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Abstract Flowers of Dianthus chinensis growing in

Kashmir University Botanic Garden (KUBG) were selected

for the present study. Flower development and senescence

was divided into six stages (I–VI), categorized as (I) tight

bud stage, (II) mature bud stage, (III) paint brush stage,

(IV) fully open/bloom stage, (V) partially senescent stage

and (VI) senescent stage. Various physiological and bio-

chemical changes associated with flower development and

senescence were recorded. Fresh and dry mass, water

content and flower diameter showed a continuous increase

from bud to bloom, i.e., from stage I–IV and a significant

decrease from stage V to VI. Scanning electron micro-

scopic studies showed a clear degeneration of the cellular

integrity and architecture with the onset of senescence in

Dianthus chinensis. Soluble proteins, a-amino acids and

sugar fractions increased with flower opening and showed a

decrease as the senescence progressed. SDS-PAGE of the

petal tissues revealed a decrease in both high and low

molecular weight proteins. The present study suggests that

the protein degradation is the key factor in regulating the

process of flower senescence in this flower.

Keywords Dianthus chinensis � Proteins � a- amino

acids � Senescence � SEM

Introduction

Dianthus chinensis is a prized ornamental and has a

vast potential in floricultural industry. This beautiful

ornamental has a myriad of colors and hues. Flower

senescence involves an ordered set of events coordi-

nated at the plant, flower, organ and cellular level

(Rogers 2012). The onset of flower senescence is trig-

gered by an array of internal and external factors,

which initiates a series of physiological events orches-

trated by plant growth regulators (van Doorn and

Woltering 2008). Ethylene has been reported to be the

main regulator of flower senescence and distinctions

have been made between ethylene sensitive and insen-

sitive flower systems (Woltering and van Doorn 1988;

Stead and van Doorn 1994; van Doorn and Woltering

2008). Flower senescence in D. chinensis has been

shown to be dependent on ethylene accompanied by an

upsurge in ethylene synthesis and a concomitant cli-

macteric rise in respiration (Nichols 1966; Yang 1984;

van Doorn and Reid 1992; van Doorn 2004; Arora

et al. 2007; van Doorn and Woltering, 2008; Kazemi

et al. 2011; Kazemi, 2012). Increase in membrane

leakiness and phospholipid deterioration in petals of

Dianthus has been found to be due to the increase in

production of ethylene with senescence (van Doorn and

Woltering 2008). Ethylene receptor genes and signal

components have been characterized in several ethylene

dependent flower systems such as Dianthus, Als-

troemeria, Hemerocallis and Petunia (Satoh et al. 2005;

Rogers 2012).

Petal senescence in D. chinensis has been found to be

accompanied by increased protein degradation with a

concomitant increase in the protease activity. The present

study was undertaken to study the various physiological

and biochemical changes associated with flower senes-

cence in D. chinensis with the ultimate aim to modulate the

senescence process in order to improve the life of this

beautiful ornamental.
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Materials and methods

Plant materials

Flowers of D. chinensis growing in (KUBG) were selected

for the present study. Flower development and senescence

was divided into six stages (stage I–VI). These stages were

designated as I: tight bud stage, II: mature bud stage, III:

paint brush stage, IV: fully open/bloom stage, V: partially

senescent stage and VI: senescent stage (Fig. 1). Visible

changes were recorded throughout flower development and

senescence. (Figs. 2, 3).

Determination of fresh and dry mass, water content

and floral diameter

Ten flowers were taken for the determination of fresh mass

at each stage. The flowers were then kept in paper bags and

oven dried at 70 �C for 48 h. The material was put in a

desiccator for 24 h before recording the dry mass. Water

content was determined as the difference between fresh and

dry mass. Flower diameter was recorded as the mean of

two perpendicular measurements across the flower.

Fixation of plant material

1 g of finely chopped petal tissue was fixed in hot 80 %

ethanol in triplicate. The material was macerated in a glass

pestle and mortar and centrifuged at 3,000 xg for 20 min.

The supernatants were pooled and made to volume. A

suitable aliquot from the supernatant was used for the

determination of a- amino acids and sugar fractions.

Estimation of a-amino acids and sugar fractions

a-amino acids were estimated by the method of Rosen (1957)

using glycine as the standard. Reducing sugars were deter-

mined by the method of Nelson (1944) using glucose as the

standard. Total soluble sugars were estimated after enzymatic

conversion of non-reducing sugars into reducing sugars with

invertase (BDH). Non-reducing sugars were calculated as the

difference between total and reducing sugars.

Proteins and specific protease activity

For the estimation of proteins 1 g petal tissue was

homogenized in 5 ml of 5 % sodium sulphite (w/v) and

Fig. 1 Stages of flower

development and senescence in

Dianthus chinensis L
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Fig. 2 Changes in floral diameter during various stages of flower

development and senescence
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Fig. 3 Changes in fresh and dry mass and water content during

various stages of flower development and senescence
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0.1 g of polyvinyl pyrrolidone (PVP) and centrifuged at

4,000 g for 20 min in a refrigerated centrifuge. Proteins

were precipitated from a suitable volume of supernatant

with equal volume of 20 % trichloroacetic acid (TCA) and

centrifuged at 2,000 g for 15 min. The pellet was re-dis-

solved in 4 ml of 0.1 N NaOH and protein content was

estimated from a suitable aliquot by the method of Lowry

et al. (1951).

For the estimation of protease activity, 1 g of pre-chilled

petal tissue was homogenized in 15 ml chilled 0.1 M

phosphate buffer (pH 6.5) in a pre-cooled glass pestle and

mortar. Protease activity was estimated by the modification

of the method as described by Tayyab and Qamar (1992).

One ml of enzyme extract was mixed with 1 ml of reaction

mixture (0.1 % BSA dissolved in 0.1 M phosphate buffer,

pH 6.5). The enzyme activity has been expressed as lg

tyrosine equivalents liberated per mg protein per minute

(lg tyr. mg protein-1 min-1).

Procedure for SDS-page

At each stage 1 g of petal tissue was homogenized in 1 ml

of 0.1 M phosphate buffer (pH 7.2–7.4), containing 0.1 g

of PVP. The mixture was centrifuged at 5,000 g at 5 �C in

a refrigerated centrifuge (Remi K-24) for 15 min. The

supernatant was collected in eppendorf tubes and used for

SDS-page. The extracted protein mixture was denatured by

mixing equal volumes of protein aliquot with 2X sample

loading buffer (0.5 M Tris pH 6.8, 10 % SDS, 10 %

glycerol, 5 % b-mercaptoethanol, 0.1 % bromophenol

blue). The mixture was incubated in boiling water for

5–7 min. The concentration of protein was determined in

both the original extracts and the TCA precipitated samples

by the method of Lowry et al. (1951) using BSA as the

standard. One dimensional vertical gel electrophoresis was

carried out according to the method as described by

Ausubel et al. (1989). Slab gels 0.7 mm thick containing

12 % resolving gel [(acrylamide ? bisacrylamide), (1.5 M

Tris pH 8.8), 10 % SDS, TEMED and 10 % ammonium

persulphate] and 3 % stacking gel [(acrylamide ? bis-

acrylamide), (0.5 M Tris pH 6.8), 10 % SDS, TEMED and

10 % ammonium persulphate] were used. SDS-denatured

protein extract (80 ll) was loaded into each lane. Elec-

trophoresis was carried out at room temperature with a

constant voltage of 50 V during stacking and 150 V during

running. GENEI molecular weight standards were used for

determining approximate molecular weights (myosin, rab-

bit muscle 205,000; phosphorylase-b 97,400; bovine serum

albumin 66,000; ovalbumin 43,000; carbonic anhydrase

29,000; aprotinin 6,500; insulin (a and b chains) 3,000).

Following electrophoresis the gel was stained overnight in

0.25 % coomassie brilliant blue in 45 % methanol: 10 %

acetic acid. Gel was destained in 45 % methanol: 10 %

acetic acid, followed by in 7 % methanol: 5 % acetic acid.

Statistical analysis of the data

The values depicted in the figures represent the mean of

several independent replicates. Standard deviation has been

computed as:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

x� �xð Þ2

n� 1

s

Scanning electron microscopic studies

For scanning electron microscopy, the specimens were

dried by simple air drying technique. Samples were slowly

allowed to dry at room temperature. After complete air

drying samples were kept in desiccator for 24 h. The petal

tissue was coated with gold and loaded on the plate of the

scanning electron microscope (Model Hitachi S3000H). A

constant voltage of 5 kV was maintained during the ana-

lysis of the petal tissue.

Results and discussion

The present study provides insight into the turnover of

various physiological and biochemical aspects crucial for

the developmental shift from bud until death of the flower.

The greenish buds of D. chinensis opened into flowers of

various colors ranging from white to pink. Flower senes-

cence is proceeded by anthesis and is characterized by the

loss of petal turgidly and color change, followed by the

inrolling of corolla. The average life of individual flower

on the sprays after it had opened fully was about 4 days. A

significant increase in the ovary size was registered

towards flower senescence.

Floral diameter, fresh mass, dry mass and water content

increased as the flower development progressed towards

opening and a continuous decrease in these parameters was

registered with senescence. Our results corroborate with

the earlier studies on Narcissus, Nerine, rose, Iris and

Consolida (Evans and Reid 1988; van Doorn et al. 1991;

Gul and Tahir 2009; Shahri and Tahir 2011; Gul and Tahir

2012). Decrease in the fresh and dry mass can be attributed

to the fact that flowers act as source during senescence for

ecological benefits of the plant (Zhou et al. 2005; Shahri

and Tahir 2011; Shahri et al. 2011). During the final

developmental stage the resources are reallocated to the

developing parts of the plant. Thus nutrient recycling

seems to be the basic phenomenon for getting rid of the

flowers once pollination has taken place (ten Have and

Woltering 1997; Tripathi and Tuteja 2007). Increase in the
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water content towards flower opening is attributed to the

increase in cell turgidity, which is an important criterion

for flower opening (Yamada et al. 2007).

The scanning electron microscopic (SEM) studies of the

petal tissues revealed subtle changes in the cellular archi-

tecture at various stages of flower development and

senescence. The study revealed that the cells maintain their

integrity and gain turgor as the flower development pro-

gressed towards opening. At the open flower stage the cells

were fully turgid but loss of turgidity and integrity was

visualized as the flowers progressed towards senescence

(stage V–VI) (Fig. 4). The study also revealed that cellular

decompartmentalization occurs during senescence. More-

over the cells lose their integrity as the middle lamella gets

dissolved, thereby separating the adjacent cells. Our results

are in agreement with the earlier studies on rose and car-

nation (Smith et al. 1992).

The concentration of soluble proteins from petal tissues

increased as the flowers opened through stages I–IV and

thereafter showed a continuous decrease as the senescence

progressed through stages V and VI (Fig. 5). The specific

protease activity showed a decrease from bud to bloom and

Fig. 4 Scanning electron

micrographs of different stage

of flower development and

senescence in Dianthus

chinensis. The photographs

have magnification of 400X.

Note the turgidity of cells at

stage IV (fully open stage) and

cellular disorganization at stage

V and VI (partially senescent

stage and senescent stage)
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thereafter showed an increase with senescence (Fig. 5).

The increase in protease activity with a concomitant

decrease in proteins manifests the earliest signs of flower

senescence related to gene changes (Eason et al. 2002).

Increase in protease activity towards flower senescence has

been reported in various flowers like Hemerocallis, Iris,

Petunia and Consolida (Stephenson and Rubinstein 1998;

Pak and van Doorn 2005; Jones et al. 2005; Shahri and

Tahir 2011). During the present study, it was observed that

there was a marginal increase in the a-amino acid content

towards flower opening but showed a significant decrease

towards senescence (Fig. 6). Our results are in agreement

with the findings on the flowers such as Hemerocallis and

Consolida (Beileski 1995; Shahri and Tahir 2011). The

decrease in the a-amino acid content can be attributed to

the fact that petals act as a source and the ovary as a

metabolic sink during flower senescence and as such the

amino acid pool is rapidly transported to the developing

ovary. The present investigations revealed that the reduc-

ing, non-reducing and total sugar fractions registered a

continuous increase up to flower opening and then showed

a concomitant decrease as the senescence progressed

through stages V and VI (Fig. 7). Flower maturation and

senescence has been shown to be accompanied by a decline

in the carbohydrate content in various flower systems like

Hemerocallis, Helleborus, Consolida and rose (Nichols

1973; Paulin and Jamain 1982; Lukaszewski and Reid

1989; Lay-yee et al. 1992; Beileski 1993; Mwangi et al.

2003; Gulzar et al. 2005; Reid 2005; Shahri and Tahir

2011; Shahri et al. 2011). SDS-PAGE analysis of petal

tissue revealed an overall decrease in both low and high

molecular weight proteins at senescence. Structural pat-

terns showed that a polypeptide with a molecular mass of

ca 37.3 kDa was generally maintained throughout flower

development and senescence. A low molecular weight

protein having molecular mass of ca 14.3 kDa appeared

during anthesis (Fig. 8). Protein degradation started soon

after the flower started showing visible signs of senes-

cence like loss of petal turgidity. The protein content was

maintained up to open flower stage and the decrease in the

concentration of proteins with senescence could be

attributed to the decreased protein synthesis or increased

activity of proteolytic enzymes (Celikel and van Doorn

1995). In case of Hemerocallis flowers a decline in both

high and low molecular proteins has been reported with

senescence (Lay-Yee et al. 1992; Celikel and van Doorn

1995).

The present study revealed that protein turnover along

with the changes in sugar fractions can be attributed as the

key factors associated with flower development and

senescence in D. chinensis. Further investigations on

protein patterns are required that can offer clues to flower

senescence and its modulation in this beautiful flower.
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