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Abstract
Purpose of Review  Obesity is a trigger for multiple diseases such as diabetes mellitus, hypertension, and cardiovascular 
diseases. Epidemiological studies have shown that obesity may be a risk factor for periodontal disease. Recently, there have 
been reports of presumed mechanisms of the associations between periodontitis and lipid metabolism or thermogenesis. 
This review aims to discuss the link between periodontal disease and energy regulatory function based on recent findings.
Recent Findings  It has been demonstrated that activation of the C–C motif chemokine ligand/C–C chemokine receptor 7 
pathway in adipose tissue induces inflammation and impairment of lipid metabolism and energy regulation in mice. Porphy-
romonas gingivalis administration has been shown to induce further weight gain and increased adipose tissue in diet-induced 
obese mice. Additionally, it has been reported that Porphyromonas gingivalis–induced endotoxemia potentially affect obesity 
by altering endocrine functions in brown adipose tissue in mice. Several cohort studies have shown that obesity is associated 
with tooth loss 5 years later, and periodontal conditions of obese individuals are significantly worse 2 and 6 months after 
the treatment compared with those of non-obese individuals. It has also been reported that body mass index is positively 
associated with the periodontal inflamed surface area index, a measure of periodontal inflammation. These results suggest 
that not only the enhancement of inflammation due to obesity but also the activation of inflammatory signaling may affect 
energy regulation.
Summary  Loss of adipose tissue homeostasis induces increase and activation of immune cells in adipose tissue, leading to 
impaired immune function in obesity. Various cytokines and chemokines are secreted from obese adipose tissue and promote 
inflammatory signaling. Some of these signaling pathways have been suggested to affect energy regulation. The combination 
of obesity and periodontitis amplifies inflammation to levels that affect the whole body through the adipose tissue. Obesity, 
in turn, accelerates the exacerbation of periodontitis.
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Introduction

Periodontal disease is a chronic inflammatory disease that is 
accompanied by periodontal tissue destruction. Low-grade 
inflammation, such as periodontal disease, affects glucose 
metabolism [1]. In a new classification of periodontal dis-
ease published by the American Academy of Periodontology 

(AAP) and the European Federation of Periodontology 
(EFP) in 2018, diabetes mellitus (DM) was added as a risk 
factor for the progression of periodontal disease [2, 3]. Obe-
sity is an important risk factor for type 2 (T2) DM, which 
accounts for 90% of DM cases, and the number of obese 
individuals is also increasing worldwide. In 2016, 39% 
of adults were overweight (25 kg/m2 ≤ body mass index 
[BMI] < 30 kg/m2) and 13% were obese (BMI ≥ 30 kg/m2) 
[4]. Animals, including humans, can sustain life by storing 
excess energy in the form of fat and using it during starva-
tion. This is an ingenious biological mechanism acquired 
during the course of a long evolution. However, excessive 
energy intake and lack of exercise induce obesity, lead-
ing to health threats. Epidemiological studies have shown 
that obesity may be a risk factor for periodontal disease 
[5]. Recently, associations between periodontitis and lipid 
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metabolism or thermogenesis have been reported [6•]. This 
review aims to discuss the link between periodontal disease 
and energy regulatory function based on recent findings.

Energy Metabolism and Thermogenesis

Fat is not only taken directly from the diet, but also newly 
synthesized mainly in the liver and adipose tissue using 
excess energy. The fat obtained is stored in adipocytes. In 
obesity, adipocytes become hypertrophied, but when they 
can no longer be stored, fat is released as free fatty acid 
(FFA). Elevated blood FFA is taken up by skeletal mus-
cle and liver and accumulates mainly as triglyceride, caus-
ing lipotoxicity [7]. Adipose tissue is roughly classified 
into white adipose tissue (WAT) and brown adipose tissue 
(BAT). White adipocytes store fat, while brown adipocytes 
are thermogenic adipocytes that play a role in maintaining 
body temperature and increasing basal metabolism in cold 
environments. In humans, brown adipocytes are abundant in 
newborns, but decrease after infancy. BAT activity in human 
adults is characterized by inducibility and reversibility [8]. 
In recent years, beige adipocytes that emerge in response to 
certain environmental cues, such as chronic cold exposure, 
have been found in WAT [9]; it has been shown that the tis-
sue called BAT is composed primarily of beige adipocytes 
[10]. Thermogenesis in brown adipocytes and beige adipo-
cytes occurs through the uncoupling of oxidative phospho-
rylation of mitochondrial uncoupling protein 1 (UCP1).

Biogenesis of beige adipocytes is induced in response to 
external stimuli, such as cold exposure, exercise, and treat-
ment with β3-adrenoreceptor (β3-AR) agonists [11]. Adeno-
sine monophosphate-activated protein kinase (AMPK) dele-
tion in adipocytes results in cold intolerance and reduced 
thermogenesis in response to β3-AR stimulation [12]. 
AMPK activity in adipose tissue is diminished in humans 
and rodents with obesity and insulin resistance [13–16]. 
Activation of adipocyte AMPK improves obesity-induced 
insulin resistance [17]. AMPK also regulates mitochondrial 
biogenesis by activating peroxisome proliferator-activated 
receptor γ coactivator 1α (PGC1α) [18]. PGC1α is a critical 
transcriptional activator that regulates the number of genes 
involved in various metabolic pathways, such as fatty acid 
synthesis, oxidation, and gluconeogenesis. PGC1α stimu-
lates UCP1 expression and increases the number of mito-
chondria and mitochondrial oxidative capacity [19, 20]. 
Suppression of adipose PGC1α results in systemic insu-
lin resistance and obesity-associated inflammation [21]. 
Recently, ceramides and their metabolites, sphingolipids, 
have attracted attention as lipotoxic substances. Systemic 
and adipose tissue-specific inhibition of ceramide synthe-
sis induces browning of subcutaneous WAT in obese mice 
[22]. M2 macrophages, known to enhance cold-induced 

thermogenesis [23], were increased in adipose tissue due to 
the inhibition of ceramide synthesis [22].

Inflammation and Energy Metabolism 
in Adipose Tissue

Adipocytes secrete multiple biologically active molecules, 
such as hormones and cytokines (known as adipokines). 
Normal adipocytes secrete anti-inflammatory adipokines to 
attenuate inflammation and play essential roles in the control 
of whole-body metabolism [24, 25]. The pathophysiological 
features of obesity include adipose tissue inflammation and 
infiltration of activated immune cells, such as macrophages 
[24]. Abnormal adipokine secretion is observed in hypertro-
phied adipocytes [24, 25]. Infiltration of immune cells such 
as macrophages is enhanced in obese adipose tissue, and the 
interaction with adipocytes promotes abnormal secretion of 
adipokines [24]. The coronavirus disease 2019 (COVID-19) 
pandemic has provided an opportunity for widespread public 
awareness that infectious diseases are more likely to become 
severe in metabolic disorders such as obesity. In obesity, the 
lack of adipose tissue homeostasis increases and activates 
immune cells in adipose tissue and promotes the produc-
tion of inflammatory cytokines and chemokines [26–29]. It 
has also been suggested that such changes in immune cell 
response impair cell-mediated immune function, leading to 
enhanced activation of the NOD-, LRR-, and pyrin domain-
containing protein 3 (NLRP3) inflammasome and increased 
susceptibility to infection [30].

Intake of a high-fat diet (HFD) changes the gut microbi-
ota, which induces endotoxemia followed by chronic inflam-
mation in various tissues, including adipose tissue [31–33]. 
Changes in the composition and number of gut microbiota 
lead to an increase in toll-like receptor 4 (TLR4) ligands that 
flow into the liver via the portal vein [34], which has been 
suggested to be relevant to multiple diseases such as obesity, 
cardiovascular disease, inflammatory disease, and diabetes 
[32]. We hypothesized that lipopolysaccharide (LPS) from 
the gut microbiota activates monocytes in the portal vein and 
accumulates in the adipose tissue. A comprehensive analysis 
of the gene expression in adipocytes co-cultured with mac-
rophages stimulated with low concentrations of LPS was 
performed to examine the factors involved in chronic inflam-
mation of adipose tissue. As a result, it was observed that 
co-cultured adipocytes promoted the expression of genes 
such as LPS-binding protein (LBP) and CD14, which are 
required for the action of LPS [35]. In the culture medium of 
the co-culture system, a marked increase in the secretion of 
proteins such as LBP, soluble CD14, C–C motif chemokine 
ligand 5 (CCL5), and serum amyloid A (SAA) was observed 
compared with those of adipocytes and macrophages indi-
vidually cultured or without LPS stimulation. In addition, 
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the amount of interleukin 6 (IL6) produced from adipocytes 
increased significantly via macrophage-derived tumor necro-
sis factorα (TNFα) [36, 37], suggesting the induction of 
acute phase proteins such as C-reactive protein (CRP) and 
SAA [38]. SAA induces IL6 production in dendritic cells 
and promotes T helper 17 (Th17) cell differentiation [39]. 
Th17 cells secrete inflammatory cytokines, such as IL17, 
and have been suggested to be involved in periodontal dis-
ease [40, 41].

Based on the results of the adipocyte-macrophage co-
culture system, it has been suggested that IL17 promotes 
Th17 cell infiltration through increased CCL20 production 
in adipose tissue in a chronically inflamed state, thereby 
exacerbating inflammation [42]. A comprehensive analysis 
of the gene expression in adipocytes co-cultured with mac-
rophages showed a marked increase in gene expression of 
many CC chemokines, such as monocyte chemoattractant 
protein (MCP1), CCL5, and CXC chemokines, in adipo-
cytes. Among them, CCL19 contributes to the attraction 
of dendritic cells and T cells. Serum CCL19 levels were 
markedly increased in both hereditary (ob/ob) and diet-
induced obese mice. Therefore, we investigated the effects 
on inflammation and metabolism in mice lacking the CCL19 
receptor, CC chemokine receptor 7 (CCR7) gene. Compared 
with wild-type mice, Ccr7−/− mice showed an increase in 
UCP1 expression in BAT, high rectal temperature during 

cold stimulation, and a significant increase in thermogen-
esis. In addition, they were resistant to HFD-induced obe-
sity, adipose tissue and liver inflammation, fatty liver, and 
dyslipidemia, and insulin response and glucose tolerance 
were maintained normally [43]. Subsequently, for further 
investigation of the effects of CCL19/CCR7 axis, adipocyte-
specific Ccl19 knock-in (KI) mice were generated. Ccl19 
KI mice demonstrated that activation of the CCL19/CCR7 
pathway in adipose tissue induced inflammation and that 
adipocyte CCL19 inhibited AMPKα by activating extra-
cellular signal-regulated kinase 1/2 (ERK1/2), resulting in 
impaired lipid metabolism and energy regulation (Fig. 1). In 
addition, a 40% HFD enhanced these pathological changes 
and induced insulin resistance and weight gain [44•].

López-Cotarelo et al. reported that MEK1/2/ERK1/2 
signaling induced by CCR7 ligands had an inhibitory effect 
on AMPK activity in human mature dendritic cells. In their 
experiments, both CCL19 and CCL21 were used as CCR7 
ligands [45]. Our results of a comprehensive analysis of the 
gene expression in adipocytes co-cultured with macrophages 
showed a marked increase in Ccl19 gene, but not in Ccl21 
gene. The expression level of Ccl19 was one of the highest of 
the expression of all chemokines produced from adipocytes. 
Epidemiological studies have shown that serum CCL19 lev-
els are elevated in individuals with obesity [46]. Further-
more, it has also been reported that adipose tissue CCL19 

Fig. 1   Possible mechanisms of influences of the CCL19/CCR7 path-
way in obese adipose tissue. Activation of the CCL19/CCR7 pathway 
induces inflammation and that adipocyte CCL19 inhibits AMPKα by 

activating ERK1/2, resulting in impaired lipid metabolism and energy 
regulation. The enhancement of these pathological changes induces 
insulin resistance
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expression correlates with BMI, HbA1c, CRP, homeostasis 
model assessment of insulin resistance (HOMA-IR), IL12, 
and CCL5 [47]. A previous report exists regarding the down-
regulation of AMPKα through the activation of ERK1/2 in 
muscle cells. Hwang et al. demonstrated that endoplasmic 
reticulum stress induced by thapsigargin and tunicamycin 
increased the phosphorylation of ERK1/2 and suppressed 
AMPKα activation in muscle cells [48]. Several publica-
tions have also shown that ERK1/2 activation is promoted 
in adipose tissues of humans and mouse models with obesity 
and diabetes and in 3T3-L1 adipocytes treated with TNFα 
or insulin [49–51]. However, the relationship between ERK 
and AMPK was not examined in these studies.

As shown in these results, various cytokines and 
chemokines are secreted from obese adipose tissue, pro-
moting inflammatory signaling. Some of these signaling 
pathways have been suggested to affect energy regulation.

Association of Periodontal inflammation 
and Obesity

In periodontal disease, fimbriae, endotoxin, and proteases, 
which are the main virulence factors of periodontal patho-
gens, act on monocytes, macrophages, and gingival fibro-
blasts in the periodontal tissue. These cells induce an inflam-
matory response in the periodontal tissue via inflammatory 
mediators, such as IL1β, TNFα, prostaglandin E2 (PGE2), 
and matrix metalloproteinases (MMPs), and tissue destruc-
tion progresses. This chronic periodontal inflammatory 
reaction leads to leakage of host- and microbial-derived 
factors into the bloodstream. Once in the systemic circula-
tion, these factors could contribute to the pathophysiology of 
systemic diseases, either directly or indirectly [52]. Multiple 
studies have shown the presence of periodontal bacteria in 
atherosclerotic coronary arteries [53–55]. Non-hematoge-
nous dissemination of periodontal bacteria has also been 
suggested. Swallowed periodontal bacteria may translocate 
via the oro-digestive route and colonize ectopically in the 
gut. Periodontal bacteria have been detected in the gut of 
patients with inflammatory bowel disease [56, 57]. Although 
the presence of periodontal bacteria in extra-oral tissues may 
be transient, the release of virulence factors like endotoxin 
and toxic proteases [58, 59], or inflammatory mediators, can 
be important, given the chronicity of periodontitis and the 
frequency of bacteremia. In fact, serum levels of TNFα are 
elevated in patients with periodontitis [60, 61].

Our previous study demonstrated that administration of 
low-concentration LPS (1 ng/mL/g body weight) signifi-
cantly upregulated the serum levels of LBP, CCL5, and SAA 
in hereditary obese (ob/ob) mice and diet-induced obese 
mice compared with those in the control group (ob/ + mice 
and normal diet-fed mice) [38]. This result suggests that 

local inflammation, such as periodontitis, is more likely to 
have a systemic effect in obese patients than in non-obese 
patients. As mentioned earlier, immune cells are activated 
in the obese adipose tissue. Also, some of the immune cells 
activated by bacterial products or host inflammatory factors 
may migrate to the adipose tissue via the circulation. In the 
combination of obesity and periodontitis, local inflamma-
tion is inferred to be amplified to levels that affect the whole 
body through adipose tissue. Thus, obesity may exacerbate 
periodontal disease.

Several recent animal model studies have demonstrated 
the relationship between the exacerbation of periodontitis 
and obesity. Saturated fatty acids induce inflammation and 
promote alveolar bone resorption in mice [62, 63]. In obese 
rats, it has been shown that protein kinase C (PKC) acti-
vation and oxidative stress may induce insulin resistance 
in gingiva leading to periodontal disease progression [64]. 
Furthermore, caloric restriction has been reported to prevent 
alveolar bone loss in experimental periodontitis in obese 
rats [65]. Sato et al. reported that HFD-induced changes in 
the gut microbiota exacerbated alveolar bone resorption via 
uric acid elevation [66]. Other researchers have reported that 
Porphyromonas gingivalis (P. gingivalis) administration 
induced further weight gain and increased adipose tissue in 
diet-induced obese mice [68]. Furthermore, it is also indi-
cated the possibility that P. gingivalis–induced endotoxemia 
potentially affects obesity by altering endocrine functions in 
BAT [6•]. These results suggest that not only exacerbation 
of inflammation due to obesity but also activation of inflam-
matory signaling may affect energy regulation. It should be 
noted that administration of a single periodontal pathogen 
or endotoxin to animals, as in these animal studies, does 
not exactly reproduce human periodontitis associated with 
multiple pathogens [62, 63]. In addition, care must be taken 
in interpreting the results depending on the method and 
period of administration, strains, and bacterial species [6•, 
66, 69]. Considering that the microbiota changes with oral 
and intravenous administration of P. gingivalis [66, 70, 67•], 
the indirect effect of P. gingivalis can also be said to be large. 
Further clarifying the mechanism of the relation between 
periodontal disease and obesity may reveal new and effective 
treatment strategies that will contribute to the improvement 
of periodontitis and obesity-related diseases in the future.

Clinical Studies on the Association 
of Periodontitis and Obesity

Several cohort and intervention studies related to obesity and 
periodontitis have been conducted. Recent cohort studies 
indicated that obesity is a risk factor for tooth loss [71] and 
that obesity is associated with worse mean probing pocket 
depth following periodontal therapy [72•]. Several reports 
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have investigated the association between the degree of 
obesity and systemic effects of periodontal inflammation. 
Munenaga et al. reported that Japanese patients with T2DM 
accompanied by severe periodontal disease and BMI around 
25 kg/m2 showed slightly increased systemic inflammation 
as assessed by high-sensitivity (hs)-CRP (hs-CRP levels over 
500 ng/mL). In contrast, subjects with low hs-CRP levels 
(< 500 ng/mL) were characterized by a significantly lower 
BMI (approximately 23 kg/m2) than that in the group with 
hs-CRP levels ≥ 500 ng/mL [73]. Other researchers have 
suggested that periodontal disease has a significant impact 
on systemic inflammation in patients with normal BMI, but 
not in patients with a BMI of around 35 kg/m2 [74]. These 
studies suggest that systemic influences of local inflamma-
tion may be enhanced by mild obesity but largely masked by 
severe obesity. Therefore, it is considered that whether the 
systemic effects due to local inflammation, such as periodon-
tal disease, manifest or not depends on the degree of obesity.

In recent years, clinical studies have been performed 
using the data of periodontal inflamed surface area (PISA), 
which is a measure of the amount of inflamed periodon-
tal tissue. PISA is a quantified value of the surface area of 
the bleeding pocket epithelium [75, 76]. As the correlation 
between PISA and glycated hemoglobin (HbA1c) has been 
reported [76–78], it can be said to be an index for under-
standing the degree of systemic influence due to local peri-
odontal inflammation. Recently, it has been reported that 
BMI is positively associated with PISA [79]. On the other 
hand, Takeda et al. reported that PISA in T2DM patients 
was not related to obesity parameters [77]. However, it is 
necessary to establish a larger control group to evaluate the 
relationship between PISA and obesity. Other researchers 
also reported that although obesity is not an independent 
risk factor for the progression of periodontitis, obesity and 
periodontitis have many common risk factors for each pro-
gression [80]. At present, there is limited clinical evidence 
on the association between periodontal disease and over-
weight/obesity. Further studies are required to clarify this 
association.

Conclusions

Loss of adipose tissue homeostasis induces increase and acti-
vation of immune cells in adipose tissue, leading to impair-
ment of immune function in obesity. Various cytokines and 
chemokines are secreted from obese adipose tissue, promot-
ing inflammatory signaling. Some of these signaling path-
ways may affect energy regulation. The combination of obe-
sity and periodontitis amplifies inflammation to levels that 
affect the whole body through the adipose tissue. Obesity, in 
turn, accelerates the exacerbation of periodontitis.

Further understanding of the link between periodontal 
disease and energy metabolism disorders is expected to lead 
to new and more effective therapeutic strategies for both dis-
eases. Obesity is a risk factor for many diseases, including 
DM, hypertension, and cardiovascular disease. Therefore, 
improving periodontitis and controlling body weight can 
contribute significantly to the maintenance of health and 
future life.
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