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Abstract The restoration of endodontically treated teeth re-
mains a challenge. The success of the final restoration depends
mostly on the structure of the remaining tooth. Although the
materials and procedures available today result in successful
restoration of root-filled teeth via direct (in situ) techniques,
one should first consider the amount of the coronal tooth
structure remaining as well as the functional requirements.
Restoration using direct composite resin is a good treatment
option, but polymerization shrinkage is one of the major lim-
itations of this material. The application of various base ma-
terials under the composite resin is an effective method. Cov-
ering the cusps with the restorative material is another option
to save the remaining tooth structure; however, some materials
may be unsuitable in stress-bearing areas. Materials applied to
the orifice of a root canal also have a major effect on tooth
biomechanics. This article reviews the direct restoration of
endodontically treated teeth and discusses the current mate-
rials and techniques used for this purpose.
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Introduction

The outcome of endodontic treatment is influenced by several
factors, and among these, microbial contamination is one of
the major causes of endodontic failure [1, 2]. Therefore, the
root canal filling must seal the canal walls both apically and
laterally to prevent microorganisms or tissue fluids from en-
tering the canal space.

Leakage into the root canal system may occur via one of
four routes [3]: (1) through the apical foramen, which is be-
tween the root filling material and the root canal wall; (2)
through the apical foramen by infusion into the material; (3)
from outside the tooth through the exposed cementum, acces-
sory canals, secondary canals, or defects in the coating sur-
face; or (4) through the coronal access cavity.

For many years, apical leakage was thought to be the main
cause of endodontic treatment failure. Based on their study
using radioactive isotopes, Marshall and Masseler (1961) [4]
were the first to report the effects of coronal leakage.
Torabinejad et al. (1990) [1] then found bacterial products at
the apex of root-filled tooth after 3 months in the absence of
coronal restoration. In 1995, Ray and Trope [5¢] published an
important study showing a possible relationship between the
quality of coronal restoration and the apical status of endodon-
tically treated teeth. They posited that the quality of the coro-
nal restoration has a greater effect than the quality of endodon-
tic treatment on the periradicular status. According to Gillen
et al. (2013) [6°¢], the data produced by Ray and Trope chal-
lenged the rationale of endodontics and stimulated intense
discussion during the past 15 years. Although they reported
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that the chances for healing of apical periodontitis increase
with both adequate root canal and restorative treatment, more
attention has been paid to coronal leakage as a potential cause
of endodontic failure since the study of Ray and Trope. There-
fore, immediate restoration of endodontically treated teeth is
recommended to prevent coronal leakage upon completion of
root canal treatment [7, 8].

Root-filled teeth may be restored either directly by placing
a restorative material into the tooth or indirectly by fabricating
a composite resin, cast metal, or ceramic restoration. In cases
in which retention is necessary for the final restoration, a post
may be required. Regardless of the technique used, however,
restoring root-filled teeth is a challenge because they are
thought to be weaker and more susceptible to fracture than
vital teeth. Several factors were evaluated as reasons for re-
duced fracture strength, including changes in the mechanical
properties of dentine [9], changes in moisture content [10],
time [11], and reduced levels of proprioception [12]. Howev-
er, Sedgley and Messer (1992) [13] compared the biomechan-
ical properties of endodontically treated teeth with those of
their contralateral vital counterparts and concluded that teeth
do not become more brittle following endodontic treatment.

Endodontic procedures reduce tooth stiffness by only 5 %,
whereas restorative procedures are the greatest contributor to
loss of tooth stiffness [ 14]. Indeed, the resistance of a root-filled
tooth is directly related to the amount of tooth structure remain-
ing [13, 15, 16]. Furthermore, tissue loss at either the radicular
or coronal level influences the strain, failure mode, and stress
distribution in endodontically treated teeth [17], resulting in
significant biomechanical changes [14, 18, 19]. Even minimal
structural loss, such as an I-shaped fissure [20], may change the
stress dynamics. Figure 1 shows a three-dimensional (3D) fi-
nite elemental analysis (FEA) model of a premolar tooth.
When an I-shaped fissure is added to the model (Fig. 1b) after
loading, the stress moves forward toward the pulp and to the
deeper parts of the tooth model. Based on this significant
change in the integrity of the tooth with this slight anatomic
alteration, clinicians can predict additional problems related to
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Fig. 1 a Sound mandibular premolar tooth model showing the stress
distribution when loaded from the occlusal surface. The scale on the
right shows the amount of stress in megapascals. Dark blue to green
represents higher to lower stress. b Mandibular premolar tooth model
with an I-type fissure. The fissure moves the stress forward to the

greater losses in tooth structure. Figure 1c shows the same
model after a fissure sealant is applied, with the tooth regaining
almost all of its ability to respond to occlusal loading. From a
biomechanical perspective, this result indicates that restoration
helps a tooth regain its initial response under loading.

During all phases of endodontic treatment, including the
final restoration, it should be noted that the more coronal den-
tin that remains, the greater the chances for the tooth’s survival
[21, 22]. To provide the most appropriate and long-lasting
restoration, the clinician should pay close attention to the
amount of coronal tooth structure remaining as well as the
functional requirements [23].

Direct Restoration of Endodontically Treated Teeth

Endodontically treated teeth have reduced coronal and radic-
ular tissue as a result of dental caries [14], operative proce-
dures [24], intra-radicular procedures [25], and previous res-
torations [26], and restorative procedures that require exten-
sive reduction of the tooth lead to further tissue loss [24, 27].
Cavity preparations lead to dental tissue loss, reducing the
fracture strength of the remaining dental structure [28]. An
occlusal cavity preparation reduces tooth stiffness by 14 to
44 % and a mesio-occluso-distal (MOD) one by 20 to 63 %
[28]. Moreover, the presence of an endodontic access cavity
further weakens a tooth [14, 24]. Because of such a limited
amount of residual tooth structure, planning a restoration is
challenging. Preserving a sound tooth structure should be the
dentist’s main goal, and a conservative approach should be
taken to protect the remaining tissue.

Glass Ionomer Cement

Glass ionomer cement (GIC) has a long history of use in den-
tistry. Currently, several commercial hand-mixed and encapsu-
lated GICs are available for various clinical purposes. Al-
though the earliest forms could form stable physicochemical
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deepest part of the crown and causes a high-stress accumulation (arrow)
just near the pulp. ¢ Mandibular premolar tooth model with an I-type
fissure restored with sealant. Because of this restoration, the tooth
regained almost all of its response to occlusal loading
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bonds to both enamel and dentin [29], they were rather brittle
and ill-suited as a permanent filling material in the posterior
region [30, 31]. Later, resin-modified GICs (RMGICs) and
polyacid-modified composite resins (compomers) with better
mechanical properties were developed. Compared with tradi-
tional GICs, RMGICs are more fracture resistant [32]. The
resin component of the material makes it more viscoelastic,
allowing it to relax under stress when used as a liner or base
material under composite resin [33]. Although RMGICs and
compomers both are appropriate materials for restoring prima-
ry teeth [34], they are less resistant than composites to crack
propagation [35]; therefore, they should be used only in per-
manent teeth with minimal structure loss. The use of com-
pomers in stress-bearing areas is not recommended [35], and
these materials may not be appropriate for the final restoration
of endodontically treated permanent teeth.

The recently introduced condensable GIC and a novel
nano-filled resin coating material (Equia Restorative System;
GC America, Alsip, IL) are reported to perform similarly to a
microfilled hybrid composite in class 1 and 2 cavities at the
end of 4 years [36]. However, no published data are available
on the performance of these improved restorative materials in
endodontically treated teeth; therefore, they should be used
with caution.

Dental Amalgam

Bonded amalgam restorations show a generally improved ad-
aptation [37]. However, amalgam is not an appropriate mate-
rial for the final restoration of root-filled teeth, because it does
not adhere to tooth structures [38]. Moreover, it must be
retained in cavity preparations by retentive features that often
require removal of a sound tooth structure [39]. Amalgam
restorations have a propensity to deform under compressive
loads [40] and have a higher thermal expansion coefficient
compared with teeth (8—11 ppm/°C) [41]. Restoration with
amalgam after root canal treatment may result in the fracture
of the root-filled tooth. However, a previous study reported
that amalgam applied under a composite increased the resis-
tance of root-filled premolars, unlike when teeth were restored
with amalgam alone [42]. Because amalgam has an elastic
modulus similar to that of resin composite and dentin [18],
an amalgam—composite combination may be used in extended
or deep cavities [43].

Composite Resin Materials

Restoration using direct composite resin is an excellent treat-
ment option to conserve more tooth structure in root-filled teeth
[44, 45]. Direct restoration with composite resin provides more
resistance against tooth fracture than amalgam, as well as pro-
viding intra-coronal reinforcement [18]. The results of a retro-
spective study confirm that cavities with up to three surfaces
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can be restored successfully with composite restoration using
adhesive techniques [46]. However, the major shortcomings of
composite resins, such as fracture within the body, margins of
restoration, and polymerization shrinkage, remain a concern for
clinicians [44, 47]. Polymerization shrinkage generates stress at
the tooth—restoration interface, and debonding occurs when the
stress becomes greater than the bond’s strength [47]. Cuspal
deflection [48] and the risk of tooth fracture also increase [49].
Endodontic access and loss of the axial walls double the
amount of cuspal displacement and strain [50]. Therefore, at-
tempts to reduce stress in the remaining tooth structure and at
the interfaces are crucial in endodontically treated teeth under-
going direct restoration with resin composite.

In the laboratory, many strategies have been developed to
reduce stress, such as increasing the inorganic filler content,
increasing the molecular weight per reactive group [51, 52],
and developing composites with completely new resin matri-
ces that do not shrink [53]. The clinical strategies suggested
for minimizing the shrinkage stress of composites include
incremental filling, soft-cure or pulse-delay cure methods,
and use of a low-modulus intermediate liner material to absorb
shrinkage stress [52]. The incremental filling technique has
been recommended broadly for direct resin composite resto-
ration, as bulk filling produces sudden shrinkage, does not
allow the flow of composite to partially dissipate the shrinkage
stress [54], and causes more cusp deflection compared with
incremental layering techniques [48, 54].

The resin—dentin bonding area of composite resins has
enough strain capacity to relieve stress in the resin materials
[55]. The elasticity of the hybrid layer has a lower Young
modulus than that of the restorative resin; therefore, this elas-
tic area acts as an inherent buffer and compensates for the
polymerization contraction of the restorative resin [56, 57].
FEA studies have shown the effect of the hybrid layer and
its thickness on stress distribution and intensity in cervical
restorations [58, 59] and its stress-relieving effect on premo-
lars restored with direct composite resin [60]. Therefore, the
stresses at the remaining tooth structure can be modified even
by creating a hybrid layer through an adhesive resin under
composite restoration. Use of an intermediate resin (e.g., a
cavity liner or the base of low-viscosity/low-elastic modulus
materials such as RMGICs, filled adhesives, and flowable
composites) between the bonding agent and composite resin
to act as an “elastic buffer” also has been suggested to reduce
stress in the prepared cavities [61, 62]. However, conflicting
results have been published on this topic. Some authors re-
ported advantages with regard to marginal leakage, fracture
strength, or cuspal deflection from an elastic lining using low—
elastic modulus materials [52, 62], whereas others reported
disadvantages [63] or could find no differences [49]. In a
recent systematic review, Nguyen et al. (2014) [33] reported
that a flowable resin composite lining is no better than resin
composite restorations with no lining.
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Fiber-Reinforced Composite Materials

In 1999, Vallittu et al. [64] published a study on the flexural
properties of acrylic resin polymers reinforced with unidirec-
tional and woven glass fibers, reporting that the strain at the
fracture of the material could be modified. Belli et al. (2005,
2006) [65, 66] evaluated fiber-reinforced composite resin res-
torations and concluded that using polyethylene fiber under
composite restorations in root-filled teeth with MOD prepara-
tions significantly increases fracture strength, reduces leakage
in class 2 cavities [67], and strengthens microtensile bonding
to dentin [68]. Furthermore, fiber reinforcement between the
restorative resin and dentin changes the fracture line, causes
repairable fractures, saving the remaining tooth structure [65,
66, 68], and increases the restorability of methacrylate-based
composite resin-restored teeth after failure [69]. Although
fiber-reinforced composite restorations are prone to aging
due to exposure to the oral environment and the mechanical
properties may deteriorate over time [70], one of the great
benefits of this technology is the possibility of extending func-
tional survival by repairing restorations in the oral cavity [71].
Deep endodontic access preparation in the MOD cavity has
been found to increase cuspal deflection significantly [50].
Akman et al. (2011) [72] reported that fiber-reinforced com-
posite restorations decrease cusp movement in molar teeth
with MOD and endodontic access cavities. As a result, fiber
reinforcement of composite resin restorations with polyethyl-
ene or glass fiber material is a well-accepted method for saving
the remaining tooth structure while performing direct compos-
ite restorations in root-filled teeth.

Several studies suggest that cusp coverage along with com-
posite resin materials minimizes tooth fracture and increases
the durability of restorations [18, 73—75]. Others, however,
indicate that cusp capping with the adhesive technique is not
necessary in terms of cuspal fracture resistance in normal oc-
clusion, especially in root-filled premolars [76—78] or if a fiber
post is included [77]. A recent FEA study showed that palatal
cusp reduction improves the biomechanics of a tooth restora-
tion complex, consequently providing long-lasting clinical re-
sults [79]. Plotino et al. (2008) [44] restored endodontically
treated molars to their original contours using direct or indirect
composite resin and found no difference between the two tech-
niques. According to Torabzadeh et al. (2013) [75], the success
of direct restoration depends on the material used. Compres-
sive loading during the fracture resistance test may be distrib-
uted throughout the restored tooth by different materials. Thus,
Shafiei et al. (2014) [80] suggested covering the cusps with an
amalgam and composite resin combination and found no
difference between the group receiving direct composite
coverage and the one undergoing amalgam-based compo-
site restoration. Nevertheless, direct cusp coverage with
composite restoration appears to be a reliable method in
extensive cavities [44, 73].

Silorane-Based Composite Materials

Silorane-based composites have been marketed as an alterna-
tive to traditional methacrylate monomer-based composite resin
restoratives. These hybrid systems contain both silorane- and
oxirane-based monomers and have two main advantages: low
polymerization shrinkage and increased hydrophobicity [53,
81]. Although Lien and Vandewalle (2010) [82] found the mi-
crohardness and compressive strength of the material to be low,
silorane-based composites significantly increase the fracture
strength of endodontically treated premolars [69] and decrease
total cusp displacement in MOD cavities [81]. The addition of
fiber had no effect on the strength of the restoration, whereas
the use of a nano-ionomer core under the silorane-based resto-
ration showed an advantage in terms of fracture strength [69].

Bulk-Fill Flowable Base Materials

In an effort to simplify clinical procedures, simplified dental
adhesives [83], bulk-fill flowable base materials [84], and
bulk-fill resin restorative materials [85] have been developed.
Based on the results of randomized controlled studies, these
low- and high-viscosity (sculptable) materials have proved
successful [86, 87]; however, information regarding their per-
formance in restoring root-filled teeth is lacking. One of these
products, namely stress-decreasing material (SureFil SDR
Flow; Dentsply, York, PA), was developed in an attempt to
modify the dynamics of the polymerization reaction by
slowing the polymerization rate. SDR includes a monomer
that has a photoactive group in a urethane-based methacrylate
resin [88]. In cavities lined with SDR, cuspal deflection is
reduced significantly [84]. SDR results in less polymerization
shrinkage compared with Filtek Supreme Flow (3M, St. Paul,
MN), Esthet X Flow (Dentsply), nano-hybrid and
microhybrid composites, and silorane-based composites [89].

Short-Fiber-Reinforced Composite Resin Materials

Another base filling material option for restoring nonvital pos-
terior teeth in high-stress-bearing areas is the short-fiber-
reinforced composite [90, 91]. According to Garoushi et al.
[91], randomly oriented E-glass fibers significantly affect the
mechanical properties of the material and serve as a “crack-
stopper” layer. The load-bearing capacity may be increased by
adding a continuous bidirectional or short random fiber-
reinforced composite substructure under the particulate filler
composite resin [90]. In a 1-year clinical study [91], restora-
tions combining the base of a short-fiber-reinforced composite
resin as the substructure and the surface layer of a hybrid
composite resin performed will in high-load-bearing areas.
Yasa etal. (2015) [92] compared nano-hybrid composite resin,
bulk-fill flowable composite, and short-fiber-reinforced com-
posite in the absence/presence of retention slots. According to
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their study results, a short-fiber-reinforced composite with re-
tentive slots may offer an alternative for preventing cuspal
fracture of endodontically treated teeth with MOD cavities.

Intra-Coronal Barrier Materials

Intra-coronal barriers generally are used if immediate restora-
tion of the tooth is not possible. Intra-orifice barriers strengthen
the fracture resistance of endodontically treated teeth compared
with root-filled teeth without them [93]. GICs, fissure sealants,
conventional and flowable composite resins, and mineral trio-
xide aggregate (MTA) may be used for this purpose [94]. Tay
and Pashley (2007) [95] reviewed the techniques for creating
monoblock units in the endodontic field. Although the creation
of these monoblocks in endodontically treated teeth seems
practically difficult, several researchers reported the positive
effects of monoblock units in terms of stress distribution and
fracture strength resistance [96]. The elastic modulus of dentin
is about 18.6 GPa [95]; based on the elastic modulus of portland
cement, the elastic modulus of MTA is reported to be similar to
that of dentin [95, 96]. Therefore, replacing the missing dentin
structure with MTA appears to be an effective way to create
successful postendodontic restorations. The reinforcing effect
of MTA in immature teeth has been well studied [97]; however,
its effects when used at the coronal surface under the permanent
direct filling have not been studied yet.

A new calcium-silicate restorative material was produced
recently under the trademark Biodentine (Septodont, Lancas-
ter, PA). The manufacturer introduced this product not only as
an endodontic repair material but also as a replacement for
coronal dentin. Its adhesion to the dentin surface was found
to be superior to that of both GIC and MTA [98]. When used
as a dentin substitute material in “open sandwich” class II
restorations, Biodentine performed similarly to GIC [99]. Al-
though this material was found to be weak in its early phases
[100], Biodentine seems promising as a coronal restorative
material.

Conclusions

Currently, coronal leakage is thought to be as important as
apical leakage and has a significant effect on the outcome of
endodontic treatment. Therefore, immediate restoration after
root canal treatment is recommended. Tissue loss at either the
radicular or coronal level influences the strain, failure mode,
and stress distribution in endodontically treated teeth; there-
fore, it is important to consider the structure of the remaining
tooth when selecting the material and technique. Amalgam
must be retained in cavity preparations by retentive features
that usually require the removal of additional tooth structure.
Moreover, it does not adhere to tooth structures and therefore
cannot be considered an appropriate material for the final
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restoration of root-filled teeth. The amalgam—composite com-
bination, however, may be used in extended or deep cavities.

Direct composite restoration of root-filled teeth is still the
most frequently used technique. To overcome the problems
associated with shrinkage stress of the material, fiber rein-
forcement techniques may be applied or low-viscosity mate-
rials may be used as a liner.

A paradox exists among researchers regarding the coverage
of cusps with composite resin. Overall, direct cusp coverage
with composite restoration appears to be a reliable method for
treating extensive cavities. Cusp deflection may be a great
problem in endodontically treated premolar teeth and may
cause unrestorable fractures. Silorane-based composites may
be used to decrease the total cusp displacement in premolars
with MOD cavities. Low- and high-viscosity bulk-fill com-
posite resins also may be used safely in composite resin res-
toration. Restorations combining the base of a short-fiber-
reinforced composite resin as a substructure and the surface
layer of a hybrid composite resin show promise in terms of
their performance in high-load-bearing areas.

Recent improvements in glass ionomer materials have led to
successful restorations, although improved GICs still should be
used with caution. RMGICs and compomers are less resistant
than composites to crack propagation; therefore, they should be
used only in permanent teeth with minimal structure loss. The
use of compomers in stress-bearing areas is not recommended.

The presence of intra-orifice barriers strengthens the fracture
resistance of endodontically treated teeth. Although there are
few studies on the effect of MTA and Biodentine on the fracture
strength of root-filled teeth when used as coronal restorative
materials, Biodentine appears promising in this regard.
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