular, Schmei-
dler (1973) showed that, in games with a continuum of players, pure equilibria exist
under some anonymity conditions on the payoff functions. Kalai (2004) proved a self-
purification result for games with a large number of players: for any positive ε, there
exists an integer n̄ such that for every mixed-strategy equilibrium of a game with more
than n̄ players, with probability larger than (1−ε) the realized vector of pure strategies
is a Nash equilibrium of the game.

The paper is organized as follows. Section 2 introduces the model and Sect. 3
analyzes its equilibria. All proofs are in the Sect. 4.

2 The model

Retailers A finite set Nn := {1, . . . , n} of retailers has to decide where to set shop,
knowing that consumers choose the closest retailers. Each retailer wants to maximize
her market share. Given K = {1, . . . , k}, the action set of each retailer is a finite set
XK = {x1, . . . , xk}. For J ⊂ K , we define

X J := {xi : i ∈ J }.

Consumers Each consumer has a strict preference over the locations in XK . This
preference can be expressed in terms of a permutation π of K := {1, . . . , k}. If
a consumer has a preference (π(1), π(2), . . . , π(k)), then she will shop at location
xπ(1), if there is a retailer located there, otherwise she will shop at xπ(2), if there is a
retailer located there, and so on. Call P(K ) the set of all permutations of K .

We make no assumption about the cardinality of the set of consumers. We call
λπ ∈ R+ the mass of consumers whose preference is π := (π(1), π(2), . . . , π(k)).
We assume that total mass of consumers is finite and, w.l.o.g.,

∑

π∈P(K )

λπ = 1. (1)

For J ⊂ K call π J the projection of the permutation π on J and for i ∈ J

λJ
i :=

∑

π∈P(K ):π J (1)=i

λπ .

Hence λJ
i represents the mass of consumers whose first choice is location xi , if the set

of locations where they can shop is X J . It is clear that for i ∈ J ⊂ L ⊂ K we have
λJ
i ≥ λL

i . For the sake of simplicity, we write λi rather than λK
i .
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We assume that

λi > 0 for all i ∈ K . (2)

This implies that, no matter where stores locate, none of them will go unpatronized.
Given (1), we have

∑

i∈K
λi = 1.

The game. We build a game where Nn := {1, . . . , n} is the set of players. For i ∈ Nn

call ai ∈ XK the action of player i . Then, aaa := (ai )i∈Nn is the profile of actions and
aaa−i := (ah)h∈Nn\{i} is the profile of actions of all the players different from i . Hence
aaa = (ai ,aaa−i ).

We say that aaa ≈ X J if for all locations x j ∈ X J there exists a player i ∈ Nn such
that ai = x j and for all players i ∈ Nn there exists a location x j ∈ X J such that
ai = x j .

For i ∈ Nn , the payoff of player i is ui : Xn
K → R, defined as follows:

ui (aaa) = 1

card{h : ah = ai }
∑

J⊂K

λJ
i 1(aaa ≈ X J ). (3)

Expression (3) represents the following idea. Retailer i’s payoff is the measure of the
consumers who prefer her location to any other location chosen by any other retailer,
divided by the number of retailers that choose the same action as i . Some locations
may not be chosen by any player, this is why, for every J ⊂ K , we have to consider
the permutation π J with aaa ≈ X J rather than the permutation π .

Consider a game where the distribution of consumers’s preferences is ��� :=
(λπ )π∈P(K ), the set of players is Nn , the set of actions for each player is XK and
the payoff of player i is given by (3). Call this game Gn = 〈���, Nn, XK , (ui )〉. Since
the set of actions coincides with the set of locations, we will use the two terms inter-
changeably.

Remark 1 A particular case of the above class of games Gn is given by location games
where consumers are distributed on a metric compact measurable space S ⊂ R

d and
retailers can choose one location in a finite set XK ⊂ S, knowing that consumer will
shop at the closest store. If the distribution of the consumers is absolutely continuous
with respect to the Lebesgue measure on R

d , then the set of consumers who are
indifferent between two or more retailers has measure zero, so preferences are almost
surely strict.

3 Equilibria

In the rest of this section, unless otherwise stated, we consider a sequence {Gn} of
games, all of which have the same parameters���, XK . More precisely, our focus is on
the sequence of games when the number of retailers n grows.
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We prove that when the number of retailers is large enough, (1) the game admits a
pure strategy equilibrium and (2) the distribution of retailers in equilibrium approaches
the distribution of consumers.

As the next example shows, when the number of players is small, equilibria may
even fail to exist.

Example 2 (A game without pure equilibria) Consider a game Gn with n = 2 and

λ123 = λ231 = λ312 = 0,

λ132 = λ321 = λ213 = 1

3
,

that is no consumer has preferences 123, 231, or 312 and the remaining preferences
are equally shared by the population of consumers. Then, the payoff matrix of this
game is

x1 x2 x3

x1 1
2 ,

1
2

1
3 ,

2
3

2
3 ,

1
3

x2 2
3 ,

1
3

1
2 ,

1
2

1
3 ,

2
3

x3 1
3 ,

2
3

2
3 ,

1
3

1
2 ,

1
2

and, therefore, no pure equilibrium exists.

The next example shows that a game Gn can have weakly dominated actions.

Example 3 (A game with weakly dominated actions) Consider a game Gn with n = 2,
K = {1, 2, 3} and

λ123 = λ321 = 0.475,

λ132 = λ312 = 0,

λ213 = λ231 = 0.025.

Since

λ121 = 0.475, λ122 = 0.525,

λ131 = 0.5, λ133 = 0.5,

λ232 = 0.525, λ233 = 0.475,

λ1231 = 0.475, λ1232 = 0.05, λ1233 = 0.475.

we see that both x1 and x3 are weakly dominated by x2.

The existence ofweakly dominated strategies becomes impossiblewhen the number
of players is large enough.
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Proposition 4 Consider a sequence of games {Gn}n∈N. There exists n̄ such that for
all n ≥ n̄ no location in XK is weakly dominated.

When the number of players is large, pure equilibria exist and in equilibrium the
share of players in location xi is approximately proportional to λi . The following
theorem makes this idea precise. For j ∈ K call n j (aaa) the number of players who
choose x j under the strategy aaa.

Theorem 5 Consider a sequence of games {Gn}n∈N. There exists n̄ such that for all
n ≥ n̄ the game Gn admits a pure equilibrium aaa∗. Moreover, for all n ≥ n̄, any pure
equilibrium is such that

n j (aaa∗)
n�(aaa∗) + 1

≤ λ j

λ�

≤ n j (aaa∗) + 1

n�(aaa∗)
. (4)

Corollary 6 Let

λ∗ := min{λ1, . . . , λk} and m := min

{
n ∈ N+ : 1

n
≤ λ∗

}
.

Let m1, . . . ,mk ∈ N+ be such that

mi

m
≤ λi <

mi + 1

m
for all i ∈ {1, . . . , k}.

Then, n̄ in Theorem 5 can be chosen as:

n̄ =
k∑

i=1

mi .

4 Proofs

Proof (Proof of Proposition 4) Pick any pair of locations x j , xh ∈ XK and consider
the strategy profile a1 = x j and ai = xh for i �= 1. Then, given assumption (2), for
i �= 1 and n sufficiently large, we have

u1(aaa) = λ j ≥ 1

n − 1
λh = ui (aaa),

which shows that x j is not weakly dominated. Given that the pair x j , xh was arbitrarily
chosen, we have the result. �
Lemma 7 Consider a sequence of games {Gn}n∈N. There exists n̄ such that for all
n ≥ n̄, if aaa∗ is an equilibrium of Gn, then

n j (aaa
∗) > 0 for all x j ∈ XK .
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Proof Assumebycontradiction that for alln ∈ N, if the gameGn has a pure equilibrium
aaa∗, then there exists a location x j ∈ XK such that n j (aaa∗) = 0. We know that

∑

i∈Nn

ui (aaa
∗) =

∑

π∈P(K )

λπ = 1.

Therefore, there exists i ∈ Nn such that

ui (aaa
∗) ≤ 1

n
.

If this player deviated to ai = x j , she would achieve the payoff

ui (ai ,aaa
∗−i ) ≥ λ j ≥ 1

n
,

for n large enough. This contradicts the assumption that aaa∗ is a Nash equilibrium. �
Lemma 8 A strategy profile aaa∗ is an equilibrium of the game Gn such that n j (aaa∗) > 0
for all j ∈ K if and only if, for every j, � ∈ K, (4) holds.

Proof Let aaa∗ be an equilibrium of Gn and let a∗
i = x�. Assume, by contradiction, that

λ j

n j (aaa∗) + 1
>

λ�

n�(aaa∗)
.

Then, player i could profitably deviate from x� to x j . Therefore, for every j, � ∈ K
we have

λ j

n j (aaa∗) + 1
≤ λ�

n�(aaa∗)
and

λ�

n�(aaa∗) + 1
≤ λ j

n j (aaa∗)
(5)

and, applying Lemma 7, (4) follows.
To prove the converse implication, assume that (4) holds. Equivalently, (5) holds

for every j, � ∈ K . As a consequence, no player can profitably deviate from x j to x�

or vice versa, for every j, � ∈ K . Hence aaa∗ is an equilibrium. �
Fix k ∈ N+. Call Ik the interior of the (k − 1)-dimensional simplex, i.e., for

λλλ := (λ1, . . . , λk),

Ik =
⎧
⎨

⎩λλλ ∈ R
k : λ� > 0 for all � ∈ {1, . . . , k} and

k∑

j=1

λ j = 1

⎫
⎬

⎭.

Define for nnn := (n1, . . . , nk)

�k(n) :=
{
nnn ∈ N

k+ :
k∑

i=1

ni = n

}
.

For j ∈ {1, . . . , k} call eee j the j-th vector of the canonical basis in R
k .
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Theorem 9 Let λλλ ∈ Ik . Then, there exists n̄ ∈ N+ such that if n ≥ n̄, then there
exists nnn ∈ �k(n) such that

n j

n� + 1
≤ λ j

λ�

≤ n j + 1

n�

for all j, � ∈ {1, . . . , k}. (6)

The proof of Theorem 9 requires the following lemmata.

Lemma 10 Assume that (6) holds. If

n j + 1

ni + 1
≤ λ j

λi
≤ n j + 2

ni
and

ni + 1

n� + 1
≤ λi

λ�

≤ ni + 2

n�

, (7)

then
n j + 1

n� + 1
≤ λ j

λ�

≤ n j + 2

n�

.

Proof Combining the inequalities in (7), we get

n j + 1

ni + 1

ni + 1

n� + 1
≤ λ j

λi

λi

λ�

≤ n j + 2

ni

ni + 2

n�

. (8)

The right inequality in (6) and the left inequality in (8) imply

n j + 1

n� + 1
≤ λ j

λ�

≤ n j + 1

n�

≤ n j + 2

n�

.

�
Lemma 11 Assume that (6) holds. Then, at least one of the double inequalities (9)
and (10) below is true:

n j + 1

n� + 1
≤ λ j

λ�

≤ n j + 2

n�

, (9)

n� + 1

n j + 1
≤ λ�

λ j
≤ n� + 2

n j
. (10)

Proof From (6), we get

λ j

λ�

≤ n j + 1

n�

≤ n j + 2

n�

and
λ�

λ j
≤ n� + 1

n j
≤ n� + 2

n j
.

Since, either

n j + 1

n� + 1
≤ λ j

λ�

or
n� + 1

n j + 1
≤ λ�

λ j
,

or both inequalities hold, we have that at least one of (9) and (10) holds. �
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Proof (Proof of Theorem 9) We will prove the result by induction over n. First
Lemma 12 shows that there exists a certain value n̄ and a positive integer vector
n̄̄n̄n ∈ �k(n̄) such that (6) holds. Then, Lemma 13 shows that there exists a vector
nnn∗ ∈ �k(n̄ + 1) for which (6) still holds.

Lemma 12 There exists a certain value n̄ and a positive integer vector n̄̄n̄n ∈ �k(n̄)

such that

n̄ j

n̄� + 1
≤ λ j

λ�

≤ n̄ j + 1

n̄�

for all j, � ∈ {1, . . . , k}. (11)

Proof For everyλλλ ∈ Ik , since λ1, . . . , λk are all positive, there exist positive integers
m1, . . . ,mk,m such that for all i ∈ {1, . . . , k}

mi

m
≤ λi ≤ mi + 1

m
. (12)

Therefore, by combining (12) for i = j and i = �, we get

m j

m� + 1
≤ λ j

λ�

≤ m j + 1

m�

.

If we take n̄ j = m j for all j ∈ {1, . . . , k} and

n̄ =
k∑

j=1

m j ,

then for all j, � ∈ {1, . . . , k}
n̄ j

n̄� + 1
≤ λ j

λ�

≤ n̄ j + 1

n̄�

.

�
Lemma 13 If nnn ∈ �k(n) satisfies (6), then there exists nnn∗ ∈ �k(n + 1) such that

nnn∗ = nnn + eeei for some i ∈ {1, . . . , k} (13)

and
n∗
j

n∗
� + 1

≤ λ j

λ�

≤ n∗
j + 1

n∗
�

for all j, � ∈ {1, . . . , k}. (14)

Proof Start with index 1, and, for every j = 2, . . . , k, check whether

n1 + 1

n j + 1
≤ λ1

λ j
≤ n1 + 2

n j
. (15)
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Given that n∗
j = n j for j �= i , we have that, if (15) holds for every j = 2, . . . , k,

then (14) holds when i = 1 in (13). If (15) does not hold for every j = 2, . . . , k, then
consider the smallest j for which (15) is not true. Call it j∗. By Lemma 11, we have

n j∗ + 1

n1 + 1
≤ λ j∗

λ1
≤ n j∗ + 2

n1
. (16)

We know that (15) holds for all j = 2, . . . , j∗ − 1. Therefore, by Lemma 10, (16) in
turn implies that for all � ∈ {1, . . . , j∗ − 1}

n j∗ + 1

n� + 1
≤ λ j∗

λ�

≤ n j∗ + 2

n�

. (17)

Using the same argument as before, we se that, if j∗ = k, then (14) holds when i = k
in (13). If j∗ �= k, then check whether (17) holds for all � ∈ { j∗ + 1, . . . , k}. If it
does, then (14) holds when i = j∗ in (13). If not, then consider the smallest j > j∗
for which (17) is not true. Call it j∗∗. Repeat the steps done for j∗, that is, first notice
that, by Lemma 11, we have

n j∗∗ + 1

n j∗ + 1
≤ λ j∗∗

λ j∗
≤ n j∗∗ + 2

n j∗
. (18)

We know that for all � ∈ {1, . . . , j∗ − 1} ∪ { j∗ + 1, . . . , j∗∗ − 1}
n j∗ + 1

n� + 1
≤ λ j∗

λ�

≤ n j∗ + 2

n�

.

Therefore, by Lemma 10, (18) implies that for all � ∈ {1, . . . , j∗∗ − 1}
n j∗∗ + 1

n� + 1
≤ λ j∗∗

λ�

≤ n j∗∗ + 2

n�

. (19)

As before, we se that, if it were true that j∗∗ = k, then (14) would hold when i = k in
(13), but we know from the previous step that this cannot be the case. Since j∗∗ < k,
we need to check whether (19) holds true for all � ∈ { j∗∗ + 1, . . . , k}. If it does, then
(14) holds when i = j∗∗ in (13). If not, then consider the smallest j > j∗∗ for which
(19) is not true. Call it j∗∗∗. Repeat the argument. Since

1 < j∗ < j∗∗ < j∗∗∗ · · · < k,

the procedure ends in finite time. �
This concludes the induction argument and, therefore, proves the theorem. �

Proof (Proof of Theorem 5) Lemma 7 shows that for n large enough in equilibrium
all locations are occupied. Lemma 8 shows that a strategy profile aaa∗ is an equilibrium
where all locations are occupied if and only if (4) holds. Finally, Theorem 9 shows
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that indeed the configuration of (4) can be achieved for all n large enough. Therefore,
combining these three results, the theorem is proved. �
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