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Abstract Impact of elevated temperature on physiological
and biochemical changes were evaluated in 5 commercial
sugarcane genotypes and 2 wild species clones at two
different growth phases. The study revealed that heat
stress decreased chlorophyll content, chlorophyll stability
index (CSI), SPAD value, maximum quantum efficiency of
PSII photochemistry (F,/F,, ratio), leaf gas exchange
parameters, relative water content (RWC), and activities
of nitrate reductase (NR), sucrose-metabolizing enzymes
(SPS, SS, Al, NI) in all the genotypes and species clones.
In contrast, elevated temperature induced an increase in
proline, total phenolics content (TP), antioxidant enzyme
activities (SOD and POX), lipid peroxidation (LP), mem-
brane injury index (MII) and soluble sugar content in all
clones. Principal component analysis based on physiolog-
ical heat tolerance indexes could clearly distinguish sug-
arcane genotypes into three heat tolerance clusters.
Noteworthy in comparison to the heat-sensitive varieties,
sugarcane genotype that possessed higher degrees of heat
tolerance Co 99004 displayed higher chlorophyll content,
CSI, antioxidant enzyme activities, NR activity, RWC,
total phenols, sucrose-metabolizing enzymes, soluble sugar
content and leaf gas exchange and lower level of lipid
peroxidation and membrane injury index.
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Introduction

Sugarcane is an important industrial crop used for sugar
and bio-energy. It is one of the world’s major C4 crops that
mainly grow in the tropic and sub-tropic regions. Weather
and climate related events (i.e., growth environment of
atmospheric [CO,], temperature, precipitation, and other
extreme weather) are the key factors for sugarcane pro-
duction worldwide, especially in many developing coun-
tries (Zhao and Li 2015). The rise in temperature even by a
single degree beyond the threshold level is considered as
heat stress in plants (Hasanuzzaman et al. 2013). Increases
in temperature may cause yield declines between 2.5% and
10% across a number of agronomic species throughout the
twenty-first century (Hatfield et al. 2011). The unfavorable
temperature may significantly affect photosynthesis, res-
piration, water balance, and membrane stability of leaves
reported by Kaushal et al. (2016).

Chlorophyll fluorescence (F,/F,, ratio) has been sug-
gested as quantitative measures of the photochemical effi-
ciency of the PSII complex under different environmental
stresses (Adams et al. 1990). Nitrate reductase (NR)
involved in nitrogen metabolism, play important role in
amino acid biosynthesis, and regulates the protein synthesis
(Harris et al. 2000). Proline and soluble sugars is necessary
to regulate osmotic activities and maintaining the cell
water balance, membrane stability and by buffering the
cellular redox potential (Farooq et al. 2008). Secondary
metabolites such as phenolics play roles in abiotic stress
responses generally associated with tolerance to heat
(Wahid 2007). Sucrose synthesis is catalyzed by sucrose
phosphate synthase (SPS), sucrose synthase (SS) and its
degradation is catalyzed by invertase (Preiss 1982).
Gomathi et al. (2017) reported in sugarcane that average
reduction of SS and SPS activity were recorded at elevated
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temperature (42 °C), While in tolerant variety SS and SPS
activity was higher under elevated temperature. The ability
to sustain leaf gas exchange [net photosynthesis (Pn),
Stomatal conductance (gs), transpiration rate and CO,
assimilation rates] under heat stress has a direct relation-
ship with heat tolerance (Hall 1992). Oxidative stress can
cause lipid peroxidation and consequently membrane
injury, protein degradation, and enzyme inactivation
(Meriga et al. 2004). The reactive oxygen species-scav-
enging enzymes, for example, ascorbic peroxidase, cata-
lase, guaiacol peroxidase and superoxide dismutase are
enhanced by heat stress (Chaitanya et al. 2002; Gomathi
and Kohila 2016). Heat stress impairs mitochondrial
functions thereby resulting in the induction of oxidative
damage that manifests in lipid peroxidation, detected by
malondialdehyde (MDA) content (Vacca et al. 2004).

Sugarcane production may have been negatively affec-
ted and will continue to be considerably affected by
increases in the frequency and intensity of extreme envi-
ronmental conditions due to climate change. The degree of
climate change impact on sugarcane is associated with
geographic location and adaptive capacity. However, there
has been little research conducted to document these
effects as found by Kumudini et al. (2014). Based on pot
and field studies with intensive measurements of physio-
logical, growth, and yield traits, we also found that some
sugarcane genotypes are more tolerant to stress environ-
ment than others (Zhao et al. 2015). To our knowledge,
heat stress in sugarcane has received much less attention
than the other abiotic stresses. Sugarcane varietal evolution
in the future requires yield stability even under harsh cli-
mates, understanding of the metabolic and molecular signal
transcription processes and the interaction to high tem-
peratures is absolutely necessary. Therefore, to screening
new sugarcane cultivars tolerant to heat stress that can
contribute to adaptation to climate change (especially for
elevated CO, and temperature) by discovering physiolog-
ical screening technologies can mitigate the negative effect
of climate change and improve sugarcane yields, produc-
tivity, and sustainability.

Materials and methods

A pot culture experiment (with confirmation trail) was
conducted at Plant Physiology Section, Crop Production
Division, ICAR-Sugarcane Breeding Institute, Coimbatore
for selection of tolerant sugarcane genotype for high-tem-
perature stress during 2016-2018. The seven sugarcane
genotypes used in the present study includes five com-
mercial canes (Co 06022, Co 0315, Co 8021, Co 86032 and
Co 99004) and two wild sugarcanes (Spontaneum Spp.)
genotypes (Taiwan -96 and SES -150). Two sets of pot

@ Springer

culture experiment were contacted simultaneously, one for
formative phase (150 days) and another one grand growth
phase (210 days). The experiment laid out Completely
Randomized Block Design with replication thrice. Normal
recommended agronomic practices were performed for
these experiments.

Heat stress treatment

In order to develop a study more applicable to field con-
ditions, experimentally heat stressed sugarcane genotypes
received a temperature 4-5 °C above its optimum tem-
perature range, an increase which corresponds tightly to
climate change model predictions. Control plants were
grown under optimal conditions at 37/28 %+ 2 °C day/night
with a 12-h photoperiod. Heat stressed plants were grown
at 45/32 £ 2 °C during the day/night with a 12-h pho-
toperiod and for a total of 15 days, with 60-70% relative
humidity, and light intensity 395410 pmol m~% s~

Quantitative analysis of pigment content

Chlorophyll content was estimated by Witham et al.
(1971) and the amount of chlorophyll content was cal-
culated wusing the following equations: Chlorophyll
‘@’ = (12.7 x Aggz) — (2.69 x Agys) x (V/1000 x W),
Chlorophyll ‘b’ = (22.9 x Agss) — (4.68 x Aggs) x (V/
1000 x W) and Total chlorophyll = (20.2 x Agss)-
+ (8.02 x Agez) x (V/1000 x W). Chlorophyll Stability
Index (CSI) was estimated by Koleyoras (1958) and the
chlorophyll content variations between the control and
treatment were calculated as CSI. SPAD values of leaves
were recorded as described by Peng et al. (1993): using
the chlorophyll meter (SPAD - 502, Soil Plant analysis
Development Section, Minolta Camera Co. Ltd., Japan).

Chlorophyll fluorescence of the leaves was measured
using chlorophyll fluorometer OS-30p (Opti-Sciences,
Hudson, USA). The ratio Fy/Fy; issued to assess the
quantum efficiency for photochemistry of PSII (Krause and
Weis 1991; Oliveiram et al. 2002). Relative water content
(RWC) was measured as described by Barrs and
Weatherley (1962). RWC = [(fresh weight — dry weight)/
(turgid weight — dry weight)] x 100. Leaf gas-exchange
measurements, including the rate of net photosynthesis
(An), stomatal conductance (gs), the rate of transpiration
(E) and the intercellular CO, concentration (Ci), were
made using a portable Li-6400 m (LI-COR Inc., Lincoln,
NE, USA).

Biochemical assays

Nitrate reductase (NR) activity in leaf was done according
to the procedure of Hageman and Hucklesby (1971) with
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slight modifications. The enzyme activity (NR) was
expressed as L mole NO, g~' fw h™'. Analysis of proline
content was estimated by the modified procedure of Bates
et al. (1973). It was estimated with reference to the cali-
bration curve and expressed as jg g~ tissue FW. The total
phenol content was determined by Malick and Singh
(1980) and the concentration of phenols express as mg
phenols/1 g extract. Estimation of Sucrose-metabolizing
enzymes: Sucrose phosphate synthase (SPS) and sucrose
synthase (SS) activity were estimated by the method
described by Hubbard et al. (1989). Acid and neutral
invertases were assayed by Hatch and Glasziou (1963)
method. The total soluble sugar was estimated by Anthrone
method (DuBois et al. 1956). Determination of antioxidant
enzymes activities: Superoxide Dismutase was conve-
niently assayed using a slightly modified procedure
(Madamanchi et al. 1994) and originally described by
Beauchamp and Fridovich (1971). The enzyme activity is
expressed as min~' g~'. Calculation: (maximum
absorbance — minimum absorbance) x 60 x 2. Peroxi-
dase (POD) activity was estimated by the method of Putter
(1974). The level of lipid peroxidation was measured by
estimating malondialdehyde (MDA) content according to
the method of Heath and Packer (1968). The concentration
of MDA was calculated using its extinction coefficient of
155 mm~' cm™'. Membrane injury index (MII) was
determined by Deshmukh et al. (1991) recording the
electrical conductivity of leaf leachates in double distilled
water at 40 and 100 °C. MII = (C,/C,) x 100.

Statistical analysis

The experiments were arranged in a completely random-
ized design with three replications. The data obtained were
analyzed by ANOVA and all means were separated at the
P < 0.05 level using the LSD test. All calculations and
data analyses were performed using the SPSS 16.0 for
Windows software package. All the data obtained were
converted to stress tolerance indexes before Pearson’s
correlation, principle component analysis (PCA) and
cluster analyses. Stress tolerance index was defined as the
observed value of a target trait under a given stress level
divided by the mean value for that trait under the control
(Zeng et al. 2002). Principle component analysis and
Cluster analysis were performed using the XLSTAT.

Results and discussion

For evolving heat stress tolerant sugarcane genotypes, it is
necessary to understand the basic information on physio-
logical and metabolic changes and their interaction with
genotypes taking place under heat stress condition. Plant

responses to high temperatures are mediated by both their
inherent ability to survive and their ability to acquire tol-
erance to heat stress. In the present study, biochemical
characterization of five sugarcane genotypes and two S.
spontaneum spp. were undertaken for differences in their
response to heat stresses. Sugarcane crop in the field is
frequently subjected to heat stresses that affect adversely
their growth, development and productivity.

Chlorophyll content and stability

The efficacy of light captured to drive photosynthesis is
strongly related to the chlorophyll concentration in the leaf.
Heat stress had shown the adverse effect on chlorophyll
content, chlorophyll stability index (CSI) and SPAD value
of sugarcane genotypes at formative phase (FP) and grand
growth phase (GGP) are presented in Tables 1 and 2. Under
controlled condition, sugarcane genotypes Co 86032
(1.60 mg g~' FW and 81.2) and Co 99004 (1.58 mg g~'
FW and 81.0) had highest total chlorophyll content and CSI
respectively. In the present study, when the crop was
exposed to heat stress at 45 £ 2 °C, a significant decrease
in chlorophyll content, CSI and SPAD value were observed
in all the genotypes, suggesting structural damage to the
chloroplast in sugarcane genotype due to the high-temper-
ature. Under heat stress condition, higher level of total
chlorophyll content, CSI and SPAD value were observed in
tolerant genotypes Co 99004 (0.87 mg g~' FW, 72.8 and
32.8), SES 150 (0.77 mg g~' FW, 65.5 and 32.6) and Co
06022 (0.76 mg g~ FW, 62.7 and 30.0), respectively, at
formative phase. Average decrease over the control was
15.22 and 15.14% for chlorophyll ‘a’, 26.18 and 25.61% for
chlorophyll ‘b’ 18.07 and 17.87% for total chlorophyll and
28.0 and 27.5% for CSI and 19.7 and 18.8% for SPAD value
at FP and GGP, respectively, due to high temperature stress.

According to the results of two growth stage of the
sugarcane genotypes, the FP was the sensitive phase and
reduction percentage was higher compared to the GGP.
The above results clearly show that loss of chlorophyll is
directly linked with heat stress in sugarcane genotypes. The
change in chlorophyll contents was used to evaluate the
influence of environmental stress on plant growth and
yield. Among the genotypes stress tolerant index of
chlorophyll content was higher in Co 99004 at both FP and
GGP, respectively (Table 3). In this studies indicated that
high chlorophyll concentrations are associated with
improved crop yield in tolerant genotypes as reported early
research in wheat by Verma et al. (2004). The reduction in
chlorophyll content, CSI and SPAD value were found
higher in heat susceptible genotypes (Co 0315) as com-
pared to heat stress tolerant. The decrease in chlorophyll
‘a’, chlorophyll ‘b’, total chlorophyll, CSI and SPAD value
in response to induced heat stress has also been reported
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Table 3 Stress tolerant index (STI) for sugarcane genotype under exposure to heat stress at formative phase (FP) and grand growth phase (GGP)

(pooled data)

Sugarcane genotypes/parameters ~ Co 06022 Co 0315 Co 8021 Co 86032 Co 99004 SES-91 SES-150
FpP GGP FP GGP FP GGP FP GGP FP GGP FP GGP FP GGP
Chlorophyll ‘a’ 086 087 081 082 081 081 082 082 091 092 084 084 0.85 0.86
Chlorophyll ‘b’ 076 078 0.66 0.67 070 074 069 069 078 080 076 078 0.77 0.77
Total chlorophyll content 0.84 084 077 077 078 079 078 079 088 088 082 083 0.83 0.83
Chlorophyll stability index 0.80 0.81 051 051 064 065 065 065 09 091 070 070 0.84 0.84
SPAD reading 083 084 068 0.69 074 075 076 077 088 090 084 085 0.87 0.88
Chlorophyll fluorescence 090 090 085 086 08 087 0.8 0.8 09 091 090 092 090 0.92
Proline content 1.63 163 134 137 143 146 143 147 206 210 1.82 183 184 1.84
Relative water content 0.88 089 0.77 0.78 080 082 0.82 0.84 094 096 086 087 0.89 0.90
Total phenolics content 127 128 120 122 123 124 123 124 142 144 120 122 121 121
Superoxide dismutase 0.89 090 057 064 068 068 073 077 105 116 076 084 103 1.01
Peroxidase 091 093 073 082 084 08 087 088 103 1.04 076 077 0.84 0.85
Lipid peroxidation 1.19 1.18 1.67 167 139 136 128 127 1.09 1.07 108 1.05 1.07 1.04
Membrane injury index .12 1.10 127 125 125 123 125 122 106 1.05 1.13 1.13 1.03 1.03
Nitrate reductase 0.81 081 0.70 0.71 071 073 072 074 084 086 073 074 0.78 0.79
Sucrose phosphate synthase 085 087 074 076 075 077 076 078 0.89 090 085 086 0.86 0.87
Sucrose synthase 0.74 076 0.66 067 0.67 069 0.68 070 0.78 081 0.69 072 0.72 0.74
Acid invertase 081 083 063 066 069 072 075 077 089 091 069 073 071 0.74
Neutral invertase 0.80 0.82 058 0.63 060 067 066 070 087 091 075 077 0.82 0.85
Soluble sugar content 130 132 1.10 112 1.11 113 113 1.17 136 1.36  1.10 1.11 .11 1.11
Photosynthetic rate 055 071 043 054 044 054 045 055 060 080 035 053 036 0.60
Stomatal conductance 0.89 091 0.74 078 076 081 077 0.81 095 097 071 076 0.77 0.82
Transpiration rate 076 077 0.70 0.70 071 071 071 072 083 0.86 066 067 0.74 0.74
Intercellular CO, concentration ~ 0.81 082 0.69 071 071 0.73 073 074 0.86 0.88 066 0.68 071 0.72

Stress tolerance index was defined as the observations under heat stress divided by the means of the controls

previously by Gosavi et al. (2014) in sorghum, Kumar et al.
(2012b) in maize and rice.

Chlorophyll fluorescence

The ratio of F,/F,, is an important parameter describing the
physiological state of photosynthesis organelle and serve as
an indicator showing the activity of photosynthesis through
the evaluation of release amount of chlorophyll fluores-
cence. A significant decreased in chlorophyll fluorescence
(F\/F,, ratio) was observed in sugarcane of all the geno-
types subjected to the crop was exposed to heat stress
(Table 2). Under heat stress condition, the highest F,/F,,
ratio was observed in tolerant SES 150 (0.656 and 0.717),
Co 99004 (0.652 and 0. 708) and Co 06022 (0.644 and
0.697) genotypes at FP and GGP, respectively. Average F,/
F,, ratio decrease over the control was 11.4 and 10.5% at
formative and grand growth phase respectively. Among the
genotypes stress tolerant index was higher in Co 99004
(0.90 and 0.91) and it range 0.85-0.90 and 0.86-0.92 at FP

@ Springer

and GGP, respectively (Table 3). The results obtained in
the present investigation are concomitant with the earlier
reported by Cui et al. (2006). However, under heat stress,
the conduction of PSII electrons is affected so as to lower
the ratio of F,/F,,. The reduction in F,/F,, ratio was mainly
due to a decrease in the variable fluorescence at higher
temperatures, which could be due to inefficient energy
transfer from the light-harvesting Chl a/b complex to the
reaction center (Briantais et al. 1986).

Relative water content (RWC)

Leaf RWC is a reliable indicator of leaf water deficit status
at the time of sampling. It is often used to examine the
response of a plant stress. Tolerant genotypes of Co 99004,
Co 06022 and SES-150 were able to maintain relatively
high leaf RWC of 78.0, 70.0 and 69.8, respectively
(Table 2), when subjected to heat stress, while sensitive
genotype of Co 0315 showed the highest fold decrease of
RWC over the control was observed 23.1 and 21.7% at FP
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and GGP, respectively, compared to rest of the genotypes
at FP (Table 4). Similar result was reported in maize by
Chen et al. (2012). Average decrease RWC over the control
was 14.7 and 13.4% at FP and GGP respectively. The stress
tolerance index of RWC at FP and GGP ranged from 0.77
to 0.94 and 0.78-0.96, respectively (Table 3). The decrease
RWC in response to induced heat stress has also been
reported previously in Lotus creticus (Anon et al. 2004)
and tomato (Morales et al. 2003).

Nitrate reductase (NR)

Nitrate reductase (NR) is the enzyme, which is involved in
nitrogen metabolism, play important role in amino acid
biosynthesis, and regulates the protein synthesis. NR
activity of sugarcane genotypes at FP and GGP was
determined and the result obtained is shown in Table 2. In
the present study, the variability in terms of NR activity
existed at different genotypes under heat stress, the highest
NR activity under heat stress condition was observed sig-
nificantly i 1n tolerant genotypes Co 99004 (73.3 p mol NO,
m1n7l mg~ protem) and Co 06022 (64.9 n mol NO, -
min~' mg~! protein) and while the lowest NR activity was
recorded in Co 0315 (45.4 it mol NO, min~' mg™" pro-
tein). The mean NR activity, % fold decreased in over the
control was lower in heat tolerant genotypes (Co 99004)
15.95%, (Co 06022) 19.02% and it decreased fold % higher
in susceptible genotypes (Co 0315) 30.38% at FP
(Table 4). The similar trend was notified at grand growth
phase. The average decrease in the control was 24.0 and
22.8% for NR activity at FP and GGP respectively, due to
high-temperature stress. Among the genotypes stress tol-
erant index was higher in Co 99004 (0.84 and 0.86) and it
range 0.70-0.84 and 0.71-0.86 at FP and GGP, respec-
tively (Table 3). Hayat et al. (2009) has also reported in
mustard that NR activity decreased in heat stressed plants
serves as a biochemical adaptation to conserve energy by
stopping nitrate assimilation at the initial stage. Haba et al.
(2013) also recently stated that the activity of NR
decreased in leaves exposed to high temperature in
sunflower.

Proline accumulation

Proline accumulation is another well-known mechanism
that has been evolved to cope with heat stress in a number
of plant species. In this study, heat stress obviously
induced a marked increase in proline accumulation rela-
tive to the level of the control (Table 2). It is interesting to
note that higher folding % of proline accumulation in
stress tolerant sugarcane cultivars of Co 99004
(25.5 umol g~ fw), SES-150 (21.9 umol g~ ' fw) and Co
06022 (21.4 pmol g~ fw) were 106, 83.5 and 62.8%

folds over control respectively (Table 4). The lowest
proline content was recorded in Co 0315 (17.8 umol g~*
fw) at FP subjected to heat stress and the trend was found
to be similar at GGP of the crop. The results obtained in
the present investigation are concomitant with the earlier
reported by Kumar et al. (2012a, b) in wheat. The stress
tolerance index of proline accumulation among the sug-
arcane cultivars examined. It ranged from 1.34 to 2.06 and
1.37-2.10 at FP and GGP, respectively. The higher stress
tolerance index 2.06 and 2.10 was recorded in stress tol-
erant sugarcane Co 99004 genotype at FP and GGP,
respectively (Table 3). Proline was accumulated under
heat stress could also act as low mol. Wt. chaperones,
stabilizing and protecting the structure of enzymes and
proteins, maintaining membrane integrity and scavenging
ROS, and a reservoir of nitrogen and carbon source for
post stress growth (Hameed et al. 2012).

Total phenols (TP)

Enhanced synthesis of secondary metabolites under heat
stress conditions also protects against oxidative damage. In
the present study, the highest accumulation of total phenols
(TP) under heat stressed condition was observed in tolerant
genotypes Co 99004 and Co 06022 (732 and 636 pg g~ '
FW), respectively, while the lowest phenols content was
recorded in Co 0315 (555 g~! FW) and in both wild sug-
arcane genotypes at FP (Table 5). Wahid and Ghazanfar
(2006) also reported earlier that enhanced synthesis of total
phenolics has been directly correlated with heat tolerance
of sugarcane. The mean fold increase in TP accumulation
over control was higher in stress tolerant Co 99004 (42.3%)
followed by Co 06022 (27.2%) and heat stress susceptible
Co 0315 (20.4%) (Table 4). The stress tolerance index of
total phenols activity at FP and GGP ranged from 1.20 to
1.42 and 1.21-1.44, respectively (Table 3). However, bet-
ter accumulation of phenolics in tolerant variety may be
related to better protection against oxidative damage,
screening of harmful radiations, stabilization of sub-cellu-
lar structures and improvement in cell water balance as
previously reported in Oenothera biensis by Fardus et al.
(2014).

Antioxidant enzyme activities

The coordinate function of antioxidant enzymes like
Superoxide Dismutase (SOD) and Peroxidase (POD) helps
in the processing of reactive oxygen species (ROS) and
regeneration of redox ascorbate and glutathione metabo-
lites (Foyer and Nector 2000). In the present study, the heat
stressed sugarcane genotypes exhibited a decreased in the
activity of SOD and POD over the control in all genotypes,
except heat tolerant genotype Co 99004. Under heat stress
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condition, Co 99004 led to the significantly highest SOD
and POD activity of 57.8 and 68.8 Units min~' g~' fw of
tissue and 475 and 518 Units per liter at FP and GGP,
respectively, suggesting that high temperature could trigger
antioxidant enzymes to scavenge ROS to counteract the
injurious effect of ROS. Therefore, tolerance to high-tem-
perature stress in crop plants to be associated with an
increase in antioxidant activity has been found in agree-
ment with earlier reported in sorghum (Gosavi et al. 2014)
and in sugarcane (Gomathi and Kohila 2016). Whereas,
SOD and POD activity of Co 0315 susceptible genotype
was recorded comparatively less at both stages (Table 5).
The ROS activity was found to be higher in Co 99004
under stress (5.3 and 15.9 and 3.1 and 3.7% at FP and GGP,
respectively) compared to rest of the genotypes (Table 4)
which was reflected in stress tolerance index (Table 3).
When ROS increase; chain reactions start in which super-
oxide dismutase, a metallo-enzyme catalyses the dismuta-
tion O,  radical to molecular O, and H,O, reported in
wheat by Kumar et al. (2012a) and peroxidases regulate the
relatively stable levels of H,O, to water and oxygen
molecule reported in Mullberry by Chaitanya et al. (2002).

Lipid peroxidation (LPO) and membrane injury
index (MII)

Lipid peroxidation is a natural metabolic process under
normal aerobic conditions and it is one of the most
investigated consequences of ROS action on membrane
structure and function (Blokhina et al. 2003). Lipid per-
oxidation is a commonly utilized stress indicator of mem-
brane damage (Taulavuori et al. 2001). In the present
study, Lipid peroxidation (LPO) as malondialdehyde
(MDA) content 0.85 n mol MDA g~ fw. and membrane
injury index (MII) 30.9 were lower under heat stressed
condition was observed in tolerant genotype Co 99004,
while the highest LPO and MII of was recorded in Taiwan
96, SES-150 and Co 0315 at FP and GGP (Table 5). Earlier
researchers reported that the relative tolerance of genotype
to heat stress as reflected by its lower LPO, higher mem-
brane stability, maintenance of high f,/f;, ratio and pigment
concentration is related to the levels of activity of its
antioxidant enzymes in sugarcane (Abbas et al. 2013).
Also, Zhao et al. (2010) found in opium poppy that when
the antioxidant enzyme activities were high, MDA content,
as well as relative membrane LPO was low. Gomathi et al.
(2013) reported in sugarcane that crop exposure to high-
temperature caused a significant increase in lipid peroxi-
dation (MDA content) and cell membrane injury. Average
LPO and MII increased over the control were 23.1 and 20.4
and 17.4 and 15.8% at FP and GGP respectively, due to
high-temperature stress. The stress tolerant index of LPO

@ Springer

and MII were higher in heat tolerant genotype of Co 99004
compare to other genotypes (Table 3).

Sucrose-metabolizing enzymes

Many enzymes in internodes were related to sucrose
metabolism, such as invertase, sucrose synthase (SS) and
sucrose-phosphate  synthase (SPS). Invertases cleave
sucrose to glucose and fructose. Sucrose synthase can
either cleave sucrose to UDP-glucose and fructose or
catalyse the reverse, synthetic reaction. SPS synthesizes
sucrose-6-phosphate reported in sugarcane by Gayler and
Glasziou (1972). High temperature stress altered the
activities of sucrose-metabolizing enzymes (SPS, SS, Al
and NI) in sugarcane genotypes. When the crop were
exposed to heat stress at 45 £ 2 °C, a significant decrease
in sucrose-metabolizing enzymes were observed in all
genotypes (Table 6). Heat stress tolerant genotypes had
significantly highest activity of sucrose-metabolizing
enzymes were observed in tolerant Co 99004 (29.8, 31.1,
27.7 and 36.3 p mol g fr wt~' h™') and followed by Co
06022 (26.3, 27.8, 24.0 and 30.6 w mol g fr wt™' h™ ")
genotypes at FP as compared to susceptible genotypes,
respectively. The similar trend was observed in GGP.
Average decrease over the control was 18.7 and 17.2% for
SPS, 29.2 and 27.1% for SS, 25.7 and 23.1% for Al and
27.7 and 23.6% for NI at FP and GGP respectively, due to
high temperature stress. The maximum reduction in
sucrose-metabolizing enzymes on account of heat stress
was observed in Co 0315 and wild genotypes (Table 4).
The higher stress tolerance index of SPS, SS, Al and NI
(0.89, 0.78, 0.89 and 0.87) were recorded in tolerant variety
Co 99004 at FP, respectively (Table 3). Miguel et al.
(2007) reported in tomato that the ability of plants to
synthesize and accumulate sucrose in leaves under envi-
ronmental stress is mainly determined by the concerted
action of sucrose metabolizing enzymes. At low concen-
trations sucrose acts as signaling molecule while it has
been suggested that in high concentrations it becomes an
ROS scavenger reported in Arabidopsis by Sugio et al.
(2009). However, Ebrahim et al. (1998) also thought the
activities of sucrose-metabolizing enzymes decreased in
sugarcane leaves under high-temperature stress accompa-
nied with the sucrose content reduced.

Total soluble sugar content (TSS)

Total soluble sugars were increased under heat stress for
oxidative adjustment. Data herein in Table 6 showed that
all studied sugarcane genotypes TSS varied significantly
between 46.2 and 71.0 ug g~' fw in non-stressed plant,
while heat stress accumulated sugar contents under stress
condition ranging from 50.8 to 96.7 ug g~ fw at FP. It
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was noticed that total sugar content was enhanced under
heat stress condition in sugarcane genotypes, maximum
and minimum folding % increment were observed in Co
99004 (36.0%) and Co 0315 (10.0%), respectively
(Table 4). Theses increases in total sugars in the tolerant
genotypes may be due to inhibition of sucrose synthase or
invertase activities as reported by Mohamed and Abdel-
Hamid (2013) in cotton. In present study, heat stress
showed an average increase of 18.4 and 19.9% for total
sugars content at FP and GGP respectively. The higher
stress tolerance index of 1.36 was recorded in tolerant
variety Co 99004 at FP (Table 3). Under stress situation,
TSS content was comparatively higher at GGP compared
to FP. Hassanein et al. (2012) also reported in fenugreek
that the increase in TSS may be acting as an adaptive
mechanism for exerting protective effects under heat stress.

Leaf gas exchange

Leaf gas exchange is considered as one of the indicators to
evaluate plants ability under different environment stress
condition. Leaf gas exchange measurements including
photosynthesis rate (A,), stomatal conductance (g), tran-
spiration rate (T) and intercellular CO, concentration (C;)
were observed on sugarcane genotypes. In the present
study, irrespective of varieties and wild species clones,
when plant was exposed to heat stress a notable reduction
in leaf gas exchange was observed over the control
(Table 7). Under heat stress condition, significantly highest
photosynthesis rate (A,) (11.44 p mol CO, m2 sfl),
stomatal conductance (g) (1.30 mol H,O m2 sfl), tran-
spiration rate (T) (10.83 mmol H,O m 2 s7!) and inter-
cellular CO, concentration (C;) (320 p mol CO,m 2 s
were observed in stress tolerant Co 99004 followed by Co
06022 and Co 86032 genotypes, respectively, and the
maximum reduction in leaf gas exchange on account of
heat stress was observed in Co 0315 at FP. The similar
trend was observed in GGP. The average decrease over the
control was 52.6 and 37.1% for photosynthesis rate, 19.1
and 15.2% for stomatal conductance, 26.7 and 25.7% for
transpiration rate and 25.9 and 26.4% for intercellular CO,
concentration at FP and GGP respectively. Among the
varieties, Co 99004 attained the highest stress tolerant
index (Table 3) at both FP and GGP. Unlike other envi-
ronmental stresses, in the present study varieties which
transpire more water under elevated temperature condition
could maintain transpiration cooling and RWC and their by
higher photosynthetic rate compared less transpiring vari-
eties. However, some earlier researchers reported that high
temperature stress reduces net photosynthetic rate, stomatal
conductance in sunflower (Haba et al. 2013), and transpi-
ration of water and CO, diffusion into the leaf tissues in
rice (Sikuku et al. 2010). The results of two growths stage
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of the sugarcane genotypes, FP was sensitive stage and
reduction percentage of leaf gas exchange was higher
compared to GGP.

Principle component (PC) analysis

Loading plots of principle component 1 and 2 analysis
obtained from physiological data of seven sugarcane
genotypes subjected to heat stress are illustrated in Fig. 1.
PCA in the current study allowed for easy visualization of
complex data and the physiological parameters among
seven sugarcane genotypes were separated by PC1 and
PC2. In this study, principle component 1 (PC1) describes
79.01% of the original information and principal compo-
nent 2 (PC2) describes 16.49%. The cumulative percentage
of PC1 and PC2 was 95.50% (Fig. 1). To investigate the
contributors to the principle component, the physiological
loadings in PC1 and PC2 were compared. It was clear that
the, AN, CI, T, GS, TSS, POD, Al SS, NR and CHL A
were grouped together with positive loading on the right
upper side of the biplot, suggesting that these parameters
had a high positive correlation among themselves. Total
CHL, CSI, SOD, RWC, NI, CHL B, SPAD, SPS, PRO and
CHL FLU were observed on the right lower side of the
biplot signifying that these parameters had a positive cor-
relation among themselves. While LP and MII were found
on the left upper portion of the biplot suggesting that these
parameters had a highly negative and significant correla-
tion among themselves.

Among the seven genotypes, Co 99004 and Co 06022
were grouped together with positive loading on the right
upper side of the biplot, suggesting that this genotype
found to tolerant with high-temperature stress. The species
SES-150 is being grouped right lower portion of the biplot,
indicating moderately tolerant to heat stress. While, Co
0315 Co 8021 and Co 86032 were grouped in a left upper
portion of the biplot, and Taiwan-96 left lower portion of
the biplot suggesting that these genotypes were sensitive to
heat stress.

Hierarchical cluster analysis (HCA)

Hierarchical cluster analysis (HCA) was applied to search
for classifiers (Fig. 2). The seven sugarcane cultivars were
classified into three main clusters. Cluster I represented the
heat sensitive group, with considered Co 0315, Co 8021
and Co 86032. Among the heat sensitive genotypes, Co
0315 similarity with 8.93 to other heat sensitive genotypes.
Co 8031 with similar with 1.31 to Co 86032. Cluster II
represented that heat tolerant group, with considered Co
99004 and Co 06022. Co 06022 similar to Co 99004 with
12.37 similarities. Cluster III represented the heat tolerant
as wild sugarcane genotype, with considered SES-150 and
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Fig. 1 Loading plots of
principle components 1 and 2 of 4
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Fig. 2 Cluster analysis of the seven sugarcane genotypes based on physiological parameters in heat stress condition

Taiwan 96. Cluster II, 46.08 similarities with Cluster III
and Cluster I, 89.14 similarities with cluster II and III. The
higher similarity distance represents that the higher varia-
tion between the tolerant and sensitive genotypes.

Conclusion
In conclusion, high-temperature stress induced significant

physiological and metabolic changes in all sugarcane
genotypes at two stages of crop, however formative phase

@ Springer

was found to more sensitive to high temperature as com-
pared to grand growth phase. This study showed
that physiological parameters such as chlorophyll content,
CSI, antioxidant enzymes, enzymes of sucrose metabo-
lism, soluble sugar content, proline content, total phenolics
and leaf gas exchange parameters could be used as sup-
plementary or alternative indicators for heat tolerance in
sugarcane. Among the genotypes studied, the Co 99004
was found to be highly thermotolerant, as indicated by
PCA and cluster analysis, which can be used as donor
genotype for high-temperature tolerance. The results also
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suggest that the identified physiological traits can be used
as heat tolerance index for screening larger population for
thermotolerance.
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