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Abstract
Purpose of Review  To establish a link or causation between periodontitis and Alzheimer’s disease requires studies that first 
establish an association or correlation between these two diseases, followed by in vitro, animal model, and human studies 
to identify possible underlying biological mechanisms, and finally assessing the benefits of periodontal therapy in general 
and targeted therapies against the microbiota and inflammatory responses in periodontitis. This review presents an update 
on the current correlation and biological mechanisms that link these two diseases, with special emphasis on the keystone 
periodontal pathogen Porphyromonas gingivalis and its key family of gingipain enzymes.
Recent Findings  Recent evidence for slowing the progression of Alzheimer’s disease through periodontal therapy in general, 
as well as focused therapies directed against Porphyromonas gingivalis and its gingipains, are presented.
Summary  These intervention studies, together with the recent association and biological mechanism studies, strengthen the 
evidence for a direct link or causation between these two diseases. In addition, these recent studies support the special role 
of the dental practitioner in the management of patients with cognitive decline.
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Introduction: Setting the Stage

The title of this review, “Reality or Yet Another Association” 
between Alzheimer’s disease and periodontitis, harkens to 
a common phrase used when determining a link between 
two diseases or conditions: causation vs. correlation. Over 
the past several decades, the question of causation vs. cor-
relation, namely whether the chronic and acute microbial 
dysbiosis and inflammation that are the hallmarks of peri-
odontal disease can have a direct effect on the initiation and/
or progression of systemic diseases, has been the subject 
of extensive basic, translational, and clinical research [1]. 
For the spectrum of systemic diseases such as cardiovas-
cular diseases, diabetes, pregnancy outcomes, respiratory 

diseases, renal diseases, rheumatoid arthritis, etc., the estab-
lishment of a direct causation has presented a challenge for 
this field, now commonly called periodontal medicine. To 
“close the deal” on determining direct causation rather than 
just correlation involves what we may distill first from asso-
ciation studies, second in discovering underlying biologi-
cal mechanisms, and third in assessing the direct effects of 
treating the local dysbiosis and inflammation for periodontal 
disease on preventing the initiation, slowing the progression, 
and/or improving the clinical hallmarks of these systemic 
conditions.

There is a large and compelling body of published sci-
entific evidence demonstrating correlations/associations 
between inflammatory periodontal disease and these sys-
temic diseases described above, as well as the underly-
ing effects of this disease on critical clinical risk factors 
and biological markers for these diseases. However, with 
very few exceptions, well-designed intervention studies to 
evaluate the benefits of periodontal treatment on the true 
clinical endpoints of these diseases have been inconclusive. 
These intervention studies have focused on the reduction 
or elimination of the entire dysbiotic biofilm and inflam-
matory response of periodontal disease or targeting groups 
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of periodontopathic flora and/or products of the destructive 
inflammatory process. This inability to determine causation 
may be due in part to the inability to achieve a significant 
reduction in inflammation and microbial load in these patient 
populations that are more resistant to the resolution of peri-
odontal inflammation [2]. These patients include those with 
persistent inflammation after treatment, such as those with 
poor glycemic control and pregnant patients. In addition, 
these patients include those with cognitive and/or motor 
impairment who cannot perform adequate daily plaque 
control. In addition, in some diseases, a large number of 
subjects and long observation periods required to assess true 
clinical endpoints of medical outcomes such as stroke and 
myocardial infarction also present barriers to determining 
actual causation.

For the patient with Alzheimer’s disease or other cogni-
tive or motor impairments, this third criterion of assessing 
the potential benefits of periodontal treatment presents a 
unique challenge. Thus, from a large majority of cross-sec-
tional and longitudinal association studies, the “chicken or 
egg first” argument can often be made. Namely, is there just 
a correlation between Alzheimer’s disease and periodontal 
disease only due to the inability of the Alzheimer’s patient 
to effectively remove a dysbiotic biofilm with a daily plaque 
control regimen [3]? Or, does the translocation of the whole 
pathogenic microbiota, fragments of the microbiota, and or 
products of the pathogenic microbiota into the brain actually 
play a key role in the initiation and progression of Alzhei-
mer’s disease? Or is there mutual causation between these 
two diseases?

While a full discussion of the biological and clinical 
hallmarks of Alzheimer’s disease would require a more 
extensive review, understanding possible causation between 
periodontal disease and Alzheimer’s disease requires an 
understanding of the classic pathological markers of Alz-
heimer’s disease, which include the accumulation of amyloid 
plaque deposits in the brain, a general increase of inflamma-
tion in the brain modulated in large part by the microglial 
cells, and the fragmentation of tau proteins into microfibril-
lar tangles. And in the past several years, there have been 
several published expert opinion articles that stress the roles 
of all three of these phenomena. In addition, factors that 
have been taken into consideration for the initiation and 
progression of Alzheimer’s disease include microvascular 
damage [4], lifestyle, and genetics. All of these events can 
lead to the more overt clinical signs of loss of neurons, loss 
of synaptic connections between neurons, reduction in the 
size of the brain, and loss of cognitive and motor function.

Several investigators in the periodontal disease field as 
well as the Alzheimer’s disease field, have raised the ques-
tion of direct causation between the periodontal disease 
microbiota, as well as changes in the gut microbiota to Alz-
heimer’s disease [5]. Until very recently, the amyloid-beta 

hypothesis as the principal driver for Alzheimer’s disease 
has dominated this research field, while other hypotheses 
were relegated to secondary areas of research. However, 
with the need to identify further upstream events that can be 
targets of therapy and/or prevention, the microbiome/infec-
tion hypothesis [6, 7] and the inflammation/host response 
hypothesis have received more attention as additional events 
and risk factors for the initiation and progression of Alzhei-
mer’s disease [6–9] (Fig. 1). And in the past several years, 
several published expert opinion articles have stressed inter-
actions between all three of these schools of thought. For the 
patient with periodontal disease, perhaps the most impor-
tant consideration to a brain linkage is the invasion of vari-
ous pathogenic flora, including bacteria, viruses, and fungi 
[8–11]. Such evidence has raised the critical question as to 
whether these current approaches are treating the disease at 
a stage where there is irreversible damage to the structure 
and function of the brain. Thus, the investigation of events 
that are earlier or further upstream from the classic markers 
of amyloid-beta plaque accumulation and tau tangles that 
appear in clinical Alzheimer’s disease is urgently needed. 
Restating the central problem of resolving the issue of cor-
relation vs. causation, using a modification of the Bradford-
Hill criteria for causation [12], these investigations must 
include both the correlation/association studies between 
specific microbial agents and the general microbiota, under-
standing the biological plausibility of the effects of these 
classical microbiotas of periodontal disease on markers of 
Alzheimer’s disease, and most importantly, the effects of 
targeted therapy on these microbiotas on the incidence and 
progression of Alzheimer’s disease.

Periodontitis and Alzheimer’s Disease: 
Moving from Correlation to Biological 
Plausibility

The first series of questions one may pose regarding direct 
causation between periodontal diseases and Alzheimer’s dis-
ease revolve around correlation/association. Namely, is there 
a correlation between periodontal disease and Alzheimer’s 
disease, and is the severity of Alzheimer’s disease corre-
lated with the severity of periodontal disease? Over the past 
several decades, there has been a large body of both cross-
sectional and longitudinal studies that have supported this 
correlation. In particular, most recent larger-scale cross-sec-
tional or longitudinal studies which examined the correlation 
of the presence and severity of periodontal diseases have 
strengthened the evidence for these correlations [13–22], 
although some recent studies have not shown definitive cor-
relations between these two diseases [23–25]. As an exten-
sion of correlation studies between periodontal disease and 
Alzheimer’s disease, using special imaging techniques to 
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visualize amyloid-beta deposits in the brain, higher levels 
were observed in patients with clinical attachment loss from 
periodontal disease, particularly in those patients who also 
carried the APOE 4 genotype, the most common genetic 
marker for Alzheimer’s disease risk [26•]. In addition, in 
patients with early stages of Alzheimer’s disease, changes 
in serum amyloid-beta levels have been reported to be posi-
tively associated with clinical periodontal disease [27].

While a full review of these studies would require a sepa-
rate manuscript, the reader can refer to a series of excellent 
and comprehensive reviews regarding this question as well 
as descriptions of the essential features of these two diseases 
[9, 28–30]. Yet as with all correlation studies between peri-
odontal disease and systemic diseases, the central “chicken 
and egg” question (which came first) persists until confirmed 
by an understanding of biological plausibility and effects of 
periodontal treatment.

Moving from correlation to causation involves moving 
beyond clinical correlations between periodontitis and Alz-
heimer’s disease to studies that help establish biological 
plausibility by examining underlying pathological markers 
for Alzheimer’s disease. These include studies on correla-
tions between these markers and the presence and levels of 
periodontopathic microflora intraorally and systemically and 
the immune response to these bacteria. Pathological mark-
ers for the presence and progression of Alzheimer’s disease 
include levels of amyloid plaque in the brain, the presence of 
tau tangles, levels of inflammatory markers in the brain, etc. 
For human studies, these measures can be made by sampling 
the cerebrospinal fluid, applying newer imaging techniques 
in the brain, or examining postmortem specimens. These 
studies can be supplemented by in vitro studies on cultured 
neurons and in vivo in animal models. Several wild-types 
and genetically altered mouse models have been studied to 
determine biological plausibility.

Fig. 1   A model for understanding the pathogenesis of Alzheimer’s 
disease. As shown on the left, histological and pathological features 
of Alzheimer’s disease within the brain include the accumulation 
of amyloid plaques, tau fragmentation and tangle formation, and 
activation of the local inflammatory response through the support-
ing microglial cells. As shown on the right, an understanding of the 

pathogenesis of Alzheimer’s disease requires an understanding of 
upstream events and predisposing factors. Among these is the role of 
translocation of the microbiome and its products from other diseases 
and conditions into the brain that can trigger these events within the 
brain, leading to the overt clinical signs of Alzheimer’s disease (origi-
nal image created by the author for this review with Biorender.com)
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For the patient with periodontal disease, perhaps the most 
important consideration to a brain linkage is the transloca-
tion of various pathogenic flora and associated fragments, 
including bacteria, viruses, and fungi [8, 10, 31]. Numer-
ous publications have demonstrated that bacteria from the 
oral cavity but also other sources such as the gastrointestinal 
tract can translocate to the brain [31], including Borrelia 
burgdorfei ( associated with Lyme’s disease), Heliobacter 
pylori [32], and periodontopathic bacteria including Por-
phyromonas gingivalis (P. gingivalis), Treponema denticola, 
Aggregatibacter actinomycetemcomitans, Tanerella for-
sythia, Prevotella intermedia, and Fusobacterium nuclea-
tum [32–37]. Dysbiosis of the oral microflora refers to the 
presence of and/or the elevation of the proportion of these 
periodontopathic bacteria in the oral cavity. This oral dys-
biosis has also been associated with markers of Alzheimer’s 
disease [33].

Of these bacteria from both oral and nonoral sources, 
Porphyromonas gingivalis (P. gingivalis) has been the most 
extensively studied due to its multiple potential roles in 
both local and systemic inflammation, suppression of the 
host response, and tissue destruction [34]. When comparing 
patients who currently have or later develop Alzheimer’s 
disease, correlations have been reported between levels of 
circulating antibodies to periodontal pathogens, particularly 
Porphyromonas gingivalis [35–37]. Serum antibody titers to 
P. gingivalis have been reported to be associated with higher 
levels of both amyloid-beta and T-tau protein in the cerebro-
spinal fluid [38]. Using markers such as amyloid beta 42/40 
ratios and phosphorylated tau protein in cerebrospinal fluid 
as surrogate markers of Alzheimer’s disease in the brain, 
higher levels of P. gingivalis DNA in the CSF and in saliva 
correlate with Alzheimer’s disease [39•, 40, 41]. Correlation 
studies on post-mortem brain biopsies in animal models and 
humans have shown that among the periodontal pathogens 
listed above, there is a preferential invasion of P. gingivalis 
into areas of the brain responsible for memory, including 
the hippocampus and cingulate gyrus [42, 43]. This may be 
partly due to the preferential migration of P. gingivalis to 
the higher concentrations of iron in the brain, an essential 
nutrient for P. gingivalis [44].

The relative ease in which P. gingivalis or products of 
P. gingivalis may invade the brain may be facilitated by the 
potential of this bacteria to directly invade endothelial cells 
and secrete a series of proteases called gingipains that can 
break down the tight junctions of the blood–brain barrier 
[45] and suppress the local protective host response [46]. In 
addition, P. Gingivalis can survive in the epithelium [47] and 
circulating cells of cellular immunity [48], which can then 
invade the brain as a “Trojan Horse” through the glymphatic 
system. Translocation of bacteria such as P. gingivalis from 
the mouth to the brain can lead to local destructive inflam-
matory reactions as part of the pathogenesis of Alzheimer’s 

disease [43, 49] and other systemic diseases [50]. Examples 
include an increase in the secretion of inflammatory media-
tors from microglial cells, the brain’s principal inflammatory 
cells [51, 52]. Other autoimmune and destructive inflam-
matory roles for P. gingivalis include citrullination of host 
proteins that can set up an autoimmune response [53, 54] 
and an elevated oxidative stress response that occludes and 
damage the microvasculature to the brain, leading to micros-
trokes [4]. In addition, mouse studies have demonstrated that 
P. gingivialis can impair the clearance rate of amyloid-beta 
[54] by altering the sleep patterns necessary for the daily 
clearance of amyloid beta by the glymphatic system [55, 
56]. More recent mouse studies on impairment of cognitive 
function have demonstrated differences in the magnitude of 
impairment between the four major P. gingivalis serotypes 
[57•]. In addition, for an older hypothesis for Alzheimer’s 
disease progression known as the cholinergic hypothesis, P. 
gingivalis has been implicated in the dysfunction of acetyl-
choline transmission [58]. A summary of possible effects of 
mechanisms of P. gingivalis on the pathogenesis of Alzhei-
mer’s disease is summarized in Fig. 2.

But whether the entire P. gingivalis bacteria invades the 
brain may not be as critical as two classes of molecules that 
have been extensively studied that P. gingivalis employs 
to evade and neutralize the host response as well as break 
down healthy brain tissue to access the amino acid nutrients 
needed for its survival. These are the membrane lipopolysac-
charides and the gingipain proteolytic enzymes. For exam-
ple, the membrane lipopolysaccharides of P. gingivalis per 
se have been shown to initiate and promote the hallmark 
pathological and behavioral signs of Alzheimer’s disease in 
animal models [59, 60].

Recently several investigators have proposed that rather 
than the translocation of the entire P. gingivalis bacteria 
in the brain as a driver of Alzheimer’s disease, the smaller 
outer membrane vesicles (often termed “microbullets”) 
secreted by P. gingivalis as decoys for the host response and 
which carry gingipains, lipopolysaccharides, and toxic fim-
briae may directly invade the brain tissue [34, 61, 62]. The 
outer membrane vesicles have been shown in cell culture and 
rodent studies to increase amyloid-beta plaque levels, reduce 
clearing amyloid in the brain, and increase microglia activa-
tion with the elevated secretion of IL-1 beta [61].

While the role of membrane lipopolysaccharides may be 
one weapon from P. gingivalis that leads to the initiation 
and progression of Alzheimer’s disease, a second and more 
extensively studied area of P. gingivalis pathogenesis are 
the proteolytic gingipain family of enzymes. These enzymes 
come in three forms depending on their preferred proteolytic 
cleavage sites; one lysine gingipain (Kgp) and two arginine 
gingipains (Rgp1 and 2). Their primary roles are to provide 
metabolites for the survival of P. gingivalis as well as neu-
tralize and evade the protective host response [62]. As an 
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upstream event in the pathogenesis of Alzheimer’s disease, 
there is an extensive body of work that demonstrates the 
biological plausibility of the effects of gingipains on a full 
range of the “microbial,” “inflammation,” “amyloid beta,” 
and “tau tangle” schools of thought for the initiation and 
progression of Alzheimer’s disease and reduction in cogni-
tive function [63].

Starting with evidence for a correlation between gingi-
pains and Alzheimer’s disease in humans, post-mortem stud-
ies have shown higher levels of Kgp and Rgp in post-mortem 
brains with Alzheimer’s disease compared to brains from 
patients without cognitive decline [39•] and are correlated 
to the presence of tau tangles in the brain [39•]. Moving on 
to biological plausibility, there are several published stud-
ies using neuron cultures incubated with whole P. gingi-
valis or gingipains, and in vivo studies from mouse models 
using oral inoculation of whole P. gingivalis or gingipains 

in wild-type and genetically susceptible mice [39•, 51, 52, 
60, 64, 65]. These studies have reported increases in amyloid 
beta, tau protein tangles, microglia activation and prolifera-
tion, activation of the enzymes that cleave amyloid precursor 
protein, increases in inflammatory mediators in the brain 
including IL-1 beta, TNF-alpha, IL-6, degeneration of neu-
rons, neurodegeneration, and loss of synaptic connections 
[51, 52, 64]. In addition, several of these mice inoculation 
studies, as well as a study on neuron cultures, have demon-
strated the localization and internalization of these gingi-
pains both within neurons and within amyloid beta plaques. 
In addition, gingipains have been demonstrated to induce 
the phosphorylation and cleavage of tau proteins, disrupt 
the neuron cytoskeleton, and promote the loss of synapses 
[65]. As noted previously, the most well-characterized risk 
genetic factor for the development of Alzheimer’s disease 
is the presence of an apolipoprotein 4 genetic variant which 

Fig. 2   Evidence for Porphyromonas gingivalis (P. gingivalis) as a key 
upstream event in the pathogenesis of Alzheimer’s disease. Evidence 
from in vitro, animal model, and human studies support the role of P. 
gingivalis from the periodontal biofilm as an upstream event in the 
initiation and progression of Alzheimer’s disease: 1. In periodon-
tal inflammation, P. gingivalis, its outer membrane vesicles (OMVs) 
and key toxins and enzymes can translocate from the plaque biofilm, 
into the microcirculation of the periodontal tissues, and to the micro-
circulation in the brain. 2. At the blood–brain barrier in the brain, P. 
gingivalis, its OMV’s, and in particular its gingipain enzymes, can 

directly break through this barrier and help promote the formation of 
amyloid plaques, activate the destructive inflammatory response from 
microglia, and fragment tau protein and induce tau tangle formation. 
Gingipains can also cleave apolipoproteins (APOE), which in turn 
can impair the clearance of amyloid from the brain. 3. P. gingivalis 
and its gingipains can both directly and indirectly result in cleavage 
of synapses, death of neurons, and atrophy of areas of the brain. 4. 
All of these events then lead to the overt clinical signs of Alzheimer’s 
disease (original image created by the author for this review with 
Biorender.com)
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has an impaired ability to clear amyloid-beta. Recent evi-
dence has demonstrated that the genetic APOE4 variant is 
more susceptible to gingipain cleavage, leading to further 
impairment of transport of amyloid beta (abstract available 
online at JPAD 6 S24-25: 2019). These observations support 
a potential interplay between the microbiome and genetic 
susceptibility to Alzheimer’s disease.

While most research on the role of the periodontal micro-
flora in Alzheimer’s disease has centered on P. gingivalis, 
several investigators have turned their attention to other 
bacteria associated with the red complex of periodontal 
pathogenic flora, in particular for the role of T. denticola in 
cell culture and animal models. These studies have found 
similar effects on amyloid-beta production and tau phospho-
rylation and cleavage [66]. For the family of herpes viruses 
associated with periodontal disease, several animal models 
and brain organoid studies have demonstrated the effects 
of these viruses on pathological hallmarks of Alzheimer’s 
disease, including activation of microglia, amyloid-beta 
formation, upregulation of inflammation, and decreases in 
cognitive function [67–69]. In addition, similar effects of 
viral exposure in newly developed brain organoids [70] have 
demonstrated increases in beta-amyloid plaque deposition 
and microglial activation with an expression of destructive 
inflammatory mediators to neurons and synapses [71]. The 
potential interplay between herpes viruses and P. gingivalis 
and its role in Alzheimer’s disease pathology is supported by 
studies that show the reactivation of herpes viruses, as well 
as HIV, by exposure of virus-infected cells to P. gingivalis 
in vitro [72, 73].

Moving from Biological Plausibility 
to Causation: The effects of General 
and Targeted Periodontal Therapy 
on Alzheimer’s Disease

Up to this point, this review has focused on the large body 
of evidence that supports a correlation/association of peri-
odontal diseases to Alzheimer’s disease. It supports several 
biological mechanisms for possible causation from cell 
culture studies, mouse studies, and, where possible, human 
studies. Nevertheless, to establish actual causation, there is 
a need to examine the effects of periodontal treatment in 
general on Alzheimer’s disease initiation or progression or 
more focussed therapies against specific periodontal patho-
gens and/or products of the inflammatory and immune host 
response. General approaches to the treatment of periodontal 
disease include mechanical debridement by the practitioner, 
treatment with local and/or systemic antimicrobials where 
indicated, and plaque control instruction, monitoring, and 
reinforcement. Several studies have reported the beneficial 

effects of periodontal treatment in the prevention of demen-
tia [20] or improvements in cognitive function [74, 75]. Such 
studies support the importance of periodontal treatment as 
part of a strategy for reducing the risk for Alzheimer’s dis-
ease and support a causation role [30, 74].

While these limited number of studies on the benefits 
of periodontal treatment support a causation role of peri-
odontitis in Alzheimer’s disease, they do not address the 
central issue of the mutual interactive relationship between 
reduced cognitive and motor function in Alzheimer’s dis-
ease to poorer plaque control and the reemergence of more 
pathogenic flora. To definitively establish direct causation 
from periodontitis to Alzheimer’s disease, long or short-term 
systemic antimicrobial approaches to eliminate pathogens 
such as P. gingivalis, other periodontal pathogens, viruses, 
etc., would significantly strengthen this causation hypoth-
esis. For example, the hypothesis that herpes viruses are a 
key upstream event in the development or progression of 
Alzheimer’s is indirectly supported by observational studies 
of patients who frequently take antiherpetic antivirals such 
as acyclovir and show a lower prevalence and severity of 
cognitive decline [67, 76].

With the large body of evidence supporting a biologi-
cal basis for P. gingivalis and its gingipain enzymes and 
lipopolysaccharides that can translocate from the mouth to 
the brain, it is understandable that several lines of research 
have been proposed to test the role of targeted therapies 
against these two substances. For example, since cathepsin 
B is essential for P. gingivalis lipopolysaccharide mediated 
destructive inflammatory pathways, the development of 
cathepsin B inhibitors may be one approach in treating Alz-
heimer’s disease, as supported by one animal model study 
[77].

While the proposed development of cathepsin B inhibi-
tors may be one effective targeted therapeutic approach for 
inhibiting the potential upstream effects of P. gingivalis in 
Alzheimer’s disease, the development of specific gingi-
pain inhibitors has received considerable attention. Several 
strategies and assessments to target P. gingivalis gingipains 
through either natural molecules, nutrients, or engineered 
molecules have been published, including one previously 
developed synthetic inhibitor [78].

Recently, in silico techniques have been used to design 
a family of small molecule inhibitors for the family of gin-
gipains. These compounds have been shown in neuron cell 
cultures and in wild-type mice infected orally with gingi-
pains to significantly reduce neural toxicity, the release of 
destructive inflammatory mediators, and the formation of 
amyloid plaques and tau tangles [39•]. The development of 
one candidate lysine gingipain inhibitor (COR388-Atuzugin-
stat) has been taken through conception, drug design, ani-
mal testing, and FDA Phase 1 and Phase 2/3 testing through 
the multicenter GAIN Trial (ClinicalTrials.gov identifier: 
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NCT03823404). The results from this study were reported in 
oral presentations at the ClinicalTrials in Alzheimer’s Dis-
ease conference in Philadelphia, Pennsylvania in 2021, the 
Alzheimer’s disease/Parkinson’s disease conference in Bar-
celona, Spain in 2022, the American Association for Dental 
Research meeting in Atlanta in 2022 (presentation available 
at 2022 AADOCR/CADR Annual Meeting Recordings: H. 
Hasturk: Periodontal Disease and Neurodegenerative Dis-
eases), and the 4th international conference on P. gingivalis 
in Louisville, Kentucky in 2022 (abstract available at the 
website for this conference: session V: 2 of 5), with manu-
scripts in preparation.

In brief, this 48-week study enrolled 643 subjects at over 
90 centers in the USA and Europe with mild to moderate 
impairment as the primary inclusion criteria. It allotted sub-
jects 1:1:1 to a daily orally administer 80 mg of COR 388, 
40 mg of COR 388, or a placebo pill. In addition to various 
measures of cognition, several biomarkers and other clinical 
assessments were performed throughout the study. In addi-
tion, and of particular relevance to this review, subgroup 
analyses were performed for those subjects in the entire 
study population with detectable levels of P. gingivalis in 
saliva and subjects with higher antibody titers to P. gingi-
valis in serum and CSF (while the presence and severity 
of periodontal disease were not inclusion criteria for this 
FDA phase 2/3 study, periodontal examinations and supra 
and subgingival plaque collections were performed on a 
subgroup of patients in centers with access to appropriate 
personnel for post hoc analysis).

While the analysis for the total study population of 643 
subjects showed no significant trends in the rate of cognitive 
decline with COR388-Atuzaginstat vs. placebo as measured 
by the gold standard ADAS-Cog11 test, for the subgroup 
of patients with detectable P. Gingivalis at baseline, there 
was a statistically significant slowing of cognitive decline at 
48 weeks (unpublished data). In addition, for subjects with 
higher antibody titers to P. gingivalis in serum or cerebrospi-
nal fluid, there were non-significant trends in the slowing of 
cognitive decline (unpublished data). In addition, in further 
support of P. gingivalis as an upstream event in Alzheimer’s 
disease, for the total study population, there were either sta-
tistically significant correlations or trends between reduc-
tion in P. gingivalis levels in saliva and slowing of clinical 
decline using four standard measures of cognitive function 
(unpublished data).

These results demonstrated proof of concept for the 
potential role of P. gingivalis in particular, as well as oral 
dysbiosis in general, as key upstream events in the initiation 
and progression of Alzheimer’s disease in a large subgroup 
of this study with mild to moderate cognitive impairment. 
However, a safety issue emerged for this COR 388-Atu-
zuginstat compound regarding the percentage of subjects 
that demonstrated initial transient elevations in their liver 

enzyme levels. For this reason, at the time of this writing, 
the COR 388-Atuzuginstat formulation has been put on 
full clinical hold by the Division of Neurology 1 (DN1) of 
the FDA. In response to this safety issue, phase 1 human 
studies for a second candidate lysine gingipain inhibitor 
(COR 588) have been recently completed (ClinicalTrials.
gov identifier: NCT04920903). In these randomized, dou-
ble-blinded, placebo-controlled studies, the candidate COR 
588 molecule demonstrated effective penetration into the 
central nervous system and inhibition of lysine gingipain. 
In addition, with regards to the safety profile for this COR 
588 gingipain inhibitor, there were no significant adverse 
events with regard to both clinical and laboratory measures 
(unpublished data).

Lessons Learned and Future Directions

For the question posed in the title of this review, it is evident 
that pursuing the role of translocation of P. gingivalis and its 
toxic products to the brain may be one of the key upstream 
events in a significant proportion of the Alzheimer’s suscep-
tible population that have detectable levels of this bacteria in 
saliva and/or an elevated immune response to this bacterium. 
Focusing on this pathogen is justified when considering that 
most patients with moderate to severe periodontal disease 
carry P. gingivalis in their subgingival plaque. In addition, 
P. gingivalis may be a keystone pathogen in developing a 
more general dysbiosis of the plaque biofilm [79]. With 
these concepts in mind, the dental practitioner may have a 
pivotal role in identifying periodontal disease and removing 
as much of the biofilm through mechanical means and local 
and systemic antimicrobials. However, there is the probabil-
ity of reestablishment of a P. Gingivalis has driven dysbiotic 
biofilm between dental maintenance visits where there is 
inaccessibility of P. gingivalis to mechanical debridement 
by the dental practitioner and due to the reduced motor and 
cognitive skills of the patient with Alzheimer’s disease to 
remove all accessible biofilms on a daily basis. Therefore, 
directed therapies such as systemic administration of gingi-
pain inhibitors may be one of several approaches to address 
the upstream events and risks of Alzheimer’s disease before 
the clinical appearance of declines in cognitive and motor 
function. Such targeted long-term approaches to P. gingi-
valis and periodontal treatment, in general, can be consid-
ered part of a personalized medicine/personalized dentistry 
approach that would combine targeted approaches to bacte-
ria with drugs to reduce amyloid, reduce the inflammatory 
response in the mouth and the brain, lifestyle modifications, 
and assessment and modification of other risk factors.

The story continues.
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