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Abstract
Purpose The purpose of this review is to provide a comprehensive summary of recent studies characterizing the pharma-
cokinetics of newly approved immune checkpoint inhibitors (ICIs) monoclonal antibodies and highlight the latest finding 
and advancements in understanding time-dependent PK, wherein their clearance changes with time. Additionally, the article 
will discuss key considerations and implications when conducting exposure–response analysis.
Recent Findings The majority of papers documenting time-varying PK are fairly recent as ICIs as a class of drugs have 
emerged as successful anti-cancer agents in the last 10 years or so. The review paper is split in two, somewhat connected, 
parts. The first one is focused on the association of time-varying PK and disease state. In order to provide a comprehensive 
context, the review paper starts with the cases of nivolumab and pembrolizumab, and then look at publications documenting 
that phenomenon for other therapies, such as cemiplimab, retifanlimab, atezolizumab, avelumab, durvalumab, ipilimumab, 
tremelimumab, and relatlimab.
The second part discusses the implication of varying PK for the exposure response of efficacy. Building upon the strong 
correlation between drug clearance over time and the overall survival highlighted above, this part of the paper studies how 
the potential for this interaction between treatment response and PK leads to biased E-R (exposure–response) relationships, 
especially for efficacy. Special emphasis is placed on a recent white paper with authors from industry, academia, and govern-
ment (Ruiz-Garcia et al. JPKPD 50:147-172, 2023) that highlights the various challenges and some possible solutions for 
conducting and interpreting ER-efficacy analyses in oncology.
Summary Recognizing and accounting for the dynamic PK characteristics are crucial for optimizing dosing strategies, 
predicting drug exposure, and understanding the association between drug exposure and clinical outcomes in patients 
undergoing checkpoint inhibitor therapy. This paper provides a succinct summary of relevant publications and some practi-
cal considerations.
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Introduction

Immune checkpoint inhibitors are a class of drugs that have 
revolutionized cancer treatment by enhancing the body’s 
immune response against cancer cells. These inhibitors 

target key proteins, such as programmed cell death protein 
1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic 
T-lymphocyte-associated antigen 4 (CTLA-4), and lympho-
cyte-activation gene 3 (LAG-3), which regulate immune 
responses [1, 2]. Although both CTLA-4 and PD-1 are 
negative regulators of T cells, each plays a nonredundant 
role in the coinhibitory mechanism of immune responses. 
While the interaction between CTLA4 and B7 ligands limits 
priming of naive T cells, the interaction between PD-1 and 
PD-L1 renders effector T cells to be exhausted in the tumor 
microenvironment, raising hopes for therapeutic synergy 
in the combination strategy [3]. LAG-3 is also a co-inhib-
itory receptor to suppress T cells activation and cytokine 
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secretion, and showed a remarkable synergy with PD-1 to 
inhibit immune responses [4]. By blocking the interactions 
between these proteins, ICIs unleash the immune system’s 
ability to recognize and attack cancer cells, leading to dura-
ble and often remarkable responses in a variety of cancer 
types. The mechanism of action of ICIs makes it applicable 
across various types of tumors (melanoma, non-small cell 
lung cancer, renal cell carcinoma, bladder cancer, head and 
neck squamous cell carcinoma) [5–7]. That broad spectrum, 
coupled with milder side effects, has turned this class into 
the standard of care. Currently, there are ten approved ICIs 
by the US Food and Drug Administration (FDA) (https:// 
www. fda. gov/ drugs/ resou rces- infor mation- appro ved- drugs/ 
oncol ogy- cancer- hemat ologic- malig nanci es- appro val- notif 
icati ons) [8].

Of the 10 ICI mAbs approved by the FDA thus far, five 
have dosing recommendations in the USPI that are different 
or additional to the dosing regimen evaluated in the piv-
otal studies. In general, the changes/additions to the recom-
mended dosing were enabled by model-based bridging to 
the efficacy/safety observed in the pivotal studies. Some of 
these changes (such as increasing the dosing interval) were 
particularly valuable in decreasing clinic visits during the 
COVID-19 pandemic.

Despite the different targets and different mechanism of 
action, ICIs primarily belong to the class of monoclonal 
antibodies (mAbs), and they exhibit similar PK properties 
as other therapeutic monoclonal antibodies which are long 
half-life and target mediated disposition with a combined 
linear and nonlinear phase [9]. In general, mAbs may exhibit 
target-mediated drug disposition (TMDD) at low doses, 
which is driven by their binding with high affinity to their 
pharmacological target in a way that affects its pharmacoki-
netic characteristics, and the linear phase is associated with 
a saturation of the target and the downstream effects of the 
drugs. However, time-dependent pharmacokinetics has been 
reported for several mAb ICIs, in many (but not all) indi-
cations. This phenomenon was first identified during FDA 
reviews of the first two approved PD-1 inhibitors, nivolumab 
and pembrolizumab [10]. Literature reviews have been pub-
lished to better understand the clinical PK/PD relationships 
of ICIs [11] as well as an overview of the PK modelling 
strategies used to describe the variations in the PK of mAbs 
with time [12].

This time-dependent pharmacokinetic phenomenon of 
ICIs is hypothesized to be associated with patient disease 
status and clinical outcome and can have significant impli-
cations to the understanding of the exposure–response rela-
tionships for efficacy [10, 13]. Therefore, in this review, we 
would like to take an in-depth look at the time-dependent 
pharmacokinetics of the currently approved ICIs by FDA and 
provide a systematic analysis of the potential mechanisms 
underlying the time-dependent CL and the key implications 

during exposure–response evaluations. To achieve this goal, 
this review will focus on the most recent advancements in 
the evaluation of pharmacokinetics, exposure–response of 
ICIs, and regulatory perspectives. Consideration of these 
dynamics is essential for optimizing dosing strategies, pre-
dicting drug exposure, and understanding the relationship 
between drug exposure and clinical outcomes in patients 
receiving checkpoint inhibitor therapy.

Time‑dependent pharmacokinetic and its 
association with disease status

Time-dependent pharmacokinetics (PK) in checkpoint 
inhibitors refers to changes in PK attributes (most commonly 
clearance (CL)) over time during the course of treatment.

The phenomenon of time-dependent CL was first reported 
in 2016 for anti-PD-1 agents. A population PK (popPK) 
model of nivolumab with time-varying CL was developed 
based on such findings [14]. The analysis confirmed that 
the model with time-varying CL provided a better descrip-
tion of the clinical data and that, on the population level, 
the nivolumab CL decreases over time with ~ 25% maximal 
reduction from baseline values.

Around the same time, two additional papers were pub-
lished on immune checkpoint inhibitors evaluating the 
time-varying clearance for various drugs (nivolumab and 
pembrolizumab) in advanced settings [13, 15]. The key 
message in these two publications is that overall clearance 
decreases over the period of treatment in a typical patient 
and that the magnitude of this decrease is associated with 
the best overall response for both drugs. In addition, in the 
work conducted by Li et al. [16]. The authors also addressed 
the longitudinal effect of pembrolizumab clearance via four 
time-varying covariates related to the mechanism of action 
of the drug, namely tumor size, lymphocyte count, serum 
albumin, and serum LDH. This work was an advancement 
as compared to the previous two papers as it demonstrated 
that CL could decrease and then increase, reflecting the 
change in health status of the patient. While all these papers 
were conducted in a retrospective manner, they strongly sug-
gested that time-varying CL can be viewed as a surrogate for 
disease progression. Coupled with the earlier work on the 
significance of baseline CL, this suggests a strong coupling 
between a parameter, typically associated with PK and clini-
cal outcome.

Time-dependent reduction in CL is not specific for 
nivolumab [17] and pembrolizumab [18], and has now 
been reported for the other approved ICIs against various 
targets across the advanced settings including cemiplimab 
[19], retifanlimab [20], atezolizumab [21], avelumab [22], 
durvalumab [23], ipilimumab [24], tremelimumab [25], and 
relatlimab [26] as shown in Table 1.

https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-hematologic-malignancies-approval-notifications
https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-hematologic-malignancies-approval-notifications
https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-hematologic-malignancies-approval-notifications
https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-hematologic-malignancies-approval-notifications
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The time-dependent changes in clearance (CL) of check-
point inhibitors can be explained by two hypothesized 
mechanisms: (1) indirect effect via reversal of cancer-
induced cachexia and improvement of patient disease sta-
tus. Cachexia, a metabolic syndrome associated with under-
lying diseases, leads to the loss of muscle mass due to a 
hypermetabolic state [27, 28]. Cancer-induced cachexia 
increases protein catabolism, including the breakdown of 
endogenous proteins and monoclonal antibodies used in 
treatment. In advanced cancer patients, this hypermetabolic 
state can result in increased elimination of both endogenous 
proteins and therapeutic antibodies [29]. As the patient’s 
metabolic state improves during treatment, the catabolic 
state is reduced, leading to an increase in protein levels. 
Albumin, as an abundant protein, has been associated with 
cachexia and the hypermetabolic state [30]. This suggests 
that patients with cachexia and a hypermetabolic state have 
higher protein turnover rates, leading to increased elimina-
tion. Consequently, patients who demonstrate a pronounced 
response to treatment may also exhibit significant decreases 
in CL over time. (2) Reduction in tumor-driven drug elimi-
nation: Tumors can contribute to drug elimination through 
various mechanisms, such as metabolism within the tumor 
or sequestration of drugs within tumor tissues. However, 
the example of pembrolizumab showed that TMDD was 
observed at a dose up to 0.1 mg/kg, which is 20 times lower 
than the dose studied in the pivotal trial [15]. The impact 
of TMDD is generally considered negligible at the clini-
cally relevant doses for the checkpoint inhibitors such as 
nivolumab, pembrolizumab, and durvalumab [31], suggest-
ing that tumor-driven drug elimination is unlikely to be the 
primary driver for time-dependent CL.

The association of covariates to patient disease status is 
also an important consideration. Several covariates have 
been recognized as the covariates commonly influencing 
the CL of ICIs [32]. These covariates include baseline 

body weight, baseline albumin, and sex. For atezolizumab, 
the impact of baseline and time-varying covariates on the 
pharmacokinetics (PK) of atezolizumab was investigated 
[33]. The analysis employed a population PK model 
incorporating time-varying covariates such as body 
weight, albumin, ADA, gender, neutrophil count, alkaline 
phosphatase, bilirubin levels, and sum of longest diameter 
of target lesions (SLD). This comprehensive approach 
provided a broader understanding of the relationship 
between disease status (tumor burden and cancer 
inflammation) and the PK of atezolizumab. The inclusion 
of time-varying covariates allowed for the representation 
of patients’ disease status over time. Notably, variations 
in albumin levels emerged to have potential association 
with changes in CL over time. Specifically, an increase 
in albumin levels (indicating an improvement in patient 
status) corresponded to a decrease in CL. Additionally, the 
change in SLD over time also influenced CL, although to 
a lesser extent. These findings support the hypothesis that 
the changes in CL over time are associated with patients’ 
prognostic factors and disease status.

Interestingly, although time-dependent PK has been 
observed across ICIs, some differences in tumor types were 
also noted. For example, a population pharmacokinetic 
(PK) analysis was performed to evaluate avelumab across 
14 distinct cancer types [34]. Among these tumor types, 
a noticeable decrease in clearance (CL) was observed in 
only two specific cancer types out of the 14 included in 
the analysis. These two types were Merkel cell carcinoma 
(mMCC), exhibiting a maximum CL decrease of 32.1% 
compared to the baseline, and squamous cell carcinoma of 
the head and neck (SCCHN), which displayed a maximum 
CL decrease of 24.7%. The analysis further revealed that 
the time-dependent changes in CL were associated with 
post-treatment effects, and the reduction in CL was more 
prominent in responders compared to non-responders. In 
patients with Merkel cell carcinoma, the observed time-
dependent effect on CL may be attributed to a longer 
follow-up period compared to patients with other tumor 
types.

Furthermore, in the adjuvant melanoma setting, it was 
observed that the baseline clearance (CL) of nivolumab 
was lower compared to other advanced tumor types [35]. 
Contrary to previous observations, it was also noted 
that clearance did not decrease over time in this setting. 
Furthermore, it was also shown that patients with adjuvant 
melanoma, who have no measurable tumor burden and 
an improved disease state, exhibited a lower baseline CL 
similar to the steady-state CL observed in patients with 
advanced melanoma who achieved a complete response. 
These findings provided additional support for the 
association between nivolumab CL and the disease state 
in advanced malignancies.

Table 1  Summary of the estimated geometric mean reduction of CL 
at steady state compared to baseline for ICIs

Target Maximum 
reduction from 
baseline

Cemiplimab PD-1 11%
Nivolumab PD-1 24.5%
Pembrolizumab PD-1 23%
Retifanlimab-dlwr PD-1 23%
Atezolizumab PD-L1 17%
Avelumab PD-L1 32.1%
Durvalumab PD-L1 23%
Ipilimumab CTLA-4 18%
Tremelimumab CTLA-4 17%
Relatlimab LAG3 10%
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It is important to note that investigations into time-vary-
ing pharmacokinetics (PK) for immune checkpoint inhibi-
tors (ICIs) have predominantly focused on single-agent treat-
ments. However, considering that time-varying clearance 
(CL) is linked to treatment effects, we thought it would be 
interesting to conduct similar investigations with combina-
tion treatments to assess differences in CL changes during 
various treatments.

A recent study conducted on ipilimumab, a first-in-class 
ICI monoclonal antibody approved as a monotherapy for 
melanoma and adjuvant melanoma, as well as in combina-
tion with nivolumab for melanoma and other solid tumors, 
serves as a good example [24]. The initial characterization 
of ipilimumab’s PK [36] did not include time-varying CL, 
as the analysis only incorporated data from patients with 
melanoma receiving ipilimumab monotherapy for up to four 
doses every 3 weeks. No clear trend of change in CL over 
time was observed during the 12-week administration dura-
tion. In an updated analysis, a more refined ipilimumab pop-
ulation PK model was developed to assess time-varying CL 
and the impact of combination therapy with nivolumab. This 
study benefited from the longer dosing of ipilimumab when 
administered in combination with nivolumab in patients with 
non-small cell lung cancer (NSCLC) and hepatocellular 
carcinoma (HCC) (not limited to four cycles as previously 
studied in the monotherapy setting). This enabled a more 
robust evaluation of time-varying CL. The results showed 
that the magnitude of CL decline was approximately 6% 
with ipilimumab monotherapy and around 18% when com-
bined with nivolumab. The extent of CL decrease with com-
bination therapy was similar to that observed for nivolumab 
alone. These findings align with clinical efficacy outcomes 
[37], as patients with melanoma who received ipilimumab 
and nivolumab combination therapy exhibited significantly 
longer progression-free survival compared to those receiv-
ing ipilimumab alone. Further characterization of nivolumab 
PK was also conducted to evaluate the effect of combina-
tion therapy and time-varying covariate on nivolumab PK 
[38]. When administered in combination with ipilimumab, 
nivolumab baseline CL was slightly higher, possibly due 
to the combination’s effect on inflammatory status. The 
decrease of nivolumab CL was also greater with the com-
bination compared to nivolumab monotherapy. The time-
varying CL was partially explained by time-varying covari-
ates. At baseline, higher body weight and a performance 
score greater than 0 were associated with greater CL within 
a given population. However, the effect of time-varying body 
weight showed an opposite effect to baseline. An increase 
in body weight over time was associated with a decrease in 
CL. Furthermore, increase in albumin was associated with 
a decrease in CL, and increases in LDH and PS were associ-
ated with increased CL.

A similar observation was reported for tremelimumab 
[39], which also exhibited time-varying clearance associ-
ated primarily with therapy regimen and changes in disease 
status. Tremelimumab clearance increased by ~ 16% as mon-
otherapy, but decreased by ~ 17% as a combination therapy 
over 1 year of treatment, respectively. This observation is 
aligned with the better clinical efficacy achieved with the 
tremelimumab and durvalumab combination therapy [40], 
and further supports the hypothesis that a decrease in CL 
over time may serve as a marker of treatment response.

Implications of time‑varying 
pharmacokinetics for exposure response 
of efficacy

Understanding the relationship between drug exposure and 
response is crucial in the development of drugs as it informs 
dose selection, aids in patient population considerations, and 
is pivotal in the regulatory approval process. In the classical 
paradigm for conducting exposure–response (E-R) analyses, 
the drug exposure is considered the cause while the response 
is the outcome. However, as discussed previously, for ICIs 
this process is not uni-directional due to their time-depend-
ent pharmacokinetics with change in clearance in time due 
to disease progression or emission; and therefore, there is a 
strong correlation between drug clearance over time and the 
overall survival. The potential for this interaction between 
treatment response and PK to lead to biased E-R relation-
ships, especially for efficacy, must be considered.

This situation has two important implications. First, due 
to the improved disease status of patients, there is a possibil-
ity of decreased clearance, which could affect drug exposure 
in the later phase of the trial and be influenced by the effi-
cacy outcome, even with the same dosing regimen. There-
fore, when evaluating the efficacy of a drug, it is crucial 
to consider the increased exposure that occurs in the later 
stages of treatment, such as at steady state. Relying solely 
on this higher exposure to conclude better efficacy could be 
misleading without accounting for the underlying changes 
in drug clearance over time.

Understanding that efficacy could affect PK and utilizing 
steady-state exposure in the exposure efficacy analysis may 
introduce bias to the exposure–response (ER) relationship. 
A simulation study [13] was conducted to evaluate the selec-
tion of an appropriate exposure metrics in the E-R efficacy 
analysis and assess the quantitative impact of time-varying 
pharmacokinetics (PK) on the ER relationship. In this analy-
sis, the use of exposure metrics derived from a later phase 
of the treatment (e.g., Cavgss) was strongly confounded by 
the post-treatment outcome. Conversely, employing early-
exposure metrics (e.g., Cavg1) yielded less biased results, 
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allowing for a more accurate representation of the causal 
effect of exposure on clinical response.

The second implication pertains to the potential imbal-
ance in prognostic risk factors across different groups, which 
can impact the analysis of exposure efficacy. It is essential 
to ensure that prognostic risk factors are balanced among 
the groups being compared. Failure to achieve this balance 
may introduce bias and confound the relationship between 
exposure and efficacy analysis. Therefore, careful considera-
tion and adjustment for these imbalances are crucial when 
conducting exposure efficacy analyses to obtain accurate and 
reliable results.

In 2017 and 2018, Bajaj et al. and Turner et al. inde-
pendently published papers on the significance of baseline 
clearance beyond the PK of nivolumab and pembrolizumab. 
More specifically, it was shown [41] that while nivolumab 
exposure was not a significant predictor of the hazard of 
death in the full ER model, ECOG status, baseline BW, 
nivolumab CL, age, and baseline LDH had a significant 
effect on overall survival, with the greatest magnitude of 
effect being associated with CL for patients with previously 
treated and untreated melanomas [42]. The sensitivity analy-
sis conducted, excluding the impact of baseline CL, further 
confirmed a flat exposure–response relationship between the 
exposures achieved at the evaluated doses and clinical effi-
cacy. In addition, a comprehensive ER analysis of nivolumab 
in patients with non-small cell lung cancer (NSCLC) also 
showed similar findings [43]. The analysis results indicated 
that nivolumab exposure (Cavg1) was not a significant pre-
dictor of overall survival (OS) in patients with squamous 
and non-squamous NSCLC when utilizing a multivariable 
Cox proportional hazards analysis model. In this analysis, 
baseline clearance (CL) was also included as a covariate to 
capture the initial disease status of patients, and it was found 
to have a significant association with OS. Considering that 
the analysis incorporated Cavg1 values derived from a wide 
range of doses (1–10 mg/kg), the inclusion of both Cavg1 
and baseline CL did not introduce any confounding effects. 
These findings revealed a relatively flat exposure–response 
relationship across the range of nivolumab exposures (as 
measured by Cavg1) and indicated a broad therapeutic mar-
gin for nivolumab monotherapy.

Shortly after, Turner, Kondic, and colleagues demon-
strated a strong association between baseline clearance and 
OS in two different tumor types (melanoma and NSCLC) 
using data from two randomized clinical trials in these indi-
cations. Very importantly, these were studies where two, 
very different doses of pembrolizumab (2 mg/kg and 10 mg/
kg) were being evaluated and compared to standard of care 
(SoC). An unusual pattern of improved OS in subjects with 
higher exposure within each dose is incongruent with the 
similarity in OS across the fivefold dose/exposure range, 
suggesting a confounding of PK and OS independent of 

direct pharmacologic effects on patient outcome. This work 
clearly demonstrated that the worst clinical outcome (overall 
survival) was observed in the highest CL quartile independ-
ent of dose. Inversely, patients with similar exposure, cal-
culated as dose/CL, had very different outcomes, driven by 
the value of CL in the denominator, rather than the dose in 
the numerator. This phenomenon would have masked itself 
as a positive ER relationship should there have been a single 
dose. The dose–response analyses further supported the lack 
of exposure-dependency in outcome, with trends in CL0-OS 
underscoring a correlation between OS and pembrolizumab 
elimination. The authors hypothesized that decreased OS in 
subjects with higher pembrolizumab  CL0 paralleled disease 
severity markers associated with end-stage cancer anorexia-
cachexia syndrome. The cachexia-related factor associated 
with change in body weight accounted for a portion of 
survival variability in both populations in melanoma and 
NSCLC, suggesting a disease-level involvement of weight 
loss and OS.

The examples of nivolumab and pembrolizumab showed 
that baseline clearance was reflective of the overall baseline 
disease state of patients and was strongly associated with 
clinical outcome. The inclusion of baseline clearance 
in the multivariable analysis could further alleviate any 
potential imbalance in the prognostic factors and account 
for other unknown markers that were not included in the 
analysis. In another study [44, 45], Wang et al. utilized a 
machine learning approach to predict baseline clearance 
(CL) of nivolumab based on a composite of cytokine 
signatures. They found that patients with a predicted high 
nivolumab CL had poor survival outcomes, irrespective of 
the treatment received (nivolumab or chemotherapy). This 
finding provides support for the hypothesis that nivolumab 
clearance can serve as a prognostic marker for the disease 
status of patients with advanced melanoma and renal cell 
carcinoma (RCC). These results highlight the potential 
utility of nivolumab clearance as a predictive factor in 
assessing patient prognosis.

A more recent multi-institutional white paper with 
authors from industry, academia, and government [46] 
further highlighted the various pitfalls and some possible 
solutions for conducting and interpreting ER-efficacy 
analyses in oncology. Although the white paper 
provided a broader insight regarding preferred analysis 
methods, safety and efficacy endpoints selection, and 
special consideration when modelling for hematologic 
malignancies and in cell therapies, the challenges 
associated with the time-dependent pharmacokinetic 
(PK) was highlighted as remaining a significant one. The 
selection of the exposure metrics to be used in the analysis 
is one of the key considerations, and inclusion of more than 
one dose level in E-R analyses would further reduce the 
confounding effect between exposure and CL.
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Although the focus of this paper is on mAb ICIs, the 
phenomenon of time-varying pharmacokinetics has been 
reported and summarized for other therapeutic mAbs [47]. 
Additional paper has been published that summarizes the 
collective experience and methods that can be used to 
address the confounding of interpreting ER analyses for 
mAbs in oncology as a consequence of time-varying clear-
ance. In Kawakatsu et al. [48], the authors focus on three 
different approaches, namely (i) Cox-proportional hazards 
(CPH) modelling and case-matching; (ii) tumor growth 
inhibition–overall survival modelling; and (iii) multiple 
dose-level study design. CPH modeling enables the esti-
mation of the relationship between exposure and response 
while adjusting for baseline covariate factors that may act 
as prognostic confounders. Case-matching analysis further 
balances the distribution of confounding factors by ensur-
ing the baseline risk factors are distributed evenly across 
different treatment arms. However, the application of these 
methodologies requires careful consideration of data availa-
bility, sample size, selection of covariates, and evaluation of 
exposure metrics. TGI-OS modeling is another methodology 
that incorporates tumor growth dynamics and a multivari-
able survival model to evaluate treatment effects and overall 
survival. By directly separating treatment effects from dis-
ease effects, this approach reduces the risk of confounding 
by prognostic factors. While limitations should be consid-
ered, successful examples utilizing this approach have been 
reported, gaining recognition from regulatory agencies. The 
final approach highlighted in the review is the selection of a 
multiple dose-level study design for registrational trials. By 
incorporating randomization and multiple dose levels, this 
design ensures baseline characteristics are balanced across 
groups and allows for the identification of the true expo-
sure–response relationship, as was the case in the example 
of pembrolizumab [42].

The Food and Drug Administration (FDA) has recently 
issued a draft guidance [49] that offers additional recom-
mendations for dose optimization in registrational trials 
within the field of oncology. The guidance emphasizes the 
importance of studying a range of doses during the clinical 
development process. By incorporating multiple dose levels, 
this approach would further facilitate the analysis of the rela-
tionship between exposure and response and mitigate poten-
tial confounding factors that may arise during the analysis.

Conclusions

Immune checkpoint inhibitors (ICIs) represent critical and 
novel therapies in the field of cancer treatment. Their distinc-
tive pharmacokinetic (PK) profile and the association with 
clinical outcomes necessitate a comprehensive understand-
ing of the challenges and limitations that arise during study 

design and data analysis. By acknowledging and addressing 
these factors, researchers can better interpret the data, opti-
mize dose levels, and ultimately enhance clinical outcomes 
in immunotherapy.
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