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Abstract
Implementing trait-based phenotyping for waterlogging stress in crop improvement has become imperative due to the 
limitations of traditional methods for assessing abiotic stress tolerance. Therefore, there is a crucial need for efficient 
phenotyping tools and protocols to non-invasively evaluate genotypes for advantageous traits associated with waterlogging 
tolerance. In this context, the study was carried out to optimize an affordable phenotyping protocol to assess one of such 
traits, namely waterlogging-induced roots (WIR) in cowpea genotypes. The data generated from optimized protocol for 
stress imposition, image acquisition, and image analysis demonstrated effectively that WIR image features significantly 
differentiated cowpea genotypes when they were subjected to waterlogging stress as evidenced by PCA and K-cluster analysis. 
The study also revealed significant variation among genotypes in terms of WIR architecture based on image features such 
as total root length (TRL), network area (NA), convex area (CA), volume (Vol) and Median number of roots (MeN) etc. 
Efficacy of these traits in differentiating the waterlogging tolerant and intolerant genotypes of cowpea could be validated with 
conventional parameters. A strong positive correlation between conventional and WIR image features indicated that WIR, 
playing a role in waterlogging tolerance, can be reliably measured noninvasively. Furthermore, the phenotyping protocol 
developed in this study together with growth parameters could help in identification of waterlogging tolerant genotypes 
CG121 and CG221 that had enhanced WIR over other genotypes under waterlogging conditions. The affordable phenotyping 
protocol developed in this study promises to serve as an effective phenotyping tool for assessing waterlogging-induced roots 
in cowpea and promising genotypes like CG121 and CG221 may serve as donors for waterlogging tolerance.

Keywords Affordable root phenotyping · WirPheno · Waterlogging induced roots (WIR) · ImageJ · RhizoVision explorer · 
Image features

Introduction

The enhancement of crop performance through genetic 
improvement, in pursuit of higher productivity and climate 
resilience, relies significantly on the accurate and precise 
assessment of desired traits. This necessity has driven sig-
nificant advancements in the realm of plant phenomics in 
recent times. Plant phenomics stands as a multidisciplinary 
approach (Demidchik et al., 2020; Negrão & Julkowska, 
2020; Pieruschka & Schurr, 2019) with the primary objec-
tive of phenotyping crop plants for desired phenes which 
refers to traits. Plant phenotyping has been a pivotal com-
ponent of crop and variety selection since the early days of 
agriculture when humans began domesticating crops (Kumar 
et al., 2015). However, characterisation of plant responses 
was largely carried out with conventional emphasis on 
growth, yield and its components both under favourable 
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and abiotic stress environments as many of the traits pro-
posed did not allow large scale screening because of lack 
of robustness. Modern technologies at present, attempt to 
bridge this gap in phenotyping by engaging non-invasive 
tools and automation in a variety of plant phenomics plat-
form (Houle et al., 2010) with optimistic hope that external 
features of shoot and root can help in interpretation of inter-
nal processes in plants (Zhao et al., 2019) when exposed to 
natural or imposed abiotic stresses. While ample attempts 
have been made to optimise phenomics protocol for stress 
tolerance like drought in legumes such as mungbean (Rane 
et al., 2021) and salinity in cereals (Al-Tamimi et al., 2016), 
few information is available on waterlogging stress and 
plant’s response in legume crops like cowpea.

The characterization of crop germplasm for waterlogging 
tolerance remains a formidable task (Langan et al., 2022) 
despite an access to information on morpho-physiological 
responses of plants to waterlogging. This challenge 
primarily stems from the wide variability in waterlogging 
stress conditions and the multitude of additional factors that 
influence plant responses (Langan et al., 2022). Innovative 
setups for inducing waterlogging have been demonstrated, 
including the use of pots placed in buckets to evaluate shoot 
responses as in lentil (Lake et al., 2021), hydroponics in 
soybean (Harrison et al., 2022). Waterlogging responses 
of plants were assessed by employing digital imaging and 
thermal cameras as in lentil (Lake et al., 2021), by UAV 
based imagery systems (Zhou et al., 2021) and cost-effective 
3D imaging platforms (Cao et  al., 2019) in soybean. 
Furthermore, a smartphone-based phenomics tool has been 
devised for evaluating drought responses in pulse crops like 
green gram, cowpea, chickpea, and black gram (Tamilselvan, 
2022). However, despite these advancements, there remains 
a dearth of research focusing on the identification of 
desirable waterlogging-tolerance traits, such as adventitious 
roots, by refining non-invasive phenotyping techniques 
for screening. It has been evidenced that development of 
adventitious roots from stem region, which replace the 
deteriorated main root system is one of the adaptations in 
cowpea (Hong et al., 1977; Olorunwa et al., 2022) and other 
legumes like pigeon pea (Hingane et al., 2015) in response 
to waterlogging. Developing robust methods to identify and 
evaluate such trait can significantly contribute to breeding 
for waterlogging tolerance in legume crops.

Root phenotyping has emerged as a pivotal technique 
within plant phenomics, aiming to characterize various root 
phenes or traits encompassing morphological, geometrical, 
topological, and dynamic aspects (York & Lobet, 2017). 
This technique enables the exploration of how roots respond 
to both regular and extreme environmental conditions. 
However, root phenotyping poses unique challenges due to 
the opaque nature of soil and the requirement for advanced 
facilities to accurately assess these traits (Bontpart et al., 

2020). Traditionally, plants were uprooted, and their root 
architecture was analysed using various methods such as 
soil coring, root excavations, trenching (Weaver, 1926; 
Weaver et al., 1922), and shovelomics (Burridge et al., 2016; 
Trachsel et al., 2010). These conventional approaches have 
limitations and are often labour-intensive, making them less 
suitable for high throughput phenotyping efforts.

Phenotyping platforms that have emerged for the non-
destructive quantification of root system architecture (RSA) 
engage technologies such as electromagnetic inductance as 
demonstrated in wheat (Whalley et al., 2017), computed 
tomography (CT) as demonstrated in wheat (Pfeifer et al., 
2015) and in rice (Teramoto et al., 2020). Further, magnetic 
resonance imaging (Van Dusschoten et al., 2016) was used 
in crops like barley and maize for 3D quantification of RSA 
and its activity in response to various edaphic and stress 
factors. Since these technologies are highly expensive, 
researchers have introduced affordable root imaging 
platforms to facilitate phenotyping for root traits (Bontpart 
et al., 2020; Rinehart et al., 2022). A diverse array of tools 
for root phenotyping exists, including commercial software 
such as WinRHIZO, WinRhizoTRON, and RootSnap, open-
source and freeware options like ImageJ, SmartRoot, Root 
System Analyzer, DIRT, RootTrace, IJ_Rhizo, DART, 
RootNav, EZ-Rhizo, Toporoot, and RhizoVision Explorer, 
as well as on-demand platforms like Growth Explorer and 
RootReader 3D (Li et al., 2022; Takahashi & Pradal, 2021). 
These imaging software tools can be further categorized 
into either 2D (such as WinRHIZO, GiA Roots, SmartRoot, 
and DIRT) or 3D (including RootTrak, RootReader3D, and 
RSAtrace3D) based on the dimensions they analyse (Li 
et al., 2022).

Legume crops such as cowpea are highly sensitive to 
waterlogging and there is no standardized phenotyping 
methodology available to comprehensively study various 
aspects of root system architecture under waterlogged 
conditions (Langan et al., 2022). Hence, the current study 
was focused on optimising an affordable phenotyping 
protocol and to demonstrate its use in assessing waterlogging 
induced roots (WIR) in cowpea genotypes.

Materials and methods

Experiment details

The experiment was carried out at Plant Phenomics 
Facility of ICAR- National Institute of Abiotic Stress 
Management, Baramati (ICAR-NIASM) located at 18° 
09′ 30.62′′ N latitude, 74° 30′ 03.08′′ E longitude and the 
altitude of 550 m from MSL in Baramati taluka, Pune, 
Maharashtra, India in 2022–23. The seed of 20 cowpea 
genotypes including two local cultivars were collected 
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from ICAR- NBPGR, New Delhi (Table 1) and the cowpea 
plants were raised in pots filled with black soil devoid of 
small stones and crop residues on top layers of soil up to 
15 days after sowing (DAS) in shade net. Then the plants 
sifted to greenhouse and arranged in CRBD design having 
2 treatments and 3 replications to assess the waterlogging 
induced roots (WIR) of cowpea germplasm at seedling 
stage with the help of an affordable root phenotyping 
system.

Framework of WirPheno (waterlogging induced root 
phenotyping)

The optimised WirPheno includes three stages namely 
stress imposition, image acquisition, and image analysis. 
The stress imposition was given in “pot-in-pot” method 
followed by image acquisition with the help of smartphone 
followed by image analysis with the help of amalgamation 
of ImageJ and RVE (RhizoVision Explorer) to extract the 
data from images.

Imposition of waterlogging stress

The initial stage of WirPheno, stress imposition, a modi-
fied “pot-in-pot” method, which is based on the pot in a 
bucket method described by Lake et al. (2021) was used to 
impose waterlogging stress to the plants. In this modified 
method, two pots of different sizes and heights were selected 
where the small and big pots were named as pot-A and pot-B 
respectively. Pot-A, having 20 cm height and 20 cm diameter 
at top surface and holes at bottom, was used to grow the 
cowpea plants and made a few more extra holes at sides of 
pot A to oversaturate the soil within short time during stress. 
Pot-B, dimensions of 31 cm in diameter at the top surface, 
20 cm in diameter at the bottom surface, and a height of 
29 cm and devoid of holes, was used for imposing stress. 
The pot A was kept in pot B. After transiently replacing the 
air in the soil pore spaces with water by adding water to half 
of pot B, stress was applied (15 DAS) by raising the water 
level by 4 cm from the soil in pot A. All 20 genotype pots 
were treated with the same manner. The stress was allowed 
for 10 days (Fig. 1).

Table 1  List of cowpea 
genotypes collected for research

Gene ID Accession name Seed lot collection Gene ID Accession name Seed lot collection

CG 035 EC 240861 ICAR- NBPGR CG 151 IC 488195 ICAR- NBPGR
CG 038 EC 240875 ICAR- NBPGR CG 162 IC 598466 ICAR- NBPGR
CG 041 EC 240801 ICAR- NBPGR CG 165 IC 560928 ICAR- NBPGR
CG 060 IC 488085 ICAR- NBPGR CG 203 IC 488067 ICAR- NBPGR
CG 080 EC 723735-B ICAR- NBPGR CG 212 IC 560916 ICAR- NBPGR
CG 082 IC 488270 ICAR- NBPGR CG 214 IC 554414 ICAR- NBPGR
CG 087 IC 488239 ICAR- NBPGR CG 221 EC 724791 ICAR- NBPGR
CG 091 EC 244175 ICAR- NBPGR CG 236 EC 724805 ICAR- NBPGR
CG 121 EC 240966-A ICAR- NBPGR DC 015 Local cultivar (Dharwad)
CG 133 IC 402125 ICAR- NBPGR RC 101 Local cultivar (Rajasthan)
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Fig. 1  Schematic diagram of optimized waterlogging stress imposing protocol to assess cowpea WIR
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Optimisation of affordable image acquisition system

Image acquisition, a crucial stage in the WirPheno involves 
the capturing of images by using an affordable root imag-
ing platform for assessing waterlogging induced roots. The 
affordable root imaging setup consists of four components 
namely, smart phone and laptop, python configured software, 
IP web cam application, hardware equipment. The smart 
phone and laptop are used to capture and saving the images 
respectively. The software, developed in ICAR-NIASM lab, 
allows real-time view of the images on the laptop screen 
as they are being captured. The IP webcam application 
allows the smart phone to access it remotely by laptop. The 
setup was made in such a way that the smartphone (Nokia, 
Android 10), act as a camera for capturing images, remotely 
controlled by the laptop (Lenovo IdeaPad Slim 5 Pro) with 
the help of IP Webcam Application and python configured 
software. An overhead tabletop mobile stand, was used to 
provide support and ensure stability during the image acqui-
sition process for WIR architecture (Fig. 2). In acquisition 
process, after removing from pot B (25 DAS), the A pots 
were kept manually on the system where the roots are being 
captured. The distance between plants and smartphone kept 
constant for all plants. The images were taken in three angles 
(0°, 90° and 180°). Since there was an opportunity for the 
visibility of roots above the soil, it was possible to capture 
the WIR images.

Use of open‑source software for image analysis

Image analysis, also an important stage in WirPheno has 
the use of amalgamated software i.e. ImageJ (freeware) 
and RVE (Seethepalli & York, 2021). The image analysis 

involves two steps namely, image segmentation and feature 
extraction (Fig. 3). The image segmentation was done using 
ImageJ followed by feature extraction using RVE. The rea-
sons for use of this amalgamation were explained in results 
and discussion part. In image segmentation stage, an image 
was uploaded onto ImageJ where ROI (Region of Interest) 
selection with selection tool (oval), clearing the noise by 
making colour threshold followed by segmenting and con-
verting binary were involved in sequential manner. Based 
on single image, made an ImageJ macro for batch segmenta-
tion of images. Then, the binarized images were loaded onto 
RVE (Rhizo Vision Explorer) where image pre-processing, 
feature extraction and image output display customised set-
tings were made for extracting the data from those bina-
rized images (Table 2). Nearly 600 images were segmented, 
binarized by ImageJ followed by processed through RVE 
for feature extraction (See SI Fig. 1, 2 in supplementary 
information).

Growth traits

After exposing the 15-day old plants to a waterlogging 
treatment for a period of 10  days (25 DAS), the 
morphological attributes such as leaf number (LN), leaf 
area (LA), Total Fresh Weight (TFW) and Total Dry Weight 
(TDW) were measured. The number of leaves of each 
cowpea plant was measured manually. Leaf area of each 
cowpea plant was measured destructively using LI-3100 
leaf area meter (LI-COR, Nebraska, USA). Finally, the total 
fresh biomass followed dry biomass of cowpea plant after 
drying it in a hot air oven at 65 °C for 2 days (Olorunwa 
et al., 2022) was recorded using analytical balance (ATX224 
Model, Shimadzu).

Fig. 2  Schematic representation 
of optimized image acquisition 
for WIR
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Statistical analysis

The data retrieved from images was analysed using R 
programming. To classify genotypes based on Waterlogging-
Induced Roots (WIR) image features, Principal Component 
Analysis (PCA) biplot analysis was employed, with R 
packages such as ‘factoextra,’ ‘FactoMineR,’ and ‘ggbiplot.’ 
To validate the PCA biplot analysis and determine the optimal 
number of clusters, K cluster analysis was conducted, utilizing 
R packages like ‘tidyverse,’ ‘parameters,’ ‘factoextra,’ and 
‘cluster’. Furthermore, Pearson’s correlation analysis was 
performed to establish correlations between conventional 
parameters (e.g., fresh weight, dry weight, leaf number and 
leaf area) and image features (including Total Root Length, 
Network Area, Convex Area, Perimeter, Branching Points, 
Root Tips and Width, etc.). This correlation analysis was 
facilitated using R packages like ‘corrplot’ and ‘caret.’ To 
assess genetic variation among genotypes based on image 
features, the Duncan Multiple Range Test (DMRT) was 
employed. For factorial randomized block design (RBD) 
analysis, Analysis of Variance (ANOVA) was carried out with 
the assistance of the ‘Agricolae’ R package.

Results

Optimisation of protocol

In the preliminary trial, experiments were aimed to design 
image acquisition platform for phenotyping WIR with 

affordable tools as described in material and methods. 
However, during the subsequent image analysis phase 
using ImageJ, it became evident that most of the captured 
images containing region of interest (ROI) i.e., WIR had 
background noise, making it challenging to segment ROI 
from background (Fig. 4). This could be solved through 
subsequent experiments with utmost precautions to clear 
of noise due to pebbles and algae. These efforts enable 
segmentation of WIR with greater clarity (Fig. 5). Binary 
images obtained from ImageJ were further used for extrac-
tion of their features to explain the waterlogging responses 
of cowpea genotypes by employing RhizoVision Explorer 
(RVE), a software that allow a more comprehensive analy-
sis. This process could provide more than 20 image fea-
tures for each of the images.

The graph (Fig. 6) shows a close association between 
WIR-image features derived from RVE and those from Lem-
naTec Grid (LT). For example, there was highly significant 
positive correlation between the root area (NA) extracted 
from RVE and area obtained from Lemna Grid (r = 0.97). 
Similarly convex area (CA) obtained from RVE and same 
derived from LT perfectly corelated (r = 1.00). The strong 
correlation observed between the features extracted from 
RVE and those obtained from Lemna Grid provides com-
pelling evidence for the accuracy and reliability of the data 
derived from RVE (RhizoVision Explorer). This correlation 
shows the effectiveness of the method that was optimized 
and suggests that it can be confidently applied in future 
experiments and analyses.

Fig. 3  Schematic representation of optimized image analysis to assess WIR in cowpea
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Classification of genotypes by WIR image features

The first two principal components obtained from PCA 
biplot analysis represented by dimension 1 and dimension 
2 (Fig. 7) together could explain nearly 89% of variability 
in the features extracted from image analysis of WIRs. The 

genotypes and image features were represented by dots (.) 
and vectors ( →) respectively. The analysis could clearly 
differentiate the genotypes with higher values from those 
exhibiting lower values of image features. Furthermore, 
the alignment of genotypes with vectors signifies the sig-
nificance of contribution of respective image features in the 

Table 2  Root image features derived from ImageJ and RhizoVision explorer

a n: number and px: pixel

S. No Root features from image Abbreviation Unitsa Description

1 No. of Median and Maximum Roots MeN and MaN n Each row of the segmented image is scanned horizontally 
from the left to the right to ascertain the presence of roots. 
On the right side of each line being scanned, when the 
current pixel value transitions from 0 to 1, it indicates 
the presence of a root in the image. Root counts are 
determined for each row of the segmented image, and 
subsequently, the average and maximum root counts are 
calculated

2 Number of Root Tips RT n Calculated by counting all of the tip pixels in the 
topologically skeletonized image

3 Total Root Length TRL px The calculation involves the total sum of all the pixels in the 
skeletonized image. For diagonal pixels, a square root of 2 
is applied to account for their diagonal distance

4 Network Area/Root area NA px2 The network area is constituted by the total number of pixels 
in the segmented image

5 Perimeter Peri px It is the pixel count represents the total number of pixels in 
the perimeter image

6 Convex Area and Solidity CA & solidity px2 & no units A smallest possible convex polygon in geometric form is 
called the convex hull. A measure of solidity is the ratio of 
network area to convex area

7 Average, median, and maximum diameter AvgD,
MeD &
MaD

px The distance from each pixel in the skeletonized image to 
the closest non-root pixel is calculated, and a circle is 
fitted using this value as its radius. Each pixel’s diameter 
is identified as the diameter of the circle to it. The average, 
median, and maximum diameters are calculated using the 
list of diameters from every pixel along the medial axis

8 Average Root Orientation ARO degree The mean orientation of medial axis pixels within a locality 
of 40 × 40 pixels is used to calculate the orientation at each 
pixel for each medial axis pixel. The term “average root 
orientation” refers to the average of all these orientations

9 Branch Points BP n Calculated by counting all of the branch pixels in the 
topologically skeletonized image

10 Volume and Surface Area Vol & SA px3& px2 The sum of the cross-sectional areas across all medial axis 
pixels is indicated as volume, and the sum of the perimeter 
across all medial axis pixels is noted as surface area, using 
the radii previously computed. Calculated by counting 
all of the branch pixels in the topologically skeletonized 
picture

Captured image Segmented image Binary image

Fig. 4  Attempts to capture the images of WIR in preliminary experiment
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corresponding genotypes. In comparison to other genotypes, 
the genotype CG121 was characterized by significantly 
higher values of traits such as MeN, BP, TRL, Peri.

Virtually, all image features align consistently with 
their respective vectors. This observation further uncovers 
those numerous parameters extracted from images exhibit 
correlations amongst themselves, as demonstrated by the 

vectors. When the angle between a pair of vectors is narrow, 
it signifies a high degree of correlation. To exemplify, 
consider the case of roots with a slender structure, such 
as D1 root length, surface area, volume, and projected 
area, which are represented by RLD1, SAD1, VD1, and 
PAD1 respectively. These parameters largely overlap, with 
the angles between their corresponding vectors nearly 
approaching zero. This suggests strong correlations, 
implying the potential derivation of these parameters from 
a common source. Similar scenario was observed in case of 
the surface area of both the thickest (D3) and moderately 
thick (D2) roots.

k‑means clustering of genotypes from WIR Image 
features

Prior to clustering by k-mean analysis the ideal cluster count 
was performed with gap statistic approach of R program. 
The Fig. 8a suggests that the optimal cluster number that 
could be generate were only two. Subsequently, the gap 
statistic approach validates the existence of two distinct 
clusters, represented by a dotted line. Furthermore, the gap 

Captured image Segmented image Binary image

Fig. 5  Captured the images of WIR in main experiment

Fig. 6  Validation of RVE image analysis with LemnaTec (sym-
bols = “***”, “**”, “*” indicate significance at p < 0.001, 0.01, 0.05 
respectively)

Fig. 7  Principal component analysis (PCA) of WIR surrogate traits
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statistic method is reinforced by over 20 other techniques for 
determining the optimal cluster number. The Fig. 8b depicts 
the k-means clustering of genotypes on WIR image features 
basis. This analysis could validate the results obtained from 
PCA biplot analysis by grouping the genotypes into two dif-
ferent clusters which shares common values of 27 image 
features. The first two principal components represented by 
Dim1 and Dim2 together could explain more than 87% of 
the variations in existed in the data set.

Genetic variation by WIR image features

The assessment of genetic variation in the genotypic 
responses to waterlogging with respect to waterlogging 
induced roots (WIR) was carried out by image features 
extracted from WIR images of 20 genotypes such as MeN, 
MaN, RT, BP, TRL, Width, NA, CA, Peri, Vol, SA, Holes, 
Solidity, AvgD and other derived parameters based on the 
diameter ranges of root such as Root Length (RLD), Pro-
jected Area (PAD), Volume (VD) of Diameter Ranges 1(0–2 
px), 2 (2–5px) and 2 (> 5px). Moreover, among the diverse 
image features, priority was assigned to those that could 
effectively distinguish genotypes. In case of MeN, CG060, 
CG121, and CG041 genotypes exhibited more than twice 
the values (6.83, 6.5, and 6.25, respectively) compared to 
CG091 and CG080 genotypes, which had observed val-
ues of 2.4 and 2.25, respectively. The genotypes CG121, 
CG041, and CG236 exhibited significantly higher TRL val-
ues (13,519.933, 11,320.253, 10,871.558 px respectively), 
whereas the genotypes CG151 and CG091 had notably lower 
TRL values (3041.982, 2780.906 px respectively) (Fig. 9).

The genotypes CG121, CG236, and CG221 displayed 
significantly higher NA values (49,273.83, 45,749.33, 
37,639.6 px2 respectively), while CG165 and CG091 

genotypes had notably lower NA values (9336.8, 9138.6  px2 
respectively). In case of CA image feature, CG121, CG236, 
and CG221 genotypes exhibited significantly larger convex 
areas (610,840.8, 564,517.7 and 556,167.4 px2 respectively), 
in contrast to other genotypes. The genotypes CG121, 
CG041, and CG221 exhibited significantly larger perimeters 
(21,765.25, 20,409.404 and 17,758.672 px respectively), 
in contrast to the other genotypes. In case of Vol image 
feature, the genotypes CG121, CG060, CG236, and CG221 
exhibited significantly greater root volumes (328,402.52, 
319,900.82, 313,945.37 and 219,059.29 px3 respectively), 
compared to the other genotypes. ANOVA revealed highly 
significant effect (p < 0.001) of genotype on image features 
(See SI  1 to 4 in Supplementary Information).

Association between growth traits and image 
derived parameters

The relation among growth parameters and image derived 
WIR parameters of 20 genotypes was evaluated by using 
Pearson’s correlation analysis. Here, correlation was 
depicted in a Fig. 10. Four growth parameters viz., total 
fresh weight (TFW), total dry weight (TDW), Leaf Num-
ber and leaf area and 12 image derived WIR parameters 
i.e., total root length (TRL), Network Area (NA), Branch-
ing points (BP), Surface Area (SA), Perimeter (Peri), Total 
width (Width), Median Number of Roots (MeN), Maximum 
Number of Roots (MaN), Root Tips (RT), Convex Area 
(CA), Surface Area of Diameter 2 (SAD2) and Volume 
(Vol) were used to evaluate the correlation among them. 
In Fig. 10, the total fresh weight (TFW) was positively cor-
related with TRL (r = 0.86, ***), NA (r = 0.88, ***), BP 
(r = 0.84, ***), Peri (r = 0.84, ***), Width (r = 0.79, ***), 
SA (r = 0.85, ***), MeN (r = 0.69, ***), MaN (r = 0.73, ***), 

Fig. 8  a Optimal number of clusters, b k-means cluster analysis
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RT (r = 0.79, ***), CA (r = 0.87, ***), SAD2 (r = 0.86, ***) 
and Vol (r = 0.83, ***). Similarly, the other conventional 
trait, total dry weight (TDW) was also strongly correlated 
with WIR image features such as TRL (r = 0.70, ***), NA 
(r = 0.74, ***), Peri (r = 0.68, ***), SA (r = 0.71, ***) CA 
(r = 0.76, ***), SAD2 (r = 0.74, ***) and Vol (r = 0.71, ***), 

and moderately with BP (r = 0.68, **),Width (r = 0.61, **), 
MeN (r = 0.63, **), MaN (r = 0.56, **), RT (r = 0.63, **).

Further, the leaf area also strongly correlated with TRL 
(r = 0.80, ***), NA (r = 0.77, ***), BP (r = 0.80, ***), Peri 
(r = 0.77, ***), MeN (r = 0.76, ***), RT (r = 0.77, ***), 
SA (r = 0.74, ***) CA (r = 0.73, ***), SAD2 (r = 0.70, 
***) and Vol (r = 0.70, ***) and moderately with MaN 

Fig. 9  Genetic variation from image features of WIR

Fig. 10  The correlation between conventional parameters and image-derived WIR traits using Pearson’s correlation (symbols = “***”, “**”, “*” 
indicate significance at p < 0.001, 0.01, 0.05 respectively)
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(r = 0.67, **) and Width (r = 0.67, **). Leaf Number, an 
another conventional parameter positively correlated with 
TRL (r = 0.83, ***), NA (r = 0.81, ***), BP (r = 0.80, ***), 
Peri (r = 0.80, ***), MeN (r = 0.74, ***), RT (r = 0.76, 
***), SA (r = 0.81, ***) CA (r = 0.79, ***), SAD2 (r = 0.79, 
***), Width (r = 0.76, ***) and Vol (r = 0.79, ***) and 
moderately with MaN (r = 0.65, **). This shows that the 
WIR traits directly playing a key role in survival of plants 
under waterlogging conditions. Moreover, it was observed 
that the image-derived waterlogging induced root (WIR) 
traits showed a strong positive correlation existed among 
them, as clearly illustrated in the PCA biplot analysis.

Discussion

The affordable medium throughput root phenotyping 
protocol for assessment of waterlogging induced roots in 
cowpea involved optimisation of protocol for inducing 
waterlogging stress, optimisation of protocols for non-
invasive measurement that involved image acquisition, 
analysis, feature extraction, data analysis and interpretation 
which have been discussed below.

The stress imposition protocol is a prerequisite for any 
plant phenotyping method to differentiate the responses of 
plants to environmental stresses (Awlia et al., 2016; Junker 
et al., 2015; Langan et al., 2022). Many of the previous 
studies carried out for waterlogging tolerance focused on 
in situ shoot responses rather than root responses taking 
into consideration feasibility. The current study focused on 
assessing traits associated with waterlogging tolerance and 
one of these desirable traits, also known as phenes, is the 
development of adventitious roots induced by waterlogging 
(Kumar et al., 2013; Olorunwa et al., 2022; Sathi et al., 
2022), which has been specifically referred to in this thesis 
as “Waterlogging-Induced Roots” (WIR). The development 
of Waterlogging-Induced Roots (WIR) is a complex process, 
making it a quantitative trait influenced by various factors. 
These factors encompass species, genotype, growth stage, 
water temperature, as well as the duration and level of 
waterlogging. During the seedling stage, the emergence 
of adventitious roots is believed to play a crucial role in 
conferring waterlogging tolerance (Kyu et al., 2021; Zhang 
et al., 2015).

Hence, it was necessary to design the stress imposition 
protocol in a way to ensure visibility of WIR for optimisation 
of phenomics. The review of literature and a couple of 
trial-and-error methods finally led to selection of pot in 
pot method described in the framework of WirPheno in 
this paper for imposition of waterlogging stress in cowpea 
at seedling stage. This method was customised to allow 
acquisition of both the architectural traits and growth 
patterns of WIRs effectively. The pot-in-pot method was 

adapted from pot in bucket method used for waterlogging 
tolerance in lentil by Lake et al. (2021), who assessed the 
shoot responses of lentil genotypes to waterlogging using 
high throughput phenotyping protocol as an alternative to 
traditional methods.

While traditional methods for assessing plant responses 
to waterlogging have shown effectiveness, their efficiency 
declines when dealing with a large number of genotypes, 
particularly in terms of repeatability and time-course 
observations. Therefore, persistent efforts are being made 
to develop non-invasive phenomics techniques for the 
precise phenotyping of plants with desirable traits, aiming to 
advance crop improvement (Langan et al., 2022). However, 
the primary goal of the current research was to establish a 
phenotyping protocol for WIR which has not been attempted 
so far. The non-invasive phenotyping protocol for WIR 
involved the development of an affordable root image 
acquisition platform and image analysis techniques using 
open-source software. The intention was to streamline the 
assessment of cowpea genotypes for their waterlogging 
tolerance, with a particular focus on WIR image features 
that could demonstrate meaningful correlations with 
growth traits. The imaging tools such as cameras (Bates 
& Lynch, 1996), industrial digital lenses (Liu et al., 2020) 
and monochrome vision cameras (Seethepalli et al., 2020) 
have been frequently employed in in-situ root imaging 
platforms (Zhao et al., 2022). Nonetheless, these equipment 
options come with a high cost and are not well-customised 
for extensive, large-scale applications (Cao et al., 2019) 
in waterlogging responses of plants. The method we have 
optimized for quantifying WIR consisted of two distinct 
steps, as described below.

The first step involved image acquisition, which 
incorporates a smart phone placed on an overhead stand and 
operated by a laptop running a python program. This setup 
ensured the acquisition of images with the desired quality, a 
critical factor for the segmentation of roots and the extraction 
of features necessary for interpreting the responses of WIR 
in cowpea plants. Cost-effective image acquisition platforms 
have been demonstrated for characterizing shoot traits (Cao 
et al., 2019) and root traits in previous studies (Bontpart 
et al., 2020; Rinehart et al., 2022).

The imaging platforms discussed in the study by Bontpart 
et al. (2020) faced a limitation due to the soil’s opacity, 
which constrained topological analysis by hiding sections 
of the root system, resulting in an incomplete representation 
of root topology. Additionally, in the study by Rinehart et al. 
(2022), a limitation was observed where the root imaging 
process was performed destructively, leading to the loss of 
certain portions of the root structure. In our current study, 
the roots emerged on the soil surface due to waterlogging, 
making them easily visible and facilitating non-destructive 
image capture. Additionally, the hardware used in our 
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study was cost-effective, with an approximate cost of ₹ 
2000, which stands in stark contrast to the costs associated 
with other affordable imaging platforms, such as $7400, 
as reported in previous studies by Rinehart et al. (2022). 
The net cost involved in designing the imaging tool in the 
current study was ₹ 12,000 excluding the cost of laptop. 
This affordability makes our imaging platform particularly 
accessible and cost-effective in line with the economic 
considerations of Indian living standards.

In the second step, image analysis was executed using 
a combination of two open-source software: ImageJ and 
RhizoVision Explorer (RVE). The user-friendly software-
features for thresholding and batch processing embedded 
in ImageJ facilitated analysis of all the images of WIR 
acquired through affordable imaging platform that was 
meticulously designed in this study. The macro developed 
for this purpose could process 600 images of WIR within 
3–5 min resulting similar number of binary images clearly 
segmented from the background, which otherwise leads 
to over or under estimation of root features. However, the 
WIR feature extraction was the challenge to be addressed 
in the next step of image analysis with binary images. To 
complete this task, we preferred the user-friendly features 
of RhizoVision Explorer over ImageJ due to certain inherent 
limitations in the latter. Thus, the amalgamation of these 
two-software enabled the extraction of image features from 
WIR images. This approach was supported by prior research, 
where a compatible combination of software, such as 
ImageJ + GiA Roots in barely (Khodaeiaminjan et al., 2023), 
Adobe Photoshop + Weka + RhizoVision Explorer in maize 
(Rinehart et al., 2022) and adobe photoshop + RootReader2D 
in rice (Clark et al., 2012) were employed to evaluate root 
architectural traits. The combination of software for image 
analysis described by Rinehart et al. (2022) and Clark et al. 
(2012) comes with the limitation of requiring multiple 
software tools, including subscription-based products like 
Adobe. In contrast, in current study, we utilized open-source 
and freely available software, which are easily accessible 
without additional costs.

In the current research, we validated the effectiveness 
of image segmentation using ImageJ and feature extraction 
with RVE software by comparing the data obtained with 
those obtained using the image analysis grid of LemnaTec, 
resulting in high correlation coefficients (r = 0.99 and 1.00 
for root area and convex hull as illustrated in (Fig. 6). The 
use of customized LemnaTec grids for extracting shoot 
features of various crops has been reported in studies by 
Rane et al. (2021) and for root features, as elucidated by 
Cardinal (2021). The feature extraction process in the 
previous step resulted in generation of huge set of data 
related to 27 different parameters. Subsequently, this dataset 
underwent statistical analysis to enhance the understanding 
of the effectiveness of the cost-effective phenotyping 

protocol for WIR and to identify potential cowpea genotypes 
that could be valuable genetic resources for enhancing 
waterlogging tolerance.

Efforts made in this study aligns with a growing interest 
in the study of root phenomics, which is increasingly 
recognized as a pivotal component of crop breeding 
strategies (Chen et al., 2020; Liu et al., 2021). Hypotheses 
tested in this study revolved around the notion that there 
exists genotypic variation in WIR architecture among 
cowpea genotypes under waterlogging stress conditions, and 
that the extracted image features of WIR could be employed 
for genotype classification. To test these hypotheses, the 
initial experimental phase focusing on WIR phenotyping 
was carried out. This study unveiled significant variations 
in the waterlogging-induced root traits of the 20 cowpea 
genotypes examined. In our current study, several WIR 
image features were measured, and it was evident that 
certain traits, including Total Root Length (TRL), Network 
Area (NA), Convex Area (CA), Perimeter (Peri), Branching 
Points (BP), Surface Area (SA), Volume (Vol), Maximum 
No of Roots (MaN), and Median No of Roots (MeN), 
exhibited significant variations among the tested genotypes. 
This indicates the importance of these root traits as potential 
surrogates for assessing waterlogging tolerance in cowpea 
genotypes non-invasively. This is highly evident from the 
efficacy of traits such as root length (TRL) and root area 
(NA) in differentiating waterlogging tolerant (CG121, 
CG236, CG221, and CG041) and waterlogging intolerant 
(CG151, CG165, and CG091) genotypes. Additionally, WIR 
image features such as the median and maximum number 
of roots could effectively differentiate between tolerant and 
intolerant genotypes when exposed to waterlogging. This 
finding is consistent with research conducted on cowpea 
under waterlogging stress (Olorunwa et al., 2022), as well 
as studies involving mung bean and black gram crops (Kyu 
et al., 2021), where manual counting of adventitious roots 
similarly supported the indications of enhanced waterlogging 
tolerance. These findings provide valuable insights into 
the diversity of root traits among different genotypes and 
highlight the potential relevance of these traits in the context 
of waterlogging tolerance. An investigation involving 
soybean genotype screening focused on efficient nutrient 
uptake revealed a similar scenario, highlighting genotypic 
variability in root traits (Liu et al., 2021; Salim et al., 2021).

Principal Component Analysis (PCA) is a valuable 
statistical technique for selecting superior lines in breeding 
programs (Debnath et al., 2022). This approach streamlines 
decision-making by concurrently evaluating multiple traits, 
with the aim of enhancing crop performance and resilience 
to particular adverse conditions, such as waterlogging 
tolerance. PCA biplot analysis provided evidence that WIR 
image features generated through the phenotyping protocol 
successfully segregated cowpea genotypes into two distinct 
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groups (Fig. 7). This separation was further validated by 
k-cluster analysis (Fig. 8). These results underscore the 
effectiveness of the phenotyping protocol in differentiating 
cowpea genotypes based on their levels of tolerance to 
waterlogging.

This interpretation derives further support from Pearson 
correlation analysis that revealed significant positive 
association between the conventional parameters and 
image derived parameters at p < 0.001 and p < 0.01 levels 
of significance (Fig. 10). A comparable correlation between 
image features and conventional parameters was also 
reported in prior studies of crops like lentil (Dissanayake 
et al., 2020) and barley (Wang et al., 2021). The narrow 
angle among the vectors in the PC-biplot (Fig. 7), along 
with the strong positive correlation observed among the 
image features (Fig. 10), suggests that it’s feasible to select 
any one of the closely related WIR image features as a 
surrogate trait for distinguishing between genotypes when 
evaluating waterlogging tolerance. It also suggests that 
genotypes exhibiting greater WIR development may also 
tend to produce more leaf area, a higher number of leaves, 
and increased biomass (FW, DW), which is consistent with 
findings in soybean screening concerning the relationship 
between root-system architecture and shoot traits, especially 
with respect to nutrient uptake (Salim et al., 2021). The 
efficiency of a plant phenotyping protocol is typically 
characterized by its ease of use, speed, effectiveness 
in characterizing a large number of genotypes, and the 
accessibility of tools required to perform the assessments. In 
materials & methods, an effort has been made to illustrate the 
key aspects of the waterlogging induced root phenotyping 
in the current study. This comprehensive exposition aims 
to provide readers with a thorough understanding of the 
method employed in this research.

Conclusions

The outcomes of this research hold significant importance 
in extending our existing knowledge of Waterlogging-
Induced Roots (WIR) in cowpea, particularly in the context 
of devising affordable and non-invasive root phenotyping 
protocols for the evaluation of waterlogging tolerance 
at seedling stage. The WirPheno protocol established in 
this study can serve as a valuable design for conducting 
extensive screenings of cowpea germplasms, aiming 
to identify desirable traits like WIR that contribute to 
waterlogging tolerance and to uncover their genetic basis. 
This study represents an initial exploration of the role of 
WIR in conferring waterlogging tolerance to cowpea during 
the seedling stage. Future investigations could focus on the 
identification of Quantitative Trait Loci (QTLs) associated 
with WIR traits that contribute to transient waterlogging 

tolerance in cowpea. This can be achieved by expanding 
the study to encompass a larger pool of diverse genotypes, 
facilitating a more comprehensive analysis of genetic 
variations and their impact on waterlogging tolerance.
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