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Abstract
Purpose of Review  Clinical trial endpoints are often bounded outcome scores (BOS), which are variables having limited 
values within finite intervals. BOS are conceptually ordered categorical variables, often with a large number of possible 
values (> 10). Although they are commonly analyzed as continuous data, their distributions are often skewed, posing chal-
lenges for analysis. Three major approaches, namely data transformation, zero-inflated, and latent-variable have been used 
in practice with varying degrees of success. Additionally, predicting derived endpoints, such as achieving specific levels 
of improvement from baseline, is often crucial. Choosing an appropriate analysis method is a complex and often counter-
intuitive task, which is the primary focus of this review.
Recent Findings  One key factor that distinguishes BOS data analysis methods is the treatment of the data as either continu-
ous or categorical. Formal likelihood-based method comparisons should only be conducted when the data are treated as the 
same type. Categorical analysis methods have the advantage of naturally aligning with BOS data. Nevertheless, the specific 
methods may differ in their effectiveness in handling skewed data. The latent variable categorical analysis methods, particu-
larly those utilizing beta distributions, have demonstrated the ability to describe both the BOS data and the derived endpoints.
Summary  When selecting analysis methods, it is crucial to consider the analysis objective, which may involve predicting 
data within its natural range, addressing skewed data, and predicting derived endpoints. The methods using the latent vari-
able approach, especially the latent-beta method, may hold the most promise.
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Introduction

Patient disease status is commonly assessed using abstract 
scores that represent a discrete set of values within a finite 
range. This type of data is referred to as "bounded outcome 
scores" (BOS) [1]. Examples include the widely known 
Child–Pugh score [2] and the Clinical Dementia Rating Sum 
of Boxes (CDR-SB), a composite score ranging from 0 to 18 
based on domains of cognition and function [3]. Another fre-
quently analyzed example in pharmacometric literature is the 
Psoriasis Area and Severity Index (PASI), a composite score 
ranging from 0 to 72, with 0.1 increments [4]. BOS, or their 
derived endpoints such as PASI 75/90/100, which indicate 
75, 90, or 100% improvement from baseline PASI scores, 
respectively, are often used as endpoints in clinical trials.

Analyzing BOS data presents a unique challenge, as com-
mon practices often treat the data as different types, even 
within the same analysis. While BOS data are conceptually 
ordered categorical, they are often analyzed as continuous 
variables due to the large number of possible values (> 10). 
This approach can result in model predictions outside the 
natural range of BOS data and may introduce biases, as BOS 
data distributions often exhibit non-standard shapes such as 
J- or U-shaped, which violate the assumption of symmetry 
commonly associated with the normal distribution [1]. For 
longitudinal clinical trial data, even if the baseline distri-
bution is considered symmetric, data distributions at later 
visits may become progressively more skewed as disease 
conditions improve over time with effective treatments [4]. 
In practice, BOS data typically reach the lower boundary 
but may occasionally reach the upper boundary. Describing 
BOS data accurately, especially for derived endpoints, can 
be challenging.

The key to analyzing BOS data lies in selecting an appro-
priate probability distribution for the data, potentially with 

 *	 Chuanpu Hu 
	 chuanpu.hu@bms.com

1	 Bristol Myers Squibb, 3551 Lawrenceville Rd, 
Lawrence Township, NJ 08540, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s40495-024-00372-0&domain=pdf


	 Current Pharmacology Reports

transformations. Over the past two decades, various analy-
sis methods have emerged, and a review of methods used 
in pharmacometric applications was published in 2019 [5]. 
Since then, additional applications have been reported in 
pharmacometric literature [3, 6–9]. A methodological elabo-
ration has recently appeared [10].

The technical complexity, often arising from simultane-
ously treating BOS data as both continuous and categorical, 
can be daunting for non-statisticians, leading to confusions 
outside of statistical literature. In practice, the choice of 
analysis method often depends more on familiarity rather 
than appropriateness. This manuscript aims to clarify the 
properties of analysis methods and provide an updated sum-
mary based on the review from [5].

Analysis Approaches and Methods

To streamline the notations, it is assumed without loss of gen-
erality that, the original BOS variable Y has been standardized 
using a linear transformation onto the closed interval [0, 1]. As 
a result, Y takes values in the form of k/m, where k = 0, 1, …, 
m. This will result in slight differences in notation compared 
to the original method descriptions. A summary of the main 
BOS analysis methods used in pharmacometric applications 
is provided below, categorized according to their approaches.

Data Transformation

This approach may be the earliest used, with origin from 
psychological literature [11]. It may be motivated by the 
common perception that the main challenge in analysis 
arises from the boundary data, as they hamper the use of 
commonly employed distributions on finite intervals, such 
as the beta distributions. This led to the idea of transforming 
the boundary data (0 or 1) to values within the interval (0, 
1) using a linear transformation, such as Y* = Y(1 − δ) + δ/2 
with a small correction factor δ, e.g., 0.01. Modeling the 
transformed data Y* led to the two methods below.

Beta‑Regression

This method models Y* using a beta distribution with 
density

where α, β > 0, and Γ denotes the gamma function. Note that 
a useful mean-precision parameterization is given by:

where μ is the mean, and ϕ is the precision parameter. Beta 
distributions can describe a variety of data skewness [12].

(1)f(y) = Γ(� + �)∕[Γ(�)Γ(�)]y�−1(1 − y)�−1

(2)� = ��, � = (1 − �)�

Logit‑Normal‑Regression

Similarly intuitive as the beta-regression method, this method 
first applies the logit function logit(x) ≡ log[x/(1-x)] to further 
transform the data to (-∞, ∞), and then model it with a nor-
mal distribution. Specifically, the model is logit(Y*) ~ N(p, σ2), 
where p is the model predictor on the transformed scale, and 
σ2 is the variance [3].

Despite the intuitive appeal, the data transformation 
approach has an under-realized ill-behavior at the boundary, 
namely that the boundary data can become arbitrarily influen-
tial as δ → 0 [4]. Therefore the approach lacks statistical rigor 
[13]. In practice, its behavior will depend on the value of δ 
chosen by the analyst, which is difficult to determine a priori. 
This approach will not be discussed further in this manuscript.

Zero‑Inflated

This approach treats data inside the boundary as continuous 
and the boundary data as categorical, by modeling not only the 
values within the boundary but also the probability of achiev-
ing the boundary. It has long been used in statistical literature 
[14]. Two methods applying this approach in pharmacometrics 
are given below.

Zero‑Inflated‑Beta

Recently, a zero-inflated beta distribution was applied to 
model the transformed PASI scores Y = PASI/72, such that 
the probability of observing Y = y is modeled as [8]:

where p0 is the probability at the boundary, and f(y) is given by 
Eq. 1–2. To allow dependence between p0 and f(y), p0 was fur-
ther modeled as p0 = logit(ξ1—ξ2μ), where μ is given in Eq. 2, 
and ξ1 and ξ2 are parameters to be estimated. Limited visual 
predictive checks (VPCs) [15] were also conducted for PASI 
scores as well as the derived endpoints of PASI 5075/90/100.

Censoring

This method is motivated from that of analyzing concentra-
tion data below the quantification limit [9, 16], and may be 
viewed as a parsimonious sub-category in the zero-inflated 
approach. It treats the boundary data as outside but censored 
at the boundary, and the data within the boundary as con-
tinuous. The Aranda-Ordaz link function, defined by

(3)
{

p0, if y = 0
(

1 − p0
)

f (y), if 0 < y < 1
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where λ is a parameter to be estimated, was used to accom-
modate data skewness. A general nonlinear mixed effect 
model X = p + gε was used where p is the model predictor, 
g is a residual error standard deviation function, and ε is a 
normally distributed residual error. The conditional likeli-
hood of an observation y on the continuous scale is given by

where ϕ is the normal density, Φ is the cumulative dis-
tribution function of ϕ, I is the indicator function, J(y, 
λ) = ∂h(y)/∂y is the Jacobian, and xL = h(0) and xU = h(1) are 
the transformed boundary values.

These two methods are capable to described skewed 
data distributions on the continuous scale, as suitable trans-
formations may be found by visually inspecting observed 
data distributions. A drawback is that predictions for the 
in-boundary data will fall outside the original categories. 
While the predictions could be rounded to the nearest BOS 
data category [13], this would, in principle, result in a loss 
of information and could adversely affect analysis precision.

Latent Variable

This approach treats BOS data as ordered categorical, which 
aligns with the data nature. The common statistical analysis 
methods of logistic and probit regressions can be interpreted 
as that there exists an underlying latent variable which [17], 
when crossing certain thresholds, caused the observed data 
to fall in the corresponding categories [18]. In the notation of 
this manuscript, the latent variable model may be written as:

where U is the latent variable on the interval (0,1), t is a pos-
sible transform function and {ak} are the thresholds. Select-
ing different distributions for U, along with t and {ak}, lead 
to different methods.

Ordered Categorical

The familiar logistic regression model is equivalent to setting 
t in Eq. 6 as the logit function, a0 = -∞, am+1 = ∞, and esti-
mate the remaining {ak} as parameters which correspond to 
the intercepts. Similarly, setting t as Φ−1, the inverse cumu-
lative normal distribution function, leads to probit regres-
sion. In the past decade, it has been realized that logistic and 
probit regressions remain effective for analyzing BOS data 
with sufficient data sizes in all categories [19], which may 
occur with moderate e.g., [10–20] number of categories [13].

Larger number of categories can still hamper the analy-
sis. Along with selecting t in Eq. 6, fixing {ak} has led to 
additional methods given below.

(5)
[
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(6)
Y = k∕m if and only if ak ≤ t(U) < ak+1, for k = 0,… , m

Logit/probit Normal

Two methods using the identity transformation function for 
t and a logit-normal distribution for U, i.e., logit(U) ~ N(p, 
σ2), where p is the model predictor on the transformed 
scale, and σ2 is the variance, are described below.

Coarsened Grid (CG)  This method is motivated by view-
ing BOS data as interval censored observations, with 
the intervals given by ak in Eq. 6, where ak = (k-0.5)/m, 
ak+1 = (k + 0.5)/m, and a0 = 0, am+1 = 1 [1]. The conditional 
likelihood of an observation Y = k/m is given by

where z(l)
k

 = logit(ak), z
(u)

k
 = logit(ak+1). Note that the logit link 

is associated with logistic regression, while the probit link is 
associated with probit regression. In this sense, it may seem 
more natural to assume that U follows a probit-normal distri-
bution instead, i.e., replacing the logit function with Φ−1 [5].

Additional flexible transformations have been used to 
accommodate skewed data distributions [20], including the 
Aranda-Ordaz and the Czado transformation below:

where λ1 and λ2 are parameters to be estimated.
As with logistic and probit regressions, CG naturally 

predicts data in their original BOS categories, which is an 
advantage over the zero-inflated approach. However, a diffi-
culty, especially for those less familiar with categorical data 
analysis, is that understanding its ability to describe skewed 
data distributions may require more effort.

Bounded Integer (BI)  This method was motivated by an 
equidistant discretization of the cumulative normal distribu-
tion with the Z-values, Z1/(m+1) to Zm/(m+1) [21], and has been 
used in further applications [6, 7, 22]. Assuming a general 
variance function g, the conditional likelihood of an obser-
vation Y = k/m is modeled as follows:

for k = 1, …, m-1,

for k = 0,
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and for k = m,

A latent variable interpretation of BI, similar to that of CG, 
was also given in [21], but it was shown problematic [5]. On 
the other hand, comparing Eq. 7 and 9 shows that, when g is a 
constant, BI is equivalent to setting logit(ak) = z(l)

k
  = Zk/(m+1), 

or equivalently, ak = logit−1(Zk/(m+1)) in Eq. 6. As indicated 
under Eq. 7, using a probit instead of the logit link with CG 
would lead to using Φ−1(ak) instead of logit(ak) in Eq. 7, 
which in turn would lead to ak = Φ−1(Zk/(m+1)) = k/(m + 1). The 
difference of this with the choice of ak = (k-0.5)/m appears 
subtle, thus BI and CG could be expected to perform simi-
larly, especially when the number of categories is large. The 
symmetry of normal distributions could adversely affect the 
performance of BI and CG with skewed data [5].

Latent‑Beta

This method sets t as the identity function in Eq. 6, i.e., no 
transformation. The latent variable U is assumed to follow 
a beta distribution given in Eq. 1–2, and ak = k/(m + 1). It 
emerged relatively recently from statistical literature [23], 
and has shown successes in describing skewed PASI score 
data as well as derive endpoints (PASI 75/90/100), even in a 
challenging situation of subject population censoring where a 
subpopulation more sensitive to drug treatment was the focus 
[24, 25]. Note that to successfully describe derive endpoints, 
the model must accurately describe both the mean BOS trend 
and its variability (24). While the latent-beta method has been 
shown to be successful in perhaps the most varied types of 
pharmacometric applications, it may also be the least intuitive 
due to the relatively less frequent use of the beta distribution 
compared to others, such as the normal distribution.

Combined Uniform Binomial

This approach also treats BOS data as ordered categorical, 
albeit with a different motivation than the latent variable 
approach. It contains a large class of methods, known in 
psychological literature as the CUB family, which combines 
a binomial distribution with a uniform distribution, typically 
with a mixture probability π [26]. The binomial distribu-
tion serves a similar role as in logistic regression, and the 
uniform distribution, termed the “uncertainty” component 
of the model, accommodates potential additional variability. 
The likelihood of an observation Y = k/m is given by

(11)1 − Φ

(

Zm∕(m+1) − p

g

)

(12)��k(1 − �)
m−km!∕[k!(m − k)!] + (1 − �)∕(m + 1)

where 0 ≤ π ≤ 1 and 0 < ξ < 1. In mixture-model terms, π and 
(1 – π) are the mixing probabilities for the binomial distribu-
tion and the uniform distribution on [0, m], respectively. Let 
F(k, m, ξ) be the binomial cumulative distribution function, 
the cumulative distribution of the CUB model is directly 
obtained from Eq. 12:

It is noted that, as a special case of the above, Eq. 6 in 
[25] contained an error; the correct form can be derived by 
using k = 11 and m = 720 in Eq. 13. The CUB approach may 
suit certain types of survey data, but the uniform distribution 
may not be appropriate for representing the residual variabil-
ity of disease severity scores [25]. This is because, given a 
model prediction, scores closer to the prediction should be 
more likely than scores farther away, which contradicts the 
assumptions of a uniform distribution.

Implementation

An early implementation of the censoring method was car-
ried outin SAS PROC NLMIXED [16]. To the author’s 
knowledge, all other pharmacometric applications were 
implemented in NONMEM [27]. This may be because the 
data likelihoods for all methods differ from those more 
routinely used in standard data analysis tasks, as can be 
seen from Eq. 3–13. A particular example with clinical 
study data is when study entry criteria include require-
ments for levels of disease severity, and appropriate mod-
eling such data requires baseline likelihood modification 
[25]. The implementation of such likelihood modifica-
tion may be easier in NONMEM than some other popular 
software in pharmacometrics. The NONMEM implemen-
tations were provided in the supporting materials of the 
respective references for all methods. As an example, the 
essential elements for the latent-beta implementation of 
PASI scores are provided below [24]:

$ABBR FUNCTION BETACDF(VQI,10); beta CDF
$ABBR VECTOR VQI2(10); required auxiliary function
$ERROR

PhiBeta = THETA(1); precision parameter of beta dis-
tribution
MuBlgt = ModPred; model prediction: include more 
THETA, ETA, etc
MuBeta = 1/(1 + EXP(-MuBlgt)); mean parameter of 
beta distribution
ALPHA = MuBeta*PhiBeta
BETAq = (1 - MuBeta)*PhiBeta

(13)
prob (Y ≤ k∕m) = �F (k,m, �) + (k + 1) (1 − �)∕(m + 1)
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VQI(1) = DV*10/721; DV is observed PASI score (0 
– 72, with 0.1 increments)
VQI(2) = ALPHA
VQI(3) = BETAq
CDFk = BETACDF(VQI); CDF(k), k ~ DV
VQI2(1) = (DV*10 + 1)/721
VQI2(2) = ALPHA
VQI2(3) = BETAq
CDFk1 = BETACDF(VQI2); CDF(k + 1)
Y = CDFk1 – CDFk; likelihood

Distribution Bariance

Some of the methods mentioned above, as described in their 
original publications, incorporate a general standard devia-
tion function g, which allow more flexibility than a constant 
σ. This may improve model fitting in the hybrid approach, 
e.g., by allowing the variance to increase proportionally with 
predictors that will remain positive [16]. However, the benefit 
becomes dubious for the latent variable approach, particu-
larly if the latent variable can be ≤ 0, rendering the common 
proportional and additive-plus-proportional error models 
ill-behaved [4]. It is also worth noting that the presence of 
apparent heterogeneous variance when treating data as con-
tinuous may not be observed when treating the data as ordered 
categorical.

Data Type and Model Comparisons

The definition of BOS implies that they are ordered cate-
gorical. However, in practice, BOS data appear in numerical 
forms, such as integers, allowing for numerical operations 
to derive endpoints like PASI 75, which is characteristic 
of continuous data. Indeed, this was a motivation for the 
BI method [21]. Additionally, different analysis approaches 
in practice treat data as different types. Therefore, it can 
be tempting to think BOS data as both continuous and cat-
egorical, which is the source of many practical confusions. 
One such confusion is the use of likelihood-based criteria 
to compare models treating data as different types, which 
is inappropriate [10]. Another issue is the scale to evaluate 
the models on, which will be elaborated later in this com-
mentary. Note that while a continuous analysis model can be 
used to "predict" categorical outcomes, commonly by round-
ing [13], this essentially treats the continuous model predic-
tor as a latent variable for the categorical data, as shown in 
Eq. 6. Since the model parameters are estimated assuming 
a continuous model distribution rather than a categorical 
model distribution, using the continuous analysis model for 
categorical data becomes ad hoc. Assuming a continuous 
distribution is for the purpose of facilitating useful analysis 

conclusions and should not be interpreted as the data truly 
following the assumed (misspecified) distribution. To avoid 
confusions, it is helpful to consider BOS data as ordered 
categorical, and any "continuous" properties attributed to 
the data as desirable properties for the analysis model. For 
more details, see [10].

Zero‑Inflated vs Latent‑Variable

The zero-inflated approach has the appeal in that functional or 
transformation effects on the data can be easily seen on the con-
tinuous scale. For the latent variable approach, seeing effects 
on the latent variable on predicting the BOS data categories 
may require more effort. However, it is important to note that 
conceptually, latent variables are continuous, allowing for the 
application of any type of models for continuous data. There-
fore, the latent variable approach does not lose any flexibility.

It is worth noting that all analysis methods utilize at least 
two parameters: one for the mean and another for the vari-
ance of the distribution. However the zero-inflated approach 
requires more parameters due to treating the boundary data 
differently. Particularly, the zero-inflated-beta method uses 
two additional parameters to model data at one boundary. 
In contrast, the censoring method only uses one additional 
parameter, which also relates to the skewness of the remain-
ing data. This is because the censoring method treats bound-
ary data as censored versions of all data, considering them 
to be of similar nature to data inside the boundaries. This 
preserves a link between data inside and on the boundaries.

Considering the latent variable interpretation of categori-
cal data analysis [18], the zero-inflated approach can be seen 
as using predictors of data inside boundaries as latent vari-
ables that determine the probability of data on the boundary. 
It is important to note that for BOS data, a boundary is just a 
category like any other data category. This raises the ques-
tion of why these data are treated differently, i.e., why not 
use the same latent variable for all categories. Indeed, this 
is achieved by the latent variable approach.

In principle, the latent variable approach is just as flex-
ible as the zero-inflated approach, but it has the advantage 
of naturally predicting the data within its defined ranges. 
In this sense, the latent variable approach is superior. The 
fact that it is not widely used may be attributed to a lack of 
familiarity.

Categorical Analysis Methods

Among the main latent variable methods, the logit-normal 
methods CG and BI are expected to perform similarly, except 
when a substantial portion of the data is on the boundary. 
The latent-beta method may have advantages for highly 
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skewed data, as beta distributions can effectively describe 
skewed data. To the author's knowledge, this is the only 
method that has consistently shown the ability to describe 
derived endpoints in addition to the BOS data. Additional 
transformations could potentially improve the performance 
of CG and BI with skewed data [20].

While there are reasons why the CUB approach may per-
form worse than the latent variable approach, it could still 
be a viable option when at least part of the BOS data nature 
is close to binomial, especially considering that BOS are 
often composite scores.

Finally, the ordered categorical method has been 
demonstrated to perform well with a sufficient sample size 
[19], which depends on the total number of observations 
and the minimum number of observations in each category 
[5]. With the many (= m) intercept parameters to distinguish 
all categories, the method is likely to be more accurate and 
robust [13]. This situation may occur more frequently with 
data that has a moderate number of categories e.g., [10–20].

More experiences are needed on the relative performance 
of these methods. In practice, these methods could be evalu-
ated by AIC/BIC, and VPC [10].

Method Evaluation

Since BOS data are fundamentally ordered categorical, sev-
eral important considerations arise. Firstly, it is worth not-
ing that no practically useful residuals exist [28]. Addition-
ally, there is a risk of overfitting the variability component, 
including the between-subject variability [18]. If desired, 
residuals obtained by treating the data as continuous can 
be used as a guide, especially as the number of categories 
increases. However, it is important to acknowledge that 
treating the data as continuous compromises the desired 
distributional properties. Similarly, metrics commonly used 
for continuous data analysis, such as mean prediction errors, 
become less useful.

Therefore, VPC becomes particularly valuable in 
this context. VPCs that treat the data as continuous can 
provide convenient general assessments [20], but they may 
introduce bias when comparing different methods that treat 
the data as different types [13]. Treating the data as ordered 
categorical would align more consistently with the nature 
of latent variable models, preferably cumulatively [29], but 
would be cumbersome. Therefore, it is especially important 
to conduct VPCs on those quantities that are crucial for 
the specific application, including all derived endpoints of 
interest [10, 25].

Another situation where confusion often arises in VPCs 
is when there are censored baseline observations. Clinical 

trial entry criteria often require a certain level of disease 
status, such as a PASI score ≥ 12. In practice, the censor-
ing effect on baseline observations is often ignored dur-
ing model fitting, and subjects with simulated baseline 
outcomes that violate the entry criteria are removed from 
VPCs. This discrepancy between the model and simulation 
can negatively impact VPC performance. It is more appro-
priate to adjust the data likelihood for baseline observa-
tions [25], which ensures accurate VPC evaluations.

For general VPC usage, it has recently been pointed out 
that some common usages of pharmacometric interval terms, 
including confidence intervals and prediction intervals, are 
inconsistent with statistical terminology. A proposal to align 
with statistical terminology has been suggested [30]. Using 
terminology consistent with statistical literature can lead 
to more appropriate usage of VPCs by using confidence 
intervals constructed from observed data, such as those 
obtained by bootstrap, instead of the commonly used VPC 
intervals obtained by model-based simulations [31].

Practical Guideline

Considering the properties of the methods discussed, the 
following guidelines can help in selecting the appropriate 
analysis methods:

•	 Standard Ordered Categorical: This is the best method 
when applicable, but only in the rare scenario where the 
sample size is large relative to the number of categories. 
The term 'sample size' here relates to the total number of 
observations as well as the minimum number of observa-
tions in each category.

•	 Standard Continuous: Use this method if data distribu-
tions appear symmetric and the objective is to describe the 
observed data using a simple approach.

•	 Zero-Inflated Beta or Censoring: Use these methods if 
data distributions appear skewed and the objective is to 
describe the observed data using a transformation that can 
be easily identified. The censoring method may be more 
parsimonious than the zero-inflated beta method.

•	 CG or BI: Use these methods if data distributions appear 
symmetric or at most modestly skewed.

•	 Latent Beta: This method may be widely applicable, espe-
cially if data distributions appear skewed.

Likelihood-based criteria, such as AIC or BIC, may be used 
to compare methods treating data as the same type. VPCs are 
recommended to evaluate model performance, especially for 
the endpoints of interest.
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Conclusions

BOS analysis is technically complex, and the methods are 
evolving. While treating the data as continuous and attempting 
data transformations may seem intuitive, they can often lead to 
misleading results. Treating boundary data as a separate cat-
egory may aid in data description, but it can create an artificial 
distinction between data on the boundary and data inside the 
boundary. Latent variable methods, on the other hand, natu-
rally align with the nature of BOS data. These methods are 
not structurally more complex than alternative approaches and 
may offer the most potential. However, the choice of the best 
latent variable method may depend on the specific situation and 
requires further research.
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