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Abstract
Vigna radiata L., commonly referred to as mungbean or green gram, holds significant importance as a pulse crop in India. 
However, its productivity is severely impacted by the combined incidence of dry root rot disease and drought stress. Dry 
root rot, caused by Macrophomina phaseolina, manifests as reduced yield and compromised produce quality. M. phaseolina 
is a necrotrophic fungus with a broad host range. Screening studies in several crops’ germplasms have shown a skewness 
towards susceptibility. Further, the fungus has augmented virulence and survivability in soil under low moisture and high 
heat. Thus, concurrent drought and dry root rot leads to significantly higher yield losses. This review highlights the status of 
the disease in mungbean and its future implications owing to the changing climate scenario. We also highlight the molecular 
and genomic studies conducted in mungbean and several other crops to elucidate the mechanisms involved in M. phaseolina 
resistance. The review also suggests management practices which can alleviate yield losses in dry root rot affected fields. 
Understanding the physiological and molecular mechanisms of dry root rot, drought, and their interaction on disease prolif-
eration can help mitigate the challenges associated with dry root rot management and aid future research.
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Introduction

Vigna radiata L., commonly referred to as mungbean or 
green gram, is widely grown in East Asia, Southeast Asia, 
and the Indian subcontinent. Global mungbean cultivation 
spans approximately 7.3 million ha, with an average yield 
of 721 kg/ha (source: https:// iipr. icar. gov. in/ mungb ean/). 
Myanmar, India, China, Indonesia, Thailand, and Kenya are 
the key global producers of mungbean (Nair et al., 2020).

In India, mungbean is the third most significant legumi-
nous crop, contributing approximately 16% to the overall 
pulse production. According to estimates from the Govern-
ment of India (averaged for 2017–18 to 2021–22), mungbean 
is grown on 48.5 lakh ha, with a total production of 26.5 
lakh tonnes and a productivity of 546 kg/ha. Rajasthan is the 
major mungbean-growing state, with an acreage of 23.3 lakh 
ha (46% of the total area), production of 11.2 lakh tonnes 
(45% of the total production), and productivity of 480 kg/ha.

Other significant mungbean-growing states include 
Madhya Pradesh (5.1 lakh ha), Maharashtra (4.3 lakh ha), 
Karnataka (4.1 lakh ha), Odisha (2.4 lakh ha), Tamil Nadu 
(1.7 lakh ha), Bihar (1.6 lakh ha), Gujarat (1.4 lakh ha), and 
Andhra Pradesh (1.1 lakh ha). The productivity of mungbean 
in many Indian states is much lower than the national aver-
age (~ 24%). The low productivity of mungbean is mainly 
due to production constraints, including biotic and abiotic 
stresses that affect the crop throughout its life cycle. Fungal 
and viral pathogens pose significant threats to mungbean 
cultivation, with more than half of the crop losses attrib-
uted to soil-borne pathogens. The situation is exacerbated 
by climate change, leading to frequent occurrences of abiotic 
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stresses such as drought and heat, which further promote 
the proliferation of soil-borne pathogens. Breeding for cli-
mate-resilient cultivars possessing adaptive traits that con-
fer resistance/tolerance to the combined biotic and abiotic 
stresses is a viable strategy to realize higher productivity in 
mungbean.

Dry root rot—a globally emerging disease 
in mungbean

Dry root rot (DRR) is caused by the pathogen Macropho-
mina phaseolina and is known to affect over 500 plant spe-
cies, including agricultural crops. The pathogen is also 
known to occasionally affect humans (Arora et al., 2012). 
The phytopathogenic fungus affects all stages of plant 
growth, from germination to maturity (Anupriya et  al., 
2023). In vulnerable plant species, the infection can mani-
fest as damping-off, stem blight, stalk rot, leaf blight, or pod 
rot (Khan et al., 2023). The emergence of DRR has become 
a significant concern for mungbean cultivation worldwide 
(Kaur et al., 2012; Mallaiah & Rao, 2016; Pandey et al., 
2021). The disease has caused 25–48% yield loss in South 
Asia (Bashir & Malik, 1988; Iqbal & Mukhtar, 2014). In 
India, the yield loss in mungbean due to M. phaseolina 
infection ranged from 30 to 44% (Kaur et al., 2023), up to 
30% in Rajasthan (Tyagi et al., 1988; Sharma & Singh, 2000; 
Basandrai et al., 2021), up to 25% in Andhra Pradesh (Mal-
laiah & Rao, 2016), and up to 10.8% in Haryana (Tyagi 
et al., 1988). The disease is widely occurring in other states 
as well.

In addition to direct yield losses at the field level, the 
pathogen causes seed contamination during storage, leading 
to significant deterioration of seeds and consequent losses 
(Pandey et al., 2021), reduction in seed germination, and 
protein content. DRR has been reported to cause up to 36% 
deterioration in stored mungbean (Ashwini & Giri, 2014; 
Basandrai et al., 2021) and a 12.3% loss in protein content 
(Kaushik and Chand, 1987; Ahmad et al., 2015).

Dry root rot incidence in mungbean

DRR in mungbean is a widely prevalent disease in Asia, 
Africa, and Australia (Batzer et al., 2022). In Asia, the dis-
ease is a menace in Myanmar and is rapidly spreading in 
South Asia, particularly in India, Pakistan, and China (Iqbal 
& Mukhtar, 2014; Pandey et al., 2021; Zhang et al., 2011). 
The first report on DRR incidence in India was from Jabal-
pur in Madhya Pradesh (Singh et al., 2022a, 2022b). The 
disease has been devastating in several districts of Rajasthan 
(Kumar et al., 2017a) and Maharashtra (Khaire et al., 2023). 
A systematic survey has been conducted to assess the level 

of disease incidence and spread of DRR in a few mungbean-
growing states of India (Fig. 1).

DRR incidence ranging from 0.5 to 38% was observed 
in seed samples collected from 11 districts of Rajasthan 
(Sharma & Singh, 2000). The incidence of DRR was found 
in all the seed samples collected from mungbean grown in 
the farmers’ fields of Chamarajanagar, Mysore, and Gun-
dlupet taluks of Karnataka (Murthy et al., 2003). Based 
on farmer’s field surveys, DRR incidence of 5.7–12% was 
reported in Chittoor district of Andhra Pradesh (Mallaiah 
& Rao, 2016). Similarly, about 30% disease incidence was 
reported in Namakkal district of Tamil Nadu, based on 
roving surveys conducted in Mohanur, Namakkal, Sentha-
mangalam, and Rasipuram areas (Chandraprakash et al., 
2022). In Telangana, DRR incidence was observed to the 
tune of 5.3 to 31.7% based on roving surveys conducted 
in villages of Adilabad, Warangal, Khammana, and Mahu-
bubabad districts (Avanija et al., 2023).

The emergence of DRR has also become a significant 
concern for the cultivation of other Vigna species. DRR 
incidence ranging from 16 to 33% was reported as early 
as 1999 in urd bean grown in rice-fallow regions of Karai-
kal (Rettinassababady and Ramadoss, 1999), where both 
mungbean and urd bean are preferred after the rice crop. 
The disease incidence was reported in cowpea grown 
in Cuddalore, Thiruvannamalai, and Vellore districts of 
Tamil Nadu (Mohanapriya et al., 2017), signifying the 
prevalence and threat of DRR in mungbean-growing areas 
in the state. Variations in the level of disease incidence 
depended on prevailing weather conditions, physiochem-
ical attributes of the soil, inoculum load, and pathogen 
virulence.

The dry root rot pathogen

M. phaseolina (Tassi) Goid. is a necrotrophic, soil-borne 
Ascomycete phytopathogenic fungus belonging to the fam-
ily Botryosphaeriaceae. The fungus exists in a sporulat-
ing and a non-sporulating stage. The sporulating stage is 
generally not associated with DRR and can be observed 
in the above ground symptom stage (generally referred 
to as charcoal rot). Further, in some plants such as chick-
pea, the sporulating stage is not reported (Irulappan et al., 
2021) Morphologically, the pathogen produces hyphae that 
appear as thin-walled, transparent strands ranging from 
light to dark brown with multiple septa. Their branches 
typically emerge right-angled to the parent hyphae, con-
stricting at the starting point. Initially, sclerotia are light 
brown and darken over time, shifting from irregular, 
spherical, oval, to oblong shapes. However, morphologi-
cal and genetic variations exist among the isolates that 
determine their virulence to infect host species.
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Cultural and morphological variability of M. phaseolina 
isolates collected from mungbean

M. phaseolina isolates from disease-affected mungbean 
plants from various geographical regions exhibit variations 
in morphology and virulence levels. As a polyphagous plant 
pathogen, isolates from distinct hosts also display morpho-
logical differences (Pandey et al., 2020). Climatic factors, 
such as temperature, seasonality, and rainfall, significantly 
influence the genetic variation in M. phaseolina (Ortiz et al., 
2023). Common morphological variations among isolates 
include colony color, sclerotial color, shape, size, weight, 
count, diameter, and growth pattern (Iqbal & Mukhtar, 2014; 
Pandey et al., 2021).

A total of 56 isolates from mungbean and urd bean 
collected from 11 different locations representing North, 
South, Northeast, and Central India were grouped into six 

distinct categories based on morphological characteriza-
tion (Prameela Devi & Singh, 1998). Furthermore, these 
isolates were classified as highly virulent, moderately viru-
lent, and weakly virulent strains based on their intensity on 
the host and disease incidence. Iqbal and Mukhtar (2014) 
characterized 65 isolates from Pakistan based on sclerotial 
size, weight, radial growth, and observed no relationship 
between these morphological parameters and pathogenicity 
of isolates.

In an investigation of M. phaseolina isolates from 11 
distinct locations (10 from India and one from Myanmar) 
in mungbean, Pandey et al. (2021) noted variations in the 
shape of sclerotia from round to oblong, with sclerotial 
counts ranging between 141.7 and 208.4/9 mm disc, and 
diameters spanning from 76.0 to 113.2 μM/9 mm disc. 
The sclerotial count correlated with pathogenicity, sug-
gesting that isolates with higher sclerotial counts tend to 

Fig. 1  Spread of dry root rot 
incidence in major mungbean 
growing states of India. Exten-
sive literature survey was con-
ducted to mine studies/surveys 
conducted on mungbean DRR 
incidence in various locations 
across India. Pins represent the 
districts/locations where mung-
bean DRR incidence surveys 
were conducted. Colour grades 
of the states is based on the 
average DRR disease incidence 
in mungbean
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be more pathogenic compared to those with lower counts. 
Additionally, sclerotia exhibited varying shades of grey-
ish white, greyish black, blackish grey, black, dark brown 
greyish (Khaire et al., 2023; Mallaiah & Rao, 2016; Pan-
dey et al., 2020, 2021). The growth pattern also fluctu-
ates, transitioning from less feathery to moderately feath-
ery and eventually to more feathery structures. Despite 
widespread cultural variation among the isolates, their 
morphology remains quite similar and has been used as 
the primary method for identification of the pathogen.

Molecular characterization of M. phaseolina isolated 
from mungbean

While morphological features are useful for the initial 
identification of the fungus, molecular tools are employed 
for further confirmation and strain typing. DNA marker 
systems, such as restriction fragment length polymor-
phism (RFLP), randomly amplified polymorphic DNA 
(RAPD), simple sequence repeats (SSR), and amplified 
fragment length polymorphism (AFLP), have been uti-
lized for molecular characterization and assessing genetic 
variability among isolates of M. phaseolina from various 
host species. The RAPD technique has been instrumental 
in identifying and differentiating isolates of M. phaseo-
lina infecting mungbean (Babu et al., 2010; Fuhlbohm 
et al., 2013). The internal transcribed sequences (ITS) of 
18S rRNA have been pivotal in molecular characteriza-
tion of M. phaseolina isolated from various hosts, for spe-
cies-level identification. Sequence analysis has revealed 
a high degree of similarity among the isolates (Mahdiza-
deh et al., 2011; Pandey et al., 2021; Zhang et al., 2011). 
In addition to ITS sequences, Macrophomina-specific 
primers (MpKF1 and MaKR1) have also been utilized in 
mungbean for confirming the pathogen’s identity (Zhang 
et al., 2011). Next-generation sequencing (NGS) technol-
ogies have also been employed for characterizing isolates 
of M. phaseolina, shedding light on genetic divergence 
and distinct genetic clumping at the continental level 
(Oritz et al., 2023). Isothermal amplification techniques, 
such as loop-mediated isothermal amplification (LAMP), 
capable of fungal detection at a constant temperature 
within a short time with a high degree of specificity and 
sensitivity, are also being utilized (Notomi et al., 2015). 
Although the use of LAMP assay to detect M. phaseolina 
isolates in mungbean has not been reported to date, the 
technique has been employed to detect the pathogen in 
other hosts such as common bean (Rocha et al., 2017), 
soybean (Lu et al., 2015), chickpea (Ghosh et al., 2018), 
and strawberry (Burkhardt et al., 2018).

Mungbean‑M. phaseolina interaction and disease cycle

M. phaseolina can infect mungbean at almost all growth 
stages, with propagules penetrating the seedcoat, endosperm, 
and embryo, leading to a significant reduction in seed ger-
mination and viability (Buts et al., 2014). The disease cycle 
consists of four stages: germination, penetration, parasitic, 
and saprophytic phases, with microsclerotia serving as the 
primary inoculum. The pathogen further spreads via air-
borne pycnidiospores and sclerotia, facilitating secondary 
dissemination (Singh et al., 2022a, 2022b). Root exudates 
stimulate microsclerotia germination. Upon germination, 
microsclerotia develop germ tubes and generate appresso-
ria that aid in penetration into host cells. During the para-
sitic phase, germinated microsclerotia give rise to hyphal 
branches, while in the saprophytic phase, infectious hyphae 
penetrate plant tissues through wounds or cells on the root 
surface (Gupta et al., 2023), producing enzymes and toxins 
that aid in breaking down plant cell walls, facilitating entry 
into root tissues (Irulappan et al., 2021). As the fungus’s 
hyphae grow inside plant cells, they disrupt water and nutri-
ent transport, resulting in visible symptoms as the fungus 
progresses within the plant. Subsequently, neighbouring 
cells collapse, potentially leading to the death of heavily 
infected plants. The extent of invasion depends on both the 
plant’s defense response and the pathogen’s ability to coun-
teract it (Marquez et al., 2021). Since disease outbreaks are 
severe under optimal environmental conditions, they often 
result in the premature death of host plants. Following the 
decay of dead roots and other plant parts, microsclerotia are 
discharged into the soil in clusters, serving as inoculum, and 
the disease cycle continues (Ghosh et al., 2018) (Fig. 2). 
Microsclerotia capable of enduring in soil and root debris 
for three years or longer enable the fungus to survive in 
unfavourable environmental conditions in the field (Marquez 
et al., 2021).

M. phaseolina harbours several potentially virulent ele-
ments that actively interfere with the host plant’s defense 
mechanism. Initially, the pathogen establishes communi-
cation with the host via a class II hydrophobic protein 
and adheres to the root through the action of CEBL (cel-
lulose-binding elicitor lectins) and transglutaminase-like 
proteins. Phytotoxins such as botrydiploidin, phaseolinon, 
and patulin secreted by the pathogen play a crucial role 
during the initial stages of pathogenesis. On perceiving the 
pathogen associated molecular patterns (PAMPS), the host 
immune system begins the first line of defense response 
by producing signaling molecules like salicylic acid. The 
pathogen counteracts this initial host defense by secret-
ing compounds like salicylate-1-monoxygenase and pen-
etrates the host tissues. The invasion process is regulated 
by cAMP dependent and mitogen activated protein (MAP) 
kinase pathway (Islam et al., 2012). Upon invading the host 
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tissues, a wide repertoire of hydrolytic enzymes, cell wall-
breaking enzymes, and effector proteins released by M. 
phaseolina are involved in the infection process, facilitat-
ing disease development, and eventually causing host cell 
death (Islam et al., 2012; Marquez et al., 2021) (Fig. 3). 
Sinha et al. (2022) identified 117 proteins, including xyla-
nase, endoglucanase, and amylase, in the secretome of M. 
phaseolina. It has been observed that M. phaseolina can 
produce indole acetic acid (IAA), a hormone known to 
stimulate plant growth through several synthesis pathways 
(Amairani et al., 2023). This hormone plays a dual role 
in plant-pathogen interaction, acting both as a plant hor-
mone that modifies host physiology to enhance suscepti-
bility and as a microbial signal that impacts the pathogen 
to increase virulence (Kunkel et al., 2021). The elicitor 
molecules produced by the pathogen during the infection 
process trigger a series of signaling molecules involved 
in defense reactions that accumulate inhibitors, enzymes 
and pathogeneis related (PR) proteins in the host cells to 
prevent infection and disease progression (Fig. 3). One 
such elicitor molecule isolated from M. phaseolina was 
used to treat cell cultures of mungbean cultivars. The 
treated host cells responded to the elicitor treatment by 
producing increased levels of phenolics and enzymes like 
phenylalanine ammonia lyase and peroxidases, known to 

impart resistance in host plants against pathogen infection 
(Vidyasekaran et al., 2002).

The pathogen infests every part of the mungbean plant, 
from roots and stems to branches, petioles, leaves, pods, 
and seeds. It severely affects the overall health of the plant, 
weakening it by reducing its ability to uptake water and 
nutrients. This leads to stunted growth, reduced yield, and 
in severe cases, complete crop loss. The pathogen can affect 
plants in both pre-emergence and post-emergence stages. 
Initially, it causes seed rot and kills germinating seedlings. 
After emergence, cotyledons may be affected due to soil 
or seed-borne infections (Fuhlbohm et al., 2013). Usually, 
the onset of symptoms coincides with the crop’s flowering 
period.

The fungus primarily targets the stem near ground level 
in one-month-old crops, forming localized, raised white 
cankers that expand and develop into upward-spreading 
brown streaks (Seethapathy et al., 2017). Infected plant 
leaves exhibit silvery-grey coloration of stems and lateral 
branching, with senesced leaves still attached to the plant 
(Zhang et al., 2011). Leaves may show dark green, mottled 
patterns and reduced size, followed by sudden wilting and 
drying, leading to a drastic decline in flowering and pod 
production (Singh et al., 2022a, 2022b). Necrotic lesions 
can appear on pod surfaces without specific placement. 

Fig. 2  Disease cycle of Mac-
rophomina phaseolina. Micro-
sclerotia in close vicinity host 
roots germinate upon recogni-
tion of host root exudates. Upon 
contact with the root, germ tube 
and appressoria are formed 
leading to tissue penetration. 
Necrotic lesions begin to appear 
on the host roots. Vascular bun-
dle plugging leads to premature 
plant death. Microsclerotia 
survive in host debris and in soil 
which serves as inoculum in the 
next cycle
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Initially, infected green pods exhibit a blue-green color, 
transitioning to brown or reddish color. Mature dry pods 
infected by this fungus appear white to grey and bear 
scattered or widespread black structures. The fungus pen-
etrates both pods and grains, and affected grains either 
abort earlier or desiccate, resulting in emptiness (Ghosh 
et al., 2018). Seeds obtained from infected plants appear 
shrunken, brown, and sometimes have scattered black M. 
phaseolina sclerotia (Akhtar et al., 2011). Vertical split-
ting of the drying and wilt-affected plants reveals discol-
oration in internal tissues (Basandrai et al., 2021). The 
affected plants can be easily uprooted, leaving behind 

dried, decayed root sections in the soil. The rotten, decay-
ing stem and root tissues show dark discoloration due to 
the presence of numerous small black sclerotia, hence the 
symptom is popularly described as charcoal rot (Singh 
et al., 2022a, 2022b). Additionally, deterioration of sec-
ondary roots, shredding of the cortex area in the taproot, 
dark brown necrotic lesions on the exterior surface of the 
taproot, underneath the epidermis, and pith of lower stems 
in wilt-affected plants are also prominent signs of infec-
tion caused by the pathogen (Fig. 4A to D). Furthermore, 
at 7 days post-inoculation (dpi), the in planta fungal DNA 
significantly increases in mungbean seedlings, implying 

Fig. 3  Molecular mechanisms underlying pathogen virulence and 
plant defense in the Macrophomina-host interface. During successful 
infection, root exudates are identified by M. phaseolina which in turn 
activates pathways to induce necrosis and dampen host defences. As 
the fungus traverses the cortex, it eventually breaches the endodermis 
subsequently plugging the vascular bundles with developing micro-

sclerotia, leading to premature plant death. In an attempt to defend 
against M. phaseolina, the host employs several strategies such as 
activation of SA mediated signal cascade,  Ca2+ mediated responses, 
cell-wall depositions, secondary metabolite synthesis, ROS signal-
ling, and PR proteins
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extensive cortical colonization by M. phaseolina (Fig. 4E, 
Supplementary File 1).

Drought and heat favor dry root rot incidence

An optimal disease cycle entails a susceptible host, viru-
lent pathogen, and conducive environmental conditions. 
DRR disease incidence caused by M. phaseolina across 
various host crops is favored by maximum ambient tem-
peratures exceeding 30 °C and dry conditions inducing 
moisture stress during the plant’s reproductive stages 
(Seethapathy et al., 2017; Rai et al., 2022). This is attrib-
uted to M. phaseolina’s capacity to thrive and endure well 
in high-temperature and water-stressed environments 
(Chamorro et al., 2015). Although a wide temperature 
range of 15 to 40 °C supports the growth of M. phaseo-
lina, optimal conditions for infection occur between 28 
and 35 °C. At 20 °C and 25 °C, a reduction in the size 
of microsclerotia is observed compared to temperatures 
of 30 °C and 35 °C (Akhtar et al., 2011; Basandrai et al., 
2021). Higher root rot disease incidence is observed under 
low moisture conditions, with maximum disease incidence 
recorded at 40% soil moisture content (Kumar et al., 2019; 

Soni et  al., 2022). The low level of disease incidence 
at high soil moisture content is attributed to the fungal 
sclerotia’s inability to survive under wet soil conditions 
(Kumar et al., 2019). Additionally, apart from drought 
and heat, other abiotic factors such as soil properties also 
determine the incidence of DRR (Irulappan et al., 2022).

The combined effect of drought stress and M. phaseo-
lina infection has been studied in various crops such as 
sorghum (Goudzrzi et al., 2011), common bean (Mayek-
PÉrez et al., 2002), chickpea (Chilakala et al., 2023; Iru-
lappan et al., 2022), cotton (Ghaffar & Erwin, 1969), and 
strawberry (Sanchez et al., 2019). In all these studies, 
observations consistently indicated that drought stress 
exacerbated DRR infection by altering key physiological 
mechanisms due to disrupted plant-water relationships. 
Particularly in chickpea, it was found that drought stress 
weakened the plant’s defense mechanisms and compro-
mised the integrity of the endodermal barrier, accelerating 
the spread of the pathogen within the roots. Furthermore, 
in response to drought stress, the expression of genes 
linked to hormone regulation was differentially regulated, 
exacerbating DRR by affecting the plant’s innate resistance 
to infection (Irulappan et al., 2022).

Fig. 4  Symptoms of dry root rot on mung bean caused by Macropho-
mina phaseolina (Tassi) Goid. The mung bean (Vigna radiata L.) 
variety TM 2000–2 was tested for its response to M. phaseolina using 
the blotter paper assay. Typical root necrotic lesions were observed at 
7 days after inoculation (DAI). Images of the whole plant at 7 DAI: A 
Control, B Pathogen. Scale bars—1 cm. Stereomicroscopic observa-

tions of the roots of mung bean at 7 DAI: C Control, D Pathogen. 
Scale bars—250  μm. E In planta fungal DNA quantification using 
ITS primers specific to M. phaseolina. N = 5, significance was tested 
using one-way ANOVA followed by Tukey’s post-hoc test. Error bars 
represent the standard error of mean
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Conversely, similar studies in mungbean (Fulbohm et al., 
2013; Kaur et al., 2023, 2024) and soybean (Mengistu et al., 
2018) have found no or limited association, highlighting the 
need to consider several factors when analysing the impact 
of these combined stresses. Fulbohm et al. (2013) observed 
increased seed infection by the pathogen in the Australian 
mungbean cultivar Beken during the rainy period, likely due 
to localized pod infection rather than systemic plant infec-
tion. In a study by Kaur et al. (2023), drought stress impeded 
the systemic progression of the pathogen from the root to 
the leaf and enhanced a better defense response in tolerant 
cultivars by accumulating antioxidants and lignin deposition.

Continuing this line of research, Kaur et  al. (2024) 
screened ten-day-old seedlings of six mungbean cultivars by 
subjecting them to combined drought stress and Macropho-
mina infection in three combinations: (i) drought followed 
by pathogen infection and normal watering, (ii) drought fol-
lowed by pathogen infection and drought again, (iii) patho-
gen infection followed by drought stress. The results showed 
that cultivars exposed to drought stress prior to Macropho-
mina infection performed exceptionally well in terms of 
yield and nutritional quality. The resistance response under 

drought followed by fungal infection was primarily due to 
callose deposition, while under fungal infection followed 
by drought stress, it was due to increased accumulation 
of proline and soluble sugars, indicating different defense 
strategies adapted by the genotypes in response to the order 
of combined stresses encountered. These findings, arising 
from limited research, require further elucidation and sug-
gest that the eventual impact of drought on DRR incidence 
in mungbean cannot be predicted and is subject to geno-
typic responses as well as the sequential order, duration, and 
severity of stresses encountered by the host species. The 
morphological, physiological and biochemical changes 
induced in mungbean on exposure to Macrophomina infec-
tion and combined stress are presented in Table 1.

Host plant resistance to dry root rot in mungbean 
germplasm

Resistance or tolerance to the combined stresses of DRR 
and drought is crucial for improving mungbean produc-
tion under climate change scenarios. Managing DRR is 
exceptionally challenging due to the soil-borne nature 

Table 1  Morphological, physiological and biochemical changes induced in mungbean exposed to dry root rot and combined drought stress con-
ditions

Stress Morphological/biochemical changes in 
mungbean

References

Macrophomina infection Decrease in shoot length, shoot fresh weight, 
shoot dry weight, root length, root fresh 
weight, root dry weight

Khan et al. (2016); Shahid and Khan (2016a, 
2016b); Khan et al. (2019); Kaur et al. (2023); 
Kaur et al. (2024)

Decrease in pods/plant, seed yield/plant, seed 
weight, functional nodules, nodular dry 
weight, and leghaemoglobin

Increase in non-functional nodules

Shahid and Khan (2016a, 2016b); Khan et al. 
(2019)

Decrease in total chlorophyll content Shahid and Khan (2016a, 2016b); Hasheem 
et al. (2017)

Increase in callose deposition Kaur et al. (2024)
Increase in lignin, phenols, hydrogen perox-

ide, starch content, soluble sugars
Hasheem et al. (2017); Kaur et al. (2023); Kaur 

et al. (2024)
Increase in total antioxidant capacity, catalase, 

superoxide dismutase, guiacol peroxidase
Kaur et al. (2023); Kaur et al. (2024)

Increase in proline, free aminoacids, Absicisic 
acid

Hasheem et al. (2017)

Increase in salicylic acid Kaur et al. (2023)
Macrophomina infection and drought concur-

rently
Increase in shoot length, dry weight
Increase in lignin content
Increase in protein and soluble sugars
Increase in phenols, hydrogen peroxide and 

antioxidant capacity
Decrease in root length and fresh weight
Decrease in starch content

Kaur et al. (2023)

Macrophomina infection + Drought sequen-
tially

Increase in soluble sugars and proline Kaur et al. (2024)

Drought + Macrophomina infection sequen-
tially

Increase in callose Kaur et al. (2024)
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of the pathogen, its asexual reproduction, the prolonged 
longevity of microsclerotia, and its complex relationship 
with drought conditions. Additionally, the virulence of M. 
phaseolina isolates appears to vary significantly across 
locations (Bimla et al., 2016; Kumar et al., 2017a). Vari-
eties possessing an innate ability to resist or withstand 
the disease under drought conditions are essential for a 
long-term, eco-friendly, and economically viable strategy 
to combat DRR.

Large-scale screening of mungbean germplasm is essen-
tial to identify resistant sources to DRR. Various pheno-
typic screening methods, such as the paper blot assay, sick 
pot technique, sick plot technique, and field evaluation, are 
utilized for this purpose. The paper blot assay, for instance, 
involves placing eight to ten-day-old seedlings with roots 
dipped in fungal inoculum inside paper towels, allowing dis-
ease development under controlled conditions, with scor-
ing based on symptom severity (Nene et al., 1981; Pandey 
et al., 2021). Other techniques, like the sick pot and sick plot 
methods, involve inoculating susceptible genotypes with M. 
phaseolina to assess symptom development under controlled 
conditions (Choudhary et al., 2011; Irulappan et al., 2021).

Although germplasm screening for DRR began decades 
ago, vigorous screening has gained momentum only recently 
due to the dramatic rise in disease incidence (Table 2). Sev-
eral studies have reported mungbean genotypes exhibiting 
resistance or tolerance to DRR using different screening 
techniques (Avanija et al., 2023; Choudhary et al., 2011; 
Khan & Muhammad, 2007; Pandey et al., 2020, 2021). How-
ever, identifying donor sources with consistently high levels 
of resistance has been challenging due to the skewed distri-
bution curve towards susceptibility (Talekar et al., 2021). 
Therefore, continued disease phenotyping of unexplored 
germplasm accessions is necessary to identify consistent and 
durable resistant sources for use in breeding programmes.

Given the simultaneous occurrence of drought and DRR, 
evaluating genotypes under combined stress conditions 
would be beneficial. While investigations on the effects of 
combined stress on morphological, biochemical, and physi-
ological traits have been conducted in some legume crops, 
such as chickpea and soybean, screening for genotypes with 
combined tolerance to both stresses remains in its early 
stages in mungbean (Kaur et al., 2023, 2024; Mengistu et al., 
2018). Identifying genotypes with combined tolerance to 

Table 2  List of resistant genotypes identified through various screening techniques in mungbean germplasm

Screening technique No. of 
genotypes 
screened

Resistant genotypes identified Reference

Field – LM 220, MS 9385 Vidhyasekaran et al. (1977)
Paper towel 29 NCM 252-10, 40536 Khan and Muhammad (2007)

40504, NCM 257-5, 40457, NCM 251-4, 6368-64-72
Sick plot 25 MSJ-118, KM 4-44 and KM 4-59 Choudhary et al. (2011)
Sick plot technique 27 Azri 2006, NM 2006 and AUM 9 Haseeb et al. (2013)
Field 50 13,989, 14,047, 14,095, 14,100, 14,112 Atiq et al. (2014)

13,961, 13,962, 13,984, 14,069, 14,090, 14,102, 14,103, 14,114 14,118 
14,125

Sick pot 26 MNUYT-317, NM-2011 Akhtar et al. (2018)
Field trial 40 BPMR-145 Thombre and Kohire (2018)
Sick plot technique 19 GP-1, G-4, MUM-2, ISGP-3, IPMO-2-3 Sangeeta et al. (2018)
Paper towel 43 EC693364, EC693368, EC693369, IPM-02-17, IPM-02-3, IPM205-7, 

IPM99-125, V04718, VC6173 B-10
Pandey et al. (2020)

Sick pot technique 3 IPM99-125, EC693368, EC693369
Paper towel 296 VI001509AG Pandey et al. (2021)

VI000203BBR, VI000319AG, VI000732AG, VI000764AG, VI000766BG, 
VI000818BG, VI001244AG, VI001268BG, VI001282AG, VI001284AG, 
VI001400AG, VI001419BG, VI001490AG, VI001535BG, VI001548AG, 
VI002529BBL, VI003699BBG

Sick pot 18 VI000766BG, VI001244AG, VI001268BG, VI001282AG, VI001400AG, 
VI001490AG, VI001509AG, VI001535BG, VI003699B-BG

Field screening 18 VI000203B-BR,
VI000815BG, VI001244AG, VI001400AG, VI001482BG, VI001509AG, 

VI002529B-BL, VI002587AG, VI002859BG, VI004024AG, 
VI004811AG

Sick pot 47 MGG-529, MG-549, WGG-42, MG-505, Pusa 9072, WGG-25 Avanija et al. (2023)
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both drought and Macrophomina infection under field condi-
tions would facilitate their effective deployment in resistance 
breeding programmes.

Currently, no studies to determine the genetic loci in 
mungbean associated with DRR resistance have been con-
ducted. However, research conducted in legumes and other 
crops can provide insights into extending similar approaches 
for DRR resistance breeding programmes in mungbean. 
Inheritance studies have indicated the role of dominant genes 
with epistatic interactions for dry root resistance in common 
bean (Hernández-Delgado et al., 2009; Vitaeri and Linnaes, 
2022), while QTL mapping studies in several other crops 
have established the polygenic nature of the trait (Table 3). 
Based on their mapping study, Olaya et al. (1996) identified 
two RAPD markers, B386900 and B4591600, associated 
with DRR resistance. Using AFLP analysis, Hernández-
Delgado et al. (2009) discovered a potential QTL on linkage 
group 1 of the common bean conferring resistance to char-
coal rot using an F2 population derived from a cross between 
BATT477 (resistant to both charcoal rot and drought) and 
cvPintoUI-114 BATT477. Using the RIL population of the 
same cross, nine QTLs for charcoal rot and three QTLs for 
drought were mapped; however, no overlapping QTLs for 
resistance to both stresses were detected. Surprisingly, the 
QTL identified on LG1 by Hernández-Delgado et al. (2009) 
was not detected in this study. The markers BPC40M12 and 
BPC54M150 associated with DRR resistant QTLs located 
on chromosome 8 and 10 were prominent candidates for 
marker-assisted selection (Méndez-Aguilar et al., 2017).

Karadi et al. (2021) reported a single minor QTL (‘qDRR-
8’) associated with M. phaseolina in chickpea. In soybean, 
da Silva et al. (2019) mapped three QTLs associated with 
dry root resistance, one on chromosome 15 and two on chro-
mosome 16 using an  F2:3 population derived from the cross 
PI567562A x PI567437 genotyped using a 6 K SNP array. 
The QTL on chromosome 15, which explained 29.4% of 
the phenotypic variance, overlapped with a patented marker 
Satt512 used for selection of genotypes tolerant to DRR-
drought complex. However, QTLseq analysis based on 
genotyping by sequencing (GBS) of resistant and suscepti-
ble bulks from the same population detected QTLs on three 
other chromosomes, namely 5, 8, and 14. The differences in 
the sequencing platforms were speculated as a reason for the 
contradictory results (da Silva et al., 2020). Muchero et al. 
(2011) reported nine QTLs associated with resistance to M. 
phaseolina in cowpea; of which, only three QTLs co-located 
with drought tolerance QTLs, suggesting that responses to 
M. phaseolina infection and drought stress could possibly 
be mediated by different genetic mechanisms. Tomar et al. 
(2017) reported three QTLs, including a major QTL, associ-
ated with resistance to M. phaseolina in castor.

The limitations in QTL mapping strategies involving the 
development of mapping populations and construction of 

genetic linkage maps have been overcome by genome-wide 
association studies (GWAS). Coser et al. (2017) reported 
SNPs associated with M. phaseolina through GWAS in 
a collection of 459 accessions from the USDA Soybean 
germplasm core collection based on field and greenhouse 
screening. The SNPs detected for their association with M. 
phaseolina under field and greenhouse conditions were dif-
ferent, suggesting that the genetic mechanisms underlying 
resistance to M. phaseolina in soybean could be complex 
and influenced by the environment. GWAS and SNP-based 
haplotyping in soybean identified TAC and CGA haplo-
types associated with markers Gm08_18909193_A_G, 
Gm08_44422211_T_C, and Gm19_34320762_A_C to con-
fer resistance against charcoal rot in a panel of varieties culti-
vated by Brazilian farmers (Vinholes et al., 2019). Recently, 
Zatybekov et al. (2023) detected 11 QTLs associated with 
resistance to M. phaseolina in a panel of 252 accessions 
using the 6 K SNP array and whole-genome resequencing 
(WGRS) technology. GWAS based on WGRS data set in a 
biparental mapping population derived from the cross BAT 
477/NY6020-4 in common bean identified a novel QTL gov-
erning resistance to M. phaseolina on chromosome 3. Two 
SNP markers strongly associated with this QTL were part of 
the drought-sensitive gene Phvul.003G175900 (Viteri et al., 
2022). Nelson et al. (2021) reported three loci (FaRMp1, 
FaRMp2, FaRMp3) conferring resistance to M. phaseolina 
in strawberry through genome-wide SNP genotyping and 
pedigree-based analysis (Table 4).

Functional annotation of the resistance loci mapped using 
QTL and GWAS analysis has identified disease resistance 
gene analogues (Viteri et al., 2022) and candidate genes 
involved in plant defense and stress signaling pathways 
related to pectin metabolism (Muchero et al., 2011), calmo-
dulin, cell wall degradation, ethylene response factor, protec-
tion from oxidative stress (Coser et al., 2017), late embryo-
genesis (LEA) protein synthesis (Zatybekov et al., 2023), 
flavonoid, and isoflavonoid biosynthesis (Adeyanju et al., 
2015).

The draft genome sequences of mungbean, urdbean, and 
cowpea have been published (Kang et al., 2014; Ha et al., 
2021; Pootakham et  al., 2021; Lonardi et  al., 2019). A 
high level of conservation at the genome level is observed 
among these three Vigna species, facilitating the discovery 
of genes and QTLs associated with valuable agronomic traits 
through association genetics. Although no QTLs have been 
mapped for DRR resistance in mungbean, the high level of 
synteny among the three Vigna species has been utilized to 
identify conserved resistance loci with similar functions in 
mungbean. An EST-derived SNP marker (1_10853) linked 
to QTL Mac-2 on chromosome 3 governing resistance to 
charcoal rot in cowpea was functionally annotated to code 
for pectin esterase inhibitor. Based on comparative genomic 
analysis, the SNP marker (1_10853) was mapped to genes 
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Table 3  QTLs associated with resistance to Macrophomina phaseolina mapped in legumes and other agriculturally important crops

Host Mapping population QTL identified Chromosome Position
(cM)

Flanking marker R2 (%) Reference

Common bean 100 F2 plants 
derived from BAT 
477 X cvPinto 
UI-114

– 1 – ATA/AGT-19 – Hernandez-Delgado 
et al. (2009)

Common bean 94 RILs derived 
from BAT 477 X 
cvPinto UI-114

– 3 7.5 C3.LOC7.5 – Mendez-Aguilar et al. 
(2017)– 3 24.0 BPC1M6 –

– 5 76.0 BPC4M74 –
– 6 17.7 BPC74M243 –
– 8 0.0 BPC40M127* –
– 9 45.0 C9.LOC45 –

10 107.0 BPC54M150* –
Cowpea RIL population 

derived from 
IT93K-503–1 X 
CB46

Mac-1 2 77.4 1–070 14.5 Muchero et al. (2011)
Mac-2 3 1.3 1–1533 26.5
Mac-3 3 42.3 1–0853 10.6
Mac-4 3 64.2 1–0604 13.3
Mac-5 11 70.8 1–0464 10.3
Mac-6 5 59.3 1–0079 16.2
Mac-7 5 41.0 1–0804 19.4
Mac-8 6 29.7 1–0678 8.6
Mac-9 6 40.9 1–0030 8.3

Soybean 140  F2:3 derived 
from PI 
567562 × PI 
567437

– 15 Satt575-Sat_136 29.4 da Silva et al. (2019)
– 16 BARC-041267-

BARC-07957
25.4

– 16 Satt244-Satt547 8.4
Chickpea 182 RILs derived 

from BG 212 
9 × ICCV 08305

qDRR-8 8 67 Ca8_3970986-
Ca8_3904895

6.7 Karadi et al. (2021)

Castor F2:3 population 
derived from JI 
357 × SKI 338

– 2 65.6 CST261-CST 159 71.2 Tomar et al. (2017)
– 6 106.8 CST162-M165 12.5
– 9 51.0 CST112-CST236 11.3
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Table 3  (continued)

Host Mapping population QTL identified Chromosome Position
(cM)

Flanking marker R2 (%) Reference

Sesame 548 RILs derived 
from ZZM2748 x 
Zhongzhi No. 13

qCRR3.1 3 24.50 ZMM2997-
ZMM1033

3 Wang et al. (2019)

qCRR3.2 3 39.30 ZMM5636- 
ZMM5775

12

qCRR3.3 3 52.30 ZMM2218-
ZMM4682

10

qCRR3.4 3 58.40 ZMM4682- 
ZMM5444

9

qCRR5.1 5 116.80 ZMM1155-
ZMM0314

4

qCRR8.1 8 10.50 ZMM5060-
ZMM5061

4

qCRR8.2 8 115.70 ID0041-ZM638 5

qCRR8.3 8 123.70 ZM638-ZMM1682 5

qCRR9.1 9 104.70 ZMM2323-
ZMM0205

8

qCRR12.1 12 53.80 ID0046-ID0013 6

qCRR12.2 12 89.80 ZMM0913-
ZMM3752

14

qCRR12.3 12 106.10 ZMM3683-
ZMM2365

3

qCRR13.1 13 43.90 ZMM1307-ID0030 4

qCRR13.2 13 73.50 ZMM2344-
ZMM2343

8

Maize 190  F2:3 lines 
derived from 
CML495 x 
CML474

qMSR3 3 101 PZA03391_1–
ZA00316_10

5.72 Rashid et al. (2021)

qMSR4 4 15 PHM3963_33–
PHM259_7

6.49

qMSR6 6 17 PHM12904_7–
S6_103513378

5.65

qMSR8 8 59 PZA01964_29–
PHM4757_14

13.86

257  F3 lines derived 
from CML578 x 
CML474

qFMSR6 6 26 PZA01029_1–
S6_103513510

6.56

qFMSR7 7 37 PZA02643_1–
PZA03166_1

6.51

Sorghum 93 RILs derived 
from IS22380 x 
E36-1

A 51.27 Ac13 10.76 Reddy et al. (2008)
B 163.3 xtxp297 19.29
D 47.01 xtxp213 12.54
D 0.01 xtxp343 11.01
D 23.64 M9 11.24
I 28.85 xtxp176 7.89
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Table 3  (continued)

Host Mapping population QTL identified Chromosome Position
(cM)

Flanking marker R2 (%) Reference

Sorghum 93 RILs derived 
from SPV 
86 × E36-1

– A 96.1–110.1 AC13-xiabt224 8.9–17.8 Ayyana gouda et al. 
(2012)

– B 460.3–473.8 xiabt275-xiabt241 8.0–16.1

– B 59.8–63.3 xtxp201-xiabt378 9.8–17.7

– B 324.0–340.0 xtxp297-xiabt73 5.9–19.29

– B 367.9–393.4 xiabt 92-xiabt62 8.8–18.9

– D 1.8–3.9 xtxp343-xtxp12 9.2–13.7

– I 32.8–37.1 xtxp176-xtxp312 7.89–11.9

– I 45.2–62.8 xtxp274-xiabt29 6.9–19.9

– J 22.0–40.9 xtxp338-xiabt420 8.7–17.8

– H 15.41–16.61 Ac19-xtxp254 11–12

– I 49.2–50.1 xtxp274-xiabt29 25–29

– B 51.05–51.5 xtxp303-xtxp301 10–12

– D 26.4–28.46 xiabt374-xtxp9 22–23

– H 12.14–13.17 xtxp329-Ac19 14–15

– I 42.11–43.2 xtxp274-xiabt29 17–19

– A 372.4–372.11 xiabt 92-xiabt 67 19–23

Table 4  List of association panels developed and SSR/SNP markers identified associated to dry root rot/charcoal rot resistance identified in vari-
ous crops

Crop Association 
mapping panel

Genotyping 
platform

Phenotyping 
method

Assayed SNP/
SSR

Associated 
SNP/SSR

QTLs Chromosomes Reference

Soybean 459 PI lines 
from USDA 
germplasm

SNP50K chip Cut-stem inocu-
lation

35,683 19 8 6, 8, 9, 12, 18, 
20

Coser et al. 
(2017)

Field screening 5 4,14,18
169 core farm-

ers’ varieties
SNP6K Field screening 3780 6 4 8,18,19 Vinholes et al. 

(2019)
252 acces-

sions of 
Kazakhasthan

SNP6K Field screening 4495 5 5 Zatybekov et al. 
(2023)WGRS Field screening 44,385 63 11 2,3,7,8,9,15,

16,19
Common bean 126 RILs of 

BAT 477/ 
NY6020-4

WGRS Stem inocula-
tion

72,017 2 1 3 Viteri et al. 
(2022)

Maize 396 lines of 
CIMMYT 
Asia associa-
tion mapping 
panel

GBS Tooth pick 
technique

296,497 19 1,3,4,5,6,8,9,10 Rashid et al. 
(2021)

Sorghum 242 accessions 
of ICRISAT 
mini core col-
lection

EST—SSR Sick plot 31 6 - A,B, D, E Kumar et al. 
(2017b)

107 landraces SSR Sick pot 181 13 9 1,2,3,4,5,7,9 Mahmoud et al. 
(2018)

300 diverse 
lines

GBS Tooth pick 79,134 14 10 2,3,4 7,8,9 Adeyanju et al. 
(2015)
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encoding for pectin esterase inhibitor on chromosome 7 
(Vradi07g27890) in mungbean and chromosome 1 in urd 
bean (Pootakham et al., 2021).

Host‑M. phaseolina‑omics and gene expression studies

Similar to the annotated genes and pathways underlying 
QTLs, gene expression and transcript profiling of resistant 
and susceptible genotypes to M. phaseolina in a few leg-
umes like soybean, groundnut, alfalfa, and other crops such 
as sorghum and jute have also revealed the role of a wide 
array of genes encoding for pathogenesis-related compounds 
like chitinase, stilbene synthase, nucleotide-binding leucine-
rich repeat regions, jasmonic acid, salicylic acid, flavonoid 
and isoflavonoid biosynthesis, secondary metabolites, auxin 
homeostasis and transport, and stress signaling pathways 
involved in plant defense against the pathogen (Biswas et al., 
2014; Irulappan et al., 2022; Iwuala et al., 2020; Mah et al., 
2012; Marquez et al., 2018; Sharma et al., 2014). Addition-
ally, a study in sesame has demonstrated the existence of a 
biotrophy-necrotrophy switch in M. phaseolina (Chowdhury 
et al., 2017). Significantly higher transcript levels of BAS3 
(biotrophy-associated protein 3) and NIP (necrotrophy-
inducing protein) marked the onset of the necrotrophy phase. 
SiPCHY levels were the highest at the necrotrophy phase, 
indicating active lignin biosynthesis. Moreover, higher levels 
of SA (salicylic acid) were observed in the host during the 
biotrophic phase, while higher levels of JA (jasmonic acid) 
were accumulated during the necrotrophic phase, which cor-
related with the transcript levels as well. A similar trend 
was observed in the Arabidopsis thaliana root transcrip-
tome post-M. phaseolina infection. The upregulation of JA, 

SA, and ET (ethylene) responsive genes and their mutants 
displayed greater susceptibility to the pathogen (Schroeder 
et al., 2019). Gaige et al. (2010) developed a novel model 
pathosystem to study the molecular interactions between 
host-M. phaseolina. Although they observed only a weak 
upregulation of the JA/ET pathway genes in Medicago trun-
catula roots inoculated with M. phaseolina, they showed that 
priming the plants with JA/ET prior to inoculation enhanced 
resistance (Table 5).

Transcriptomics of arbuscular mycorrhizal fungi (AMF) 
colonized roots of soybean revealed an upregulation of 
defense, pathogenesis-related, and secondary metabolism 
genes (Marquez et al., 2018). They also showed that AMF 
relieved the defense-growth trade-off stress in soybean. 
Although no clues have been gained on cross talking among 
a network of pathways activated under pathogen infection 
and/or combined stress situations, the expression of certain 
compounds like auxins and LEA proteins under DRR infec-
tion as well as under drought stress indicates that common 
pathways may be involved in plant defense against both these 
stresses.

Several studies have been conducted on M. phaseolina 
as well. The first genome sequence of M. phaseolina was 
published by Islam et al. (2012), and since then, genome 
sequences of several strains from varying hosts have been 
published (Shirai et  al., 2023). A transcriptomic study 
revealed that reactive oxygen species (ROS) pathways are 
involved in microsclerotia formation (Liu et al., 2022). In 
addition to cell wall-degrading enzymes (CWDEs), sev-
eral studies of gene expression of secondary metabolomic 
pathways have shown the role of toxins in virulence (Shirai 
et al., 2023). Independent M. phaseolina secretome analyses 

Table 5  Differentially regulated miRNAs and their role in modulating defense pathways in diverse host species in response to Macrophomina 
infection

S.No Host Key miRNA Role in stress response pathways Reference

1 Chickpea miR397 MiR397 target LAC transcripts, which regulate lignin deposition Sharma et al. (2023)
2 Lentil miR156 Modulates developmental processes and stress tolerance by targeting SPL (SQUA-

MOSA PROMOTER BINDING PROTEIN-LIKE) transcription factors
Mishra et al. (2021)

miR159 Regulates MYB transcription factors
miR167 Controls auxin response factors, affecting root development and response to biotic stress
miR169 Targets NF-YA (Nuclear Factor Y, subunit A) transcription factors
miR482 Targets nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes,

3 Jute miR-845b
miR-166

Targets mRNA coding for disease resistance proteins with NBS-LRR motifs, providing 
NBS-LRR and ROS-mediated defense

Dey et al. (2016)

miR154
miR210
miR211

Initiates “phasiRNA” which targets salicylic acid/ Jasmonic acid/ Abscisic acid pathway 
precursor genes

Biswas et al. (2014)

miR219 Targets WIN1 motif of the HopW1-1-Interacting protein 1 domain
miR218a 

miR218b 
miR218c

Targets the sequences encoding well-conserved TIR1motif and P-loop
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conducted by Sinha et al. (2022) and Pineda-Fretez et al. 
(2023) revealed 117 and 250 secreted proteins, respectively, 
among which several effectors, CWDEs, and peptidases 
were identified. These -omics studies in model pathosystems 
can lay a foundation for future studies on M. phaseolina-host 
interaction in non-model crops/plants such as mungbean.

A common defense mechanism observed in plants sub-
jected to drought and pathogen infection is the deposition 
of lignin in the secondary cell walls facilitated by the cell 
wall catalyzed multicopper oxidase family enzymes (LAC-
CASES) encoded by LAC genes. Short non-coding RNA 
molecules known as microRNAs have emerged as potential 
players in modulating the defense response by regulating 
transcriptional and post-transcriptional gene expression. In 
chickpea, microRNA397 was found to play a key role in 
regulating tolerance to DRR and drought through the root 
lignification process (Sharma et al., 2023). In jute, the miR-
845b and miR166 superfamily regulate the Nucleotide-bind-
ing site—leucine-rich repeat (NBS-LRR) and ROS medi-
ated defense (Dey et al., 2016). The pathways involved in 
all these ‘omics’ studies reveal that the host plant deploys 
a two-tier defense strategy against Macrophomina, with the 
first level primarily aimed to prevent/delay the entry of the 
pathogen into the host cell and the second level aimed at 
initiating a destructive war against the invaded pathogen.

While the role of microRNAs in regulating DRR resist-
ance in mungbean is not yet fully understood, their role 
in regulating drought tolerance has been established. The 
microRNA Vra-miR165 contributes to drought tolerance by 
targeting the mungbean NAC transcription factors, which 
also participate in biotic stress (Tariq et al., 2022). Kumar 
et al. (2022), identified five potential microRNAs (Vra-
miR160, Vra-miR164, Vra-miR167, Vra-miR394 and Vra-
miR398) that regulate drought response in the mungbean 
genotype K851 by targeting auxin response factor, NAC 
transcription factor, serine acetyl transferase 1, and multi-
copper oxidase LPR 2 like genes. Two of these drought-
responsive microRNAs, namely miR160 and miR398, also 
participate in defense against Mungbean Yellow Mosaic 
India Virus (MYMIV) by regulating auxin perception and 
NAC transcription factors (Kundu et al., 2017). Interest-
ingly, since all these genes are also reported to be involved 
in biotic stress response, they may be possible targets of 
microRNAs regulating DRR resistance in mungbean. Elu-
cidating the role of genetic factors regulating key signalling 
pathways can help understand the evolutionary dynamics 
during host–pathogen interaction, thereby imparting resist-
ance in plants and virulence in pathogens.

A wide array of secretory fungal proteins produced 
by M. phaseolina are essential for disease pathogenesis 
and serve as potential virulence factors to break the host 
defense mechanisms. In silico prediction based on whole 
genome sequence analysis reveals an abundant secretion of 

peroxidases, oxidases, cellulolytic and hydrolytic enzymes 
by the pathogen to decompose plant cell walls that are bar-
riers for its entry into the host. Among the 362 carbohydrate 
active enzymes (CAZymes) encoded by Macrophomina 
genome, about 219 belong to glycoside hydrolases (GH) 
which is comparatively higher than the average GH pos-
sessed by other known phytopathogenic fungi (Islam et al., 
2012). Proteomic analysis revealed an arsenal of secretory 
proteins (ranging from 117 to 250) predominated by cell 
wall degrading enzymes such as glucananses, xylanase and 
amylases and peptidases that are involved in infection pro-
cess (Sinha et al., 2022; Pinedo-Fretez et al., 2023). In addi-
tion, secretome analysis identified putative effector proteins 
secreted by the pathogen that help in colonising the host 
by manipulating and suppressing the host immune system 
(Pinedo-Fretez et al., 2023). Understanding the role of these 
secretory fungal proteins and effector molecules can help 
in gaining insights on the fungal proteins associated with 
pathogenesis and their role in host–pathogen interaction, 
eventually helping in devising management strategies to 
mitigate dry root rot.

A few omics studies such as transcriptomics and metabo-
lomics have been conducted to study the M. phaseolina-
host interactions in several crops such as soybean, sorghum 
and in the model pant Arabidopsis thaliana (Arafat et al., 
2024; Bandara et al., 2018; Bosmaia et al., 2023; Radadiya 
et al., 2021; Schroeder et al., 2019; Silva et al., 2021; Singh 
et al., 2022a, 2022b; Yan et al., 2021). However, such omics-
based approaches have not yet been utilized for gaining 
insights into mungbean-M. phaseolina interactions. Further, 
CRISPR/Cas based genome editing to confer resistance to 
a wide range of phytopathogens has been extensively uti-
lized (Langner et al., 2018). However, genome editing based 
approaches towards engineering M. phaseolina resistance 
are yet to be utilized in crops, including mungbean. Moreo-
ver, certain genome edited lines can be utilized as pre-breed-
ing material to aid conventional breeding towards resistance. 
Integration of various omics techniques with genome edit-
ing techniques are fundamental tools in research towards M. 
phaseolina resistance in mungbean.

Integrated management strategies to mitigate dry 
root rot

Integrated management techniques, including the use of fun-
gicides, biocontrol agents, botanical extracts, and organic 
amendments, have shown promising effects in controlling 
and reducing DRR incidence in mungbean (Deshmukh et al., 
2016; Kumari et al., 2012). Seed treatment with systemic 
fungicides such as carbendazim has proven effective in mini-
mizing DRR incidence in mungbean (Kumari et al., 2015; 
Murthy et al., 2003).
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Fungal and plant growth-promoting rhizobacteria (PGPR) 
such as Trichoderma viride, T. harzianum, Glomus claroi-
deum, Bacillus subtilis, Pseudomonas fluorescens, P. putida, 
P. aeruginosa, and Burkholderia species exhibit antagonis-
tic effects on M. phaseolina growth. Seed and soil treatment 
with these biocontrol agents, either alone or in combination, 
have demonstrated effectiveness in reducing mungbean dis-
ease incidence in various greenhouse and field experiments 
(Raguchander et al., 1993; Thilagavathi et al., 2007; Mansoor 
et al., 2007; Chandra et al., 2007; Satya et al., 2011; Shahid 
and Khan, 2016a, 2016b; Hashem et al., 2017; Choudhary 
& Ashraf, 2019; Ahmed & Shete, 2022; Khaire et al., 2023). 
These antagonists induce resistance against the pathogen by 
synthesizing enzymes that can lyse fungal cells, mimicking 
host plant defense mechanisms, and competitively colonizing 
host plant roots, thereby eliminating the harmful pathogen 
from the ecological niche. Notable increases in defense-related 
enzyme activities such as phenylalanine ammonia-lyase, poly-
phenol oxidase, superoxide dismutase, and peroxidase have 
been observed in mungbean genotypes treated with P. putida 
(Khan et al., 2023).

Noreen et al. (2019) examined the function of fluorescent 
Pseudomonas linked to mungbean root nodules in rhizobia-
induced nodulation, highlighting the potential of beneficial 
microbes in disease management. Additionally, botanical 
extracts from mustard, neem, sesame, onion, garlic vine, Euca-
lyptus, Datura, Sisymbrium, Launaea and palmarosa (Cym-
bopogon martini) have also been used to treat mungbean for 
mitigating DRR incidence (Mansoor et al., 2007; Javaid and 
Siddique, 2011; Haseeb et al., 2013; Kalaivani et al., 2023).

Agronomic practices such as crop rotation with non-host 
crops, fallowing fields, and soil amendments to improve 
soil fertility are also recommended practices to reduce M. 
phaseolina inoculum levels in the soil (Choudhary et al., 
2010). Exposure of mungbean seeds to ultraviolet radiation 
for 5–20 min significantly reduces root-infecting fungi (Sid-
diqui et al., 2011). Given the crucial role of temperature 
in M. phaseolina survival, soil solarization can stimulate 
the temperature conditions necessary to reduce the viable 
population of the pathogen (Polakala et al., 2023). While 
these strategies help combat DRR incidence in mungbean, 
their cost-effectiveness and eco-friendliness on a large scale 
remain major limiting factors for field recommendations. 
Considering these factors, exploring host plant resistance is 
a viable strategy for developing mungbean cultivars tolerant 
to DRR and combined stresses.

Conclusions and future perspectives

Host plant resistance remains the most viable eco-friendly 
strategy to realize the potential yield and counteract viru-
lent pathogenic strains. However, exploiting and utilizing 

genetic and genomic resources to combat DRR in mung-
bean requires significant progress. Despite the identification 
of limited resistant sources to date, large-scale screening 
of mungbean germplasm is essential to identify potential 
donors with durable resistance against DRR. The develop-
ment of a rapid, sensitive, and reliable screening technique 
for high-throughput phenotyping is crucial to handle large 
sets of germplasm. Incorporating artificial intelligence 
tools and sensor-based imaging technologies that precisely 
capture DRR symptoms can aid in scoring disease severity 
accurately.

While dry and hot conditions predispose mungbean to 
DRR, there is no strong association to presume that selection 
for drought tolerance will favor DRR resistance. Therefore, 
selection for both traits needs to be done individually in 
environments displaying the combined stresses. Although 
mapping strategies in a few crops have indicated the poly-
genic nature of DRR resistance, the genetics of this trait still 
needs elucidation in mungbean.

The recent emergence of DRR as a globally devastating 
disease and challenges in identifying suitable donor sources 
with high levels of resistance have delayed the development 
of bi-parental mapping populations for QTL studies. Iden-
tification of major genomic regions associated with DRR 
needs to be expedited to develop marker-assisted selection 
programs and fast-track introgression into cultivated varie-
ties. Co-localization of drought and DRR QTLs, as observed 
in legumes like soybean, can facilitate selection for tolerance 
against the dual complex.

With gold-standard NGS technologies and high-density 
SNP genotyping becoming more affordable, mungbean core 
and mini-core collections representing holistic diversity can 
be effectively utilized as association mapping panels for 
GWAS to identify target genomic regions governing DRR 
resistance. Once identified, functional annotation of these 
QTLs using bioinformatic tools can provide insights into 
genes, signaling pathways, and their interactions involved 
in host defense mechanisms.

The RNAseq approach to analyze transcriptomes in 
resistant and susceptible mungbean varieties can iden-
tify differentially regulated genes that explain genotypic 
responses triggered by the Mungbean-M. phaseolina inter-
action. Investigating the role of microRNAs in regulating 
tolerance towards the drought-dry root complex can help 
modulate the defense response in mungbean.

With the draft genome sequence available for Vigna spe-
cies, synteny analysis can pave the way for identifying con-
served resistance loci for DRR and drought among mung-
bean, urd bean, and cowpea. A pangenomics approach can 
capture haplotypic diversity contributing to individual and 
combined stress tolerance.

Despite significant research on management aspects of 
DRR in mungbean, there is an urgent need to prioritize and 



455Plant Physiology Reports (July–September 2024) 29(3):439–460 

revive the DRR resistance breeding programme. Comple-
menting conventional breeding strategies with the ‘omics’ 
toolbox can lead to the development of climate-resilient 
mungbean cultivars, ensuring food and nutritional security.
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