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Abstract
The present investigation has been performed for the isolation, optimization, and chemical characterization of antibacterial 
compounds from endophytic fungi that survive inside the internal tissues of plants without causing any symptoms. Endophytic 
fungi were isolated from four medicinal plants and screened for their antibacterial activity. The fungal strain Phoma sp. D1 
showed maximum antibacterial activity at 18.25 ± 0.58, 22.75 ± 0.85, 19.30 ± 0.76, and 16.30 ± 0.65 against Klebsiella pneu-
moniae, Bacillus subtilis, Escherichia coli, and Staphylococcus aureus, respectively. For maximum production of antibacterial 
compounds, Phoma sp. D1 was further optimized on different sources such as culture media, pH, temperature, carbon and 
nitrogen sources, and incubation period. The optimum culture media, pH, temperature, carbon and nitrogen, and incubation 
period for bioactive metabolite production of the strain were recorded in SDB, dextrose, yeast extract, 25 ± 0.1, and pH 8.0. 
The purification and chemical characterization of the antibacterial compounds were done by using solvent–solvent extraction, 
thin-layer chromatography, and gas chromatography and mass spectroscopy. The chemical characterization of the extract 
from Phoma sp. D1 showed the presence of  five compounds, 2-(-cyclohexenyl) ethylamine, 2-chloro-6 fluorophenol, butyl 
ether2-hydroxyskatole4-glycerol, p-coumarate, and bicyclo [4,2,1] nona-2,4-dien-9-one could be responsible for antibacterial 
activity. The computation observation of biomolecules through DFT, QSAR, EHOMO, and ELUMO was also performed.
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Introduction

India has been considered to be a rich repository of medici-
nal plants which have been widely collected as raw materials 
for the manufacture of useful products since time imme-
morial. According to a recent World Health Organization 
(WHO) assessment, 80% of people worldwide rely on natu-
ral herbs for their basic medical needs [1, 2]. In developed 
nations, for example, the USA, plant based constitutes as 
much as 25% of the all-out medications while in fast-devel-
oping nations such as India and China, the commitment of 
characteristic assets for the readiness of medication is as 
much as 80% [3]. However, the uncontrolled exploitation 
of medicinal plants has resulted in a rapid decline in their 
populations, and some of the plants have become critically 
endangered. The manufacturing of plant-based medicines 
has increased with the population, resulting in an overuse of 
plants and significant loss of plant diversity. Yet symbiotic 
microorganisms that thrive inside plant cells also contribute 
to the bioactive compounds that plants manufacture. In order 
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to maintain plant diversity and improve the production of 
bioactive substances for the treatment of various diseases, 
much effort is being done in the field of endophytes [4–8].

Endophytes are microorganisms that live inside the tis-
sues of living plants without causing any overt negative 
effect and have been found in each plant species considered 
and perceived as a potential source of novel natural prod-
ucts for exploitation in medicine, agriculture, and industry 
[9]. Endophytic microorganisms are endosymbiotic groups 
of organisms whether bacteria or fungi that colonize inter-
cellular or intracellular locations of plant species [10]. The 
endophytic parasites upgrade the development and supple-
ment gain of host life forms and improve the host capacity 
to endure different sorts of abiotic and biotic stresses and 
develop resistance in plants against insects and pests. They 
additionally produce phytohormones and other few bioactive 
substances such as proteins and drugs of biotechnological 
interest [11, 12]. The endophytic fungi are known to possess 
biosynthetic capabilities greater than those of host plants 
due to their long co-evolution and genetic recombination 
[13, 14].

In the previous 20 years, numerous important bioactive 
compounds with anti-microbial, insecticidal, cytotoxic and 
anticancer, antioxidant, antimalarial, antiviral, immune-
suppressive, anti-tuberculosis, etc. activities have been 
successfully isolated from the endophytic fungi [15–17]. 
Further, theoretical and computational approaches such as 
DFT, QSAR, highest occupied molecular orbitals (HOMOs), 
and lowest unoccupied molecular orbital’s (LUMOs) help to 
identify the orientation of the molecules and the interaction 
of the molecules with active sites of the targets [18]. As a 
result, the primary goal of this research was to separate novel 
antibacterial compounds of pharmaceutical interest from 
endophytic fungi for use in the development of antibacte-
rial medications to combat pathogenic and resistant bacteria.

Methods

Collection and Isolation of Endophytic Fungi

In the present study, endophytic fungi were isolated from 
different parts of medicinal plants, i.e., stems, leaves, and 
roots of Calotropis procera, Ocimum basilicum, Bryophyl-
lum pinnatum, and Colocasia esculent collected from Jabal-
pur regions (M.P.). The explants were cleaned with tap water 
to remove the dust and debris from the outer surface of the 
samples and cut into 2–4-mm-sized pieces. Surface disinfec-
tion was carried out by dipping the plant parts into sterilized 
distilled water for up to 1–2 min and after that transferring 
them into 70% alcohol for 30 s, and then keeping them in 4% 
sodium hypochlorite (NaOCl) solution for 1–2 min [19–21]. 
Finally, the plant material was placed in distilled water for 

1–2 min and transferred onto filter paper for removal of 
excess moisture from the samples. After surface disinfection, 
all plant parts were placed on potato dextrose agar (PDA) 
plates supplemented with streptomycin 500 mL/L to inhibit 
bacterial growth [22, 23]. All PDA plates were incubated 
in a fungal incubator for 3–5 days at 26 ± 1 °C, and regular 
growth of the hyphae was observed. 

Preservation and Morphological Identification 
of Endophytic Fungi

All endophytic fungi isolated from different plant parts were 
maintained on PDA medium (potato: 200 g; dextrose: 20 g; 
agar: 15 g, and distilled water: 1000 mL) slants and pre-
served at 4–5 °C with proper labeling without antibiotics 
and subcultured at time to time. Morphological identification 
was done using the slide culture technique on the basis of 
various characteristics like the shape of the spores, growth 
and color of the cultured fungal colonies, structure of the 
hyphae, and size of the spore fungi [24, 25].

Production and Screening of Secondary Metabolites

For the production of secondary metabolites, the endo-
phytic fungi were grown on potato dextrose broth (PDB) 
medium (potato: 200  g; dextrose: 20  g, and distilled 
water: 1000 mL) and incubated at 26 ± 1 °C for 7, 14, and 
21 days, respectively [26, 27]. After the incubation period, 
the metabolites were separated by using Whatman filter 
paper no. 1; their antibacterial activity against test bacte-
rial strains Klebsiella pneumoniae (MTCC4032), Bacillus 
subtilis (MTCC441), Escherichia coli (MTCC1679), and 
Staphylococcus aureus (MTCC96) was observed by using 
the agar well diffusion method, and the zone of inhibition 
was measured with the help of the Hi-Antibiotic zone scale, 
Hi Media Laboratories, Mumbai [28].

Optimization of Parameters for Maximum 
Production of Bioactive Compounds

For maximum production of bioactive compounds from 
potent endophytic fungi, various physical and chemical fac-
tors like incubation period, carbon and nitrogen sources, 
temperature, pH, and growth medium were examined.

Determination of Optimum Culture Medium

To assess optimum growth and maximum production of 
antibacterial compounds, the potent fungal strain Phoma 
sp. D1 was tested on different media viz. potato dextrose 
broth (PDB) medium (potato: 200 g, dextrose: 20 g, and 
distilled water: 1000 mL), Sabouraud dextrose broth (SDB) 
medium (dextrose: 40 g, peptone: 10 g, and distilled water: 
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1000 mL), maltose yeast extract broth (MYEB) medium 
(maltose: 4 g, yeast extract: 4 g, malt extract: 10 g, and dis-
tilled water: 1000 mL), Czapek Dox broth (CDB) medium 
(sodium nitrate: 2 g, dipotassium hydrogen phosphate: 
1 g, magnesium sulfate: 0.5 g, potassium chloride: 0.5 g, 
ferrous sulfate: 0.01 g, sucrose: 30 g, and distilled water: 
1000 mL), and Richard broth medium (dipotassium dihy-
drogen phosphate: 5 g, magnesium sulfate: 2.5 g, potas-
sium nitrate: 10 g, ferric chloride: 0.02 g, sucrose: 50 g, 
and distilled water: 1000 mL). After 7, 14, and 21 days, the 
antibacterial activity of the selected media was observed 
by using the agar well diffusion method [29].

Determination of Optimum Incubation Period

Phoma sp. D1 was used in the steady incubation process for 
21 days on a selected medium at 25 ± 1 °C. The cell-free cul-
ture filtrate (CFCF) of fungi was extracted from the first day 
of incubation, and the antibacterial activity was observed by 
using the agar well diffusion method [30].

Determination of Optimum Nitrogen and Carbon 
Sources

To determine the effect of carbon and nitrogen sources on the 
production of secondary metabolites, various carbon and nitro-
gen sources like maltose, glucose, dextrose, sucrose, mannitol, 
yeast extract, peptone, potassium nitrate, ammonium chloride, 
and ammonium nitrate with 1% concentration were amended 
to the selected medium [31–33]. After the addition of carbon 
and nitrogen sources separately in the growth medium, all flasks 
were incubated at 25 ± 1 °C for 12 days and the CFCF of each 
broth was observed for antibacterial activity.

Determination of Optimum Incubation Temperature

The variations in temperature directly impact the growth and 
production of metabolites from fungi [34]. Therefore, for 
maximum production of antibacterial compounds, Phoma 
sp. D1 was incubated at different temperatures of 15 °C, 
20 °C, 25 °C, 30 °C, 35 °C, and 40 °C for 12 days in an 
incubator (REMI, India) to determine antibacterial activity.

Determination of Optimum pH

The pH of the growth medium indirectly affects the metabo-
lism of organisms and influences the enzymatic action of 
fungi. For the optimization of the pH of the medium, fermen-
tation broth with eight different pH values, 3, 4, 5, 6, 7, 8, 9, 
and 10, was prepared and incubated for 12 days at 25 ± 1 °C. 
After incubation, the metabolite was separated using filter 
paper and antibacterial activity was observed against the test 
pathogen by the agar well diffusion method [35].

Purification of Bioactive Compounds

The purification of bioactive compounds from endophytic 
fungi is a crucial process. Therefore, the purification of anti-
bacterial bioactive compounds from Phoma sp. D1 using 
solvent–solvent extraction and thin-layer chromatography 
approaches was implemented.

Solvent–Solvent Extraction of fungal metabolite

In the case of solvent–solvent extraction, antibacterial 
compounds were extracted with a wide range of sol-
vents having different polarities like cyclohexane, car-
bon tetrachloride, ethyl acetate, toluene, benzene, and 
dichloromethane. Equal volumes of (1:1 v/v) of CFCF 
and solvents were taken in a separating funnel, shaken 
for 10–15 min, and kept stationary for 25–30 min. After 
that solvent fractions were separated successfully and 
evaporated solvent in sterilized condition. The remaining 
residue left after evaporation was mixed with dimethyl 
sulfoxide (DMSO) and their antibacterial activity against 
bacterial strain was observed. After confirmation of the 
solvent in which a positive result was obtained, further 
extraction of the compound was done in a rotary vacuum 
evaporator and the yielded extract was used for separation 
of the antibacterial compound.

Thin‑Layer Chromatography (TLC)

In this method, a number of different solvent systems were 
tried in order to attain a good resolution for purification of 
the antibacterial compounds. Finally, the solvent system 
benzene:methanol (50:50 v/v) was further used for purifi-
cation of the compound in TLC and two spots were observed 
on the TLC plate with different retention factor (Rf) values. 

Table 1  The endophytic fungi isolated from different plants

Name of medicinal 
plant

Endophytic fungi Class

Calotropis procera Aspergillus flavus Eurotiomycetes
Penicillium chrysoge-

num
Eurotiomycetes

Aspergillus niger Eurotiomycetes
Monilia sp. Leotiomycetes

Ocimum basilicum Alterneria alternata Dothideomycetes
Nigrospora sp. Sordariomycetes
Fusarium oxysporum Sordariomycetes

Bryophyllum pinnatum Phoma sp. D1 Dothideomycetes
Fusarium solani Sordariomycetes
Colletotrichum sp. Sordariomycetes

Colocasia esculenta Fusarium moniliformi Sordariomycetes
Aspergillus fumigatus Eurotiomycetes
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The spots were scraped out separately from the TLC plate, 
mixed with DMSO, and centrifuged at 8000 rpm for 20 min. 
The collected fractions were tested for antibacterial activity 
by agar well diffusion.

Rf = migration distance of compound/migration distance 
of solvent front.

Chemical Characterization of Antibacterial 
Compound

In order to characterize antibacterial compounds, active 
fractions collected after TLC were subjected to gas chro-
matography–mass spectrometry (GC–MS) analysis. The 
sample was analyzed in an Agilent 19091 s-431u1 GCMS/
MS 700 1C analyzer and introduced via an all-glass 
injector working in the split-less mode, with helium as 
the carrier gas with a linear velocity of 25.779 cm/s. An 
HP-5 MS UI fused silica capillary column (length: 15 m, 
film thickness: 250 μm, I.D.: 0.25 mm) was used. The 

temperature program was as follows: 60–300 °C at 40 °C/
min, 170–310 °C at 10 °C/min, and a 5-min hold at 310 °C. 
The identification of bioactive compounds was performed 
by mass spectra with data from the library.

Computational Observation (DFT Evaluation)

In the present scenario, the computation observation such 
as DFT evaluation plays a significant role in gaining exper-
imental date and predicts the different properties of the 
bioactive compounds. Therefore, in the present study, ini-
tially, all the characterized bioactive compounds were opti-
mized and analyzed using the Gauss View 6.0.16 program, 
GAUSSIAN 09 suite of programs, and the most reliable 
theoretical method and density functional computations 
(DFT) were performed [36, 37]. Carbon, nitrogen, oxygen, 
and hydrogen atoms were primarily calculated with the 
help of B3LYP and exchange correlation functional with 
6–31 G (d, p) basic sets.

Fig. 1  Morphological identifi-
cation of potent fungus Phoma 
sp. D1

Table 2  Screening of 
endophytic fungi for 
antibacterial activity by the agar 
well diffusion method

K. pneumoniae (Klebsiella pneumoniae), B. subtilis (Bacillus subtilis), E. coli (Escherichia coli), S. aureus 
(Staphylococcus aureus)

Endophytic fungal strain Zone of inhibition (mm)

K. pneumoniae B. subtilis E. coli S. aureus

Aspergillus flavus 00.00 ± 0.00 07.35 ± 0.90 00.00 ± 0.00 00.00 ± 0.00
Penicillium chrysogenum 10.40 ± 0.75 12.45 ± 0.96 00.00 ± 0.00 00.00 ± 0.00
Aspergillus niger 00.00 ± 0.00 00.00 ± 0.00 00.00 ± 0.00 00.00 ± 0.00
Monilia sp. 08.40 ± 0.76 10.45 ± 0.84 07.30 ± 0.62 00.00 ± 0.00
Alterneria alternata 00.00 ± 0.00 12.45 ± 0.65 00.00 ± 0.00 00.00 ± 0.00
Nigrospora sp. 10.75 ± 0.70 15.60 ± 0.65 13.25 ± 1.20 00.00 ± 0.00
Fusarium oxysporum 14.00 ± 0.60 16.35 ± 0.96 18.00 ± 0.68 16.50 ± 0.70
Phoma sp. D1 18.25 ± 0.58 22.75 ± 0.85 19.30 ± 0.76 16.30 ± 0.65
Fusarium solani 00.00 ± 0.00 16.45 ± 0.45 09.80 ± 0.74 10.40 ± 0.82
Colletotrichum sp. 00.00 ± 0.00 00.00 ± 0.00 11.45 ± 0.80 00.00 ± 0.00
Fusarium moniliformi 11.75 ± 0.60 11.45 ± 0.70 12.30 ± 0.85 00.00 ± 0.00
Aspergillus fumigatus 00.00 ± 0.00 12.80 ± 0.70 00.00 ± 0.00 00.00 ± 0.00
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Results

Isolation and Identification of Fungi

In the present study, a total 12 endophytic fungi were iso-
lated from different parts of four medicinal plants collected 
from different sites of Jabalpur (M.P.), India. All isolated 
fungal strains were identified by using the slide culture 
technique on the basis of their morphological (Fig. 1) and 
microscopic characteristics. The endophytic fungi belong to 
different classes in the fungal family as depicted in Table 1.

Screening of Endophytic Fungi for Antibacterial 
Activity

In the antibacterial screening of endophytic fungi, all fungal 
strains were grown on PDB medium for 7, 14, and 21 days 
and incubated in a fungal incubator at 25 ± 1 °C. Out of 12 
endophytic fungi, only two displayed maximum zones of 
inhibition against the test bacterial strain after 14 days of 
incubation period (Table 2).

The fungal strain Phoma sp. D1 isolated from Bryo-
phyllum pinnatum (Lam.) Oken, was observed for the 
highest zone of inhibition against Klebsiella pneumoniae 
(18.25 ± 0.58 mm), Bacillus subtilis (22.75 ± 0.85 mm), 

Escherichia coli (19.30 ± 0.76 mm), and Staphylococ-
cus aureus (16.30 ± 0.65  mm). Similarly, Fusarium 
oxysporum showed antibacterial activity against Kleb-
siella pneumoniae (14.00 ± 0.60 mm), Bacillus subtilis 
(16.35 ± 0.96 mm), Escherichia coli (18.00 ± 0.68 mm), 
and Staphylococcus aureus (16.50 ± 0.70 mm) respec-
tively. The other endophytic fungi like Nigrospora sp., 
Fusarium solani, Aspergillus fumigatus, Monilia sp., and 
Fusarium moniliformi were also observed for their anti-
bacterial activity against the pathogenic bacteria (Fig. 2).

Determination of the Optimum Medium

For the evaluation of the suitable medium for growth and 
production of antibacterial secondary compounds, five 
different media, potato dextrose (PDB) medium, Sab-
ouraud dextrose (SDB) medium, maltose yeast extract 
broth (MYEB), Czapek Dox broth (CDB), and Rich-
ard broth (RB) medium (Fig. 3), were used for potent 
Phoma sp. D1 fungi. The SDB medium was observed 
for maximum production of antibacterial activity after 
14  days of incubation against Klebsiella pneumoniae 
(19.40 ± 0.60 mm), Bacillus subtilis (23.80 ± 0.90 mm), 
Escherichia coli (21.40 ± 0.75 mm), and Staphylococcus 
aureus (18.90 ± 0.80 mm).

Fig. 2  Antibacterial activity by 
the agar well diffusion method. 
1, Antibacterial activity of 
Phoma sp. D1; 2, antibacterial 
activity of Fusarium oxyspo-
rum; C, control

K. pneumoniae E. coli B. subtilis S. aureus

Fig. 3  Effect of various growth 
media on bioactive metabolite 
production of Phoma sp. D1
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Determination of the Optimum Incubation Period

To find out the appropriate incubation period, Phoma sp. D1 
was inoculated on SDB medium for 21 days and it showed 
minor antibacterial activity from the 6th day of its incuba-
tion and maximum antibacterial activity was observed on the 
12th day of its incubation period against Klebsiella pneumo-
niae (19.45 ± 0.65 mm), Bacillus subtilis (24.35 ± 0.56 mm), 
Escherichia coli (21.20 ± 0.57 mm), and Staphylococcus 
aureus (16.90 ± 0.90 mm). After the 12th day of incubation, 
the activity declined continuously and stopped in the 20th 
day of incubation (Fig. 4).

Determination of Optimum Carbon Source

To observe the effect of carbon sources on the production 
of antibacterial compounds of Phoma sp. D1, the SDB 
medium was replaced with different carbon sources such as 
glucose, galactose, dextrose, maltose, and sucrose and the 

maximum activity was observed in the case of dextrose-sup-
plemented medium against test bacterial strains K. pneumo-
niae (21.05 ± 0.68 mm), Bacillus subtilis (24.88 ± 0.70 mm), 
Escherichia coli (22.25 ± 0.94 mm), and Staphylococcus 
aureus (17.75 ± 0.55) as shown in Fig. 5.

Determination of Optimum Nitrogen Source

Similarly, to examine the effect of nitrogen sources on 
the production of antibacterial compounds from Phoma 
sp. D1, different nitrogen sources such as peptone, yeast 
extract, ammonium chloride, ammonium nitrate, and 
potassium nitrate were added in the medium and maxi-
mum antibacterial activity was observed in the case of 
yeast extract against bacterial strains K. pneumoniae 
(21.20 ± 0.75 mm), Bacillus subtilis (24.50 ± 0.77 mm), 
Escherichia coli (22.70 ± 0.95 mm), and Staphylococcus 
aureus (16.85 ± 0.80 mm) as displayed in Fig. 6.

Fig. 4  Effect of various incu-
bation periods on bioactive 
metabolite production of Phoma 
sp. D1
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Fig. 5  Effect of various carbon 
sources on bioactive metabolite 
production of Phoma sp. D1
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Determination of Optimum Incubation Temperature

The fungal strain Phoma sp. D1 was incubated at different 
temperatures for maximum growth and antibacterial metabo-
lite production followed by 15, 20, 25, 30, 35, and 40 °C. The 
maximum activity was observed at 25 ± 1 °C against K. pneu-
moniae (20.95 ± 0.90 mm), Bacillus subtilis (24.10 ± 0.71 mm), 
Escherichia coli, (23.03 ± 0.60 mm), and Staphylococcus 
aureus (17.06 ± 0.83 mm) as depicted in Fig. 7.

Determination of Optimum pH

The pH of the culture medium is one of the very impor-
tant determining parameters for the biosynthesis of sec-
ondary metabolites, so Phoma sp. D1 was grown on pH 
levels 4, 5, 6, 7, 8, and 9. The maximum antibacterial 
activity was observed at pH 8 against Bacillus subtilis 
(24.50 ± 0.94 mm), Escherichia coli (22.60 ± 0.82 mm), K. 
pneumoniae (21.96 ± 0.64 mm), and Staphylococcus aureus 
(17.44 ± 0.56 mm) as displayed in Fig. 8.

Purification of Bioactive Compound

Solvent–Solvent Extraction

In the present study, the CFCF of potent endophytic fungi 
Phoma sp. D1 was extracted with different polarity solvents like 
cyclohexane, carbon tetrachloride, ethyl acetate, toluene, benzene, 
and dichloromethane (Fig. 9) in 1:1 (v/v) for the purification of 
antibacterial bioactive compounds. The entire fractions extracted 
with the solvents were tested for their antibacterial activity by 
the agar well diffusion method, and it was observed that ethyl 
acetate extract exhibited the maximum zone of inhibition against 
the bacteria Bacillus subtilis (25.10 ± 0.64 mm), Escherichia 
coli (22.30 ± 0.70 mm), K. pneumoniae (21.40 ± 0.77 mm), and 
Staphylococcus aureus (16.45 ± 0.76 mm).

Thin‑Layer Chromatography (TLC)

In thin-layer chromatography, ethyl acetate extract was 
further purified by using the benzene:methanol solvent 

Fig. 6  Effect of various nitrogen 
sources on bioactive metabolite 
production of Phoma sp. D1
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Fig. 7  Effect of various temper-
atures on bioactive metabolite 
production of Phoma sp. D1
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system. In TLC, two fractions with different Rf values 
of 0.25 and 0.96 were observed (Fig. 10). The fractions 
were tested for antibacterial activity, and the fraction 
with an Rf value of 0.25 exhibited antibacterial activity 
against K. pneumoniae (20.20 ± 0.60 mm), Bacillus subti-
lis (22.12 ± 0.82 mm), Escherichia coli (21.70 ± 0.90 mm), 
and Staphylococcus aureus (14.85 ± 0.76 mm) (Fig. 11).

Structure Elucidation of Bioactive Compounds 
by GC–MS/MS

The TLC fraction that exhibited antibacterial activity was 
subjected to GC–MS/MS for structure analysis. The sample 
was run counts vs. acquisition time (in min), and a number 
of peaks were observed with different molecular weights. 
The chromatogram shows the presence of one major peak 
in a TLC extracted spot, and some other small peaks were 
also found as shown in Fig. 12. A total of five compounds, 
2-(-cyclohexenyl) ethylamine, 2-chloro-6 fluorophenol, 
butyl ether2-hydroxyskatole4-glycerol, p-coumarate, and 
bicyclo [1, 2, 4] nona-2,4-dien-9-one, were identified on 

different RT and with different % area. But the intense peak 
of the ESI/MS spectra was observed at RT 11.085 with 
transition at 147 and was identified as 2-hydroxy skatole 
 (C9H9N) as displayed in Table 3.

Investigative Computation (DFT Studies)

The essential method for interpreting the atomic arrange-
ments of various prepared compounds for DFT research 
was conducted on a GAUSSIAN platform. To theoreti-
cally establish the geometry of all compounds (Fig. 13), 
the B3LYP/ 6–31 + G (d, p) basic set was used to optimize 
the geometry of each compound. By applying the DFT/
B3LYP 6–31 + G (d,p) fundamental sets, the single point 
energy and dipole moment (D) value of all compounds are 
evaluated (Table 4). It is evident from the energy values 
that compound 3 has a greater single point energy than the 
other compounds [38, 39]. Compound 5 assumes that less 
energy equals greater stability, based on the total energy 
of all the compounds. The dipole moment of compound 
3 is greater than that of the other compounds. From these 

Fig. 8  Effect of various pH 
levels on bioactive metabolite 
production of Phoma sp. D1
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Fig. 9  Antibacterial activity of 
different solvent-extracted frac-
tions by Phoma sp. D1
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comparison values, it is evident that all compounds possess 
dipole–dipole interaction.

Frontier Molecular Orbital (FMO) Studies

The FMO studies make it easy to comprehend the reaction 
of the compound and predict the active site in a conjugated 
system. The energies of the highest occupied molecular 
orbitals (EHOMO) and the energies of the lowest unoc-
cupied molecular orbitals (ELUMO) of all compounds 
explain the global reactivity descriptors such as chemical 
hardness, chemical potential, and electrophilicity. Negative 
EHOMO and ELUMO values for all compounds confirm 
their stability (Fig. 14). The electron cloud of compound 1 
is localized on N26 for the active atomic sites in the posi-
tion of neucleophilic attack. From the difference in bond 
energy, the chemical reactivity and chemical stability of 
the active molecule are explicable. The difference energy 
[EHOMO − ELUMO] for compound 5 is established to be 
less than the energy gap of the other compounds based on 

the energy difference values, which are the strongest evi-
dence for the greater reactivity of compound 5. In contrast, 
compound 2 is more stable.

The FMO’s research explains the chemical reactivity 
of the compound and the molecular selection of its active 
sites. From the FMO band energy values and the energy 
difference between HOMO and LUMO, the charge trans-
fer (CT) interaction is described. Few significant chemi-
cal reactivity parameters including electronegativity (χ), 
chemical potential (μ), global hardness (η), global soft-
ness (S), and global electrophilicity index (ω) are listed in 
Table 5 [40].

The EHOMO and ELUMO plots (Fig. 6) of the com-
pounds determine the exact orbital energy gap within the 
mapped molecular orbitals. Few essential quantum chemi-
cal parameters, such as chemical softness (S), are lower for 
compound 2 than for the other compounds; consequently, 
the stability of compound 2 is greater than that of the other 
compounds. Some additional crucial parameters, such as 
the electrophilicity (ω) value, are assigned as positive 
quantities that evaluate the tendency of the system to accept 
electrons from its environment. Comparing all compounds, 
compound 2 is the most stable because its electrophilicity 
value is less than those of the other compounds (Table 5).

QSAR Studies

QSAR is useful for predicting the activity, reactivity, and 
properties of reported compounds. All computations were 
performed using the HyperChem Professional 8.0.3 pro-
gram. The compounds’ structures were optimized using 
the (MM +) force field, with semi-empirical PM3 methods, 
and the Fletcher–Reeves conjugate gradient algorithm to 
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Fig. 10  TLC chromatogram of purified bioactive metabolite of Phoma 
sp. D1
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minimize energy. The evaluated log P values of compound 
5 are higher than those of all other compounds. The parti-
tion coefficient (log P) values play a crucial role in explain-
ing the biological activity of synthesized compounds. 
Specifically, the log P is essential for measuring the per-
meability of the employed compound into the cell mem-
brane. Other essential physical parameters, such as surface 
area, volume, hydration energy, refractivity, polarizability, 
mass, total energy, free energy, and RMS gradient, are also 
calculated to suggest the action of the compounds listed 
in Table 6.

Discussion

The exploration of endophytic fungi is continuously being 
conducted in order to isolate and characterize novel bioac-
tive compounds against a number of ailments. Because of 
this, huge studies were conducted on the endophytic fungi 
especially associated with medicinal plants and observed 
that these myco-organisms present a great source of bioac-
tive compounds. In one of the studies, the endophytic fungi 
Aspergillus sp., Alternaria alternata, Cladosporium sp., 
Diaporthe sp., Curvularia sp., Fusarium sp., Macrophomina 

Fig. 11  Antibacterial activity 
of thin-layer chromatography 
(TLC) purified fractions
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spp., and Trichoderma spp. were isolated from various parts 
of Cupressus torulosa D. Don., Alstonia boonei-ahun, Enan-
tia chlorantha-Awopa, and Kigelia africana plants [41]. The 
findings of this study are in agreement with a previous report 
in which endophytic fungi were isolated from Sceletium 
tortuosum L., Moringa oleifera, and Withania somnifera 
and their antibacterial activity against Escherichia coli and 
Staphylococcus aureus was observed [42, 43]. In many of 
the studies, it was found that the in vitro optimization of 
endophytic fungi on different media, temperatures, carbon 
and nitrogen sources, and pH levels supports the maximum 
production of novel bioactive compounds [44, 45]. There-
fore, Deka et al. [46] observed the effect of optimization of 
the culture medium for maximum production of bioactive 
compounds on Czapeck–Dox broth (CDB), potato–dex-
trose broth (PDB), malt extract broth (MEB), Sabouraud 
dextrose broth (SDB), and V8 juice broth, and the highest 
fungal growth and bacterial zone of inhibition was found in 
potato–dextrose broth. Similarly, maximum growth and anti-
bacterial metabolite production from Nigrospora sp. ML#3 
were observed in Sabouraud dextrose broth [30]. In another 
research work, endophytic fungi Aspergillus sp. CPR5 and 
Cymbidium aloifolium were also optimized on various car-
bon and nitrogen for maximum production of secondary 

metabolites and the fungal strain [31, 47]. For biosynthesis 
of natural bioactive compound naphthoquinones, the endo-
phytic fungi Fusarium solani was tested on different carbon 
sources, glucose, fructose, xylose, sucrose, sodium ace-
tate, and glycerol. In the case of Altenuene synthesis from 
Alternaria alternata isolated from Catharanthus roseus, 
the fungal media were replaced with a number of nitrogen 
sources such as soybean meal, yeast extract, tryptone, beef 
extract, peptone, casein, and urea, and the best production 
was observed in the case of soybean meal and glycerol 
[48]. In the case of temperature, the fungal strain Aspergil-
lus fumigatus strain KARVS04 was optimized in a range 
of 25–30 °C and a better result was obtained at 29 °C [49]. 
In another research work, the endophytic fungus Fusarium 
solani showed maximum growth and antibacterial activity at 
an optimized temperature of 25 °C [50]. Endophytic fungus 
Athelia rolfsi strain displays maximum growth of biomass 
at pH 5 and maximum production of antibacterial bioactive 
compounds from potent endophytic fungal strain Fusarium 
sp. DF2 was obtained at pH 6 that showed maximum zone of 
inhibition against Bacillus subtilis, Staphylococcus aureus, 
and Escherichia coli [51].

For purification and characterization of bioactive 
compounds from the endophytic fungi, there are many 

Table 3  Chemical composition 
of the TLC-purified fraction of 
Phoma sp. D1 (GC–MS/MS 
analysis)

S. No. Compound RT Response Transition Structure

1. 2-(-Cyclohexenyl) 
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techniques being carried out like solvent–solvent extrac-
tion, thin-layer chromatography column chromatography, 
gas chromatography, etc. In the case of endophytic fun-
gus Thielaviopsis basicola, the bioactive compounds were 
extracted through an aqueous solvent system and further 
purification was carried out in thin-layer chromatography 
by using chloroform and methanol solvent system [52]. In 
a previous finding, the antibacterial compounds extracted 
from different types of 40 endophytic fungi isolated from 
10 medicinal plants were separated by using thin-layer 
chromatography and the activity bacterial strain [53]. 
In the case of endophytic fungi Colletotrichum sp. and 
Fusarium sp., the antibacterial compounds were also sepa-
rated by thin-layer chromatography by using a mixture of 
hexane, ethyl acetate/hexane, ethyl acetate, and acetate/
methanol [54].

The bioactive compounds isolated from the endo-
phytic fungus Arthrinium sp. MFLUCC16-1053 were 
characterized by using GC–MS, and the mass spectra 
of the molecules were compared with library data and 

verified through relative peak area percentage that were 
related to C8–C23 n-alkanes [55]. In another study, the 
bioactive metabolites extracted from entophytic fungi 
Phoma sp. isolated from Tectona grandis L. were ana-
lyzed by GC–MS/MS and a total of eleven compounds 
were characterized [56]. Further, the atomic arrange-
ments of antibacterial compounds were studied through 
computational analysis such as DFT and FMO which 

Fig. 13  Optimized geometry 
of compound 1, compound 2, 
compound 3, compound 4, and 
compound 5

Compound 1 Compound 2

Compound 3 Compound 4

Compound 5

Table 4  Energetic properties of the evaluated compounds

Compound (no.) Single point energy (kcal/
mol)
DFT/B3LYP 6.31G + (d, P)

Dipole moment (D)
DFT/B3LYP 6.31G + (d, P)

C8H17N (1)  − 3.3209 ×  105 0.227
C10H12ClFO2 (2)  − 6.8947 ×  105 0.466
C9H9NO (3)  − 3.0007 ×  105 0.394
C13H16O5 (4)  − 5.5287 ×  105 0.628
C9H10O (5)  − 2.6595 ×  105  − 0.610
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helps to find out and predict the active site in a conju-
gated system. Due to the advancement in the sciences 
and technology, various software programs like QSAR 
are widely used for predicting the activity, reactivity, 
and properties of reported compounds isolated from the 
endophytic fungi [40, 57]. Hence, the endophytic fungi 

widely exploited from plants act as a replenished source 
of novel bioactive compounds and have a wide range of 
activities. The results described in this study definitely 
help to scale up for bioactive molecule production and 
formulation of pharmaceutical products in future from 
the endophytic microbes.

Fig. 14  HOMO–LUMO energy comparison of (1) compound 1, (2) compound 2, (3) compound 3, (4) compound 4, and (5) compound 5

Table 5  Computed quantum chemical parameters of few compounds

Compound (no.) HOMO in eV LUMO in eV ΔE in eV χ Pauling η in eV σ μ in eV S ω in eV

C8H17N (1)  − 0.2202  − 0.0827 0.1375  − 0.1514 0.0687 14.55 0.1514 7.2780 0.1666
C10H12ClFO2 (2)  − 0.2448  − 0.0274 0.2174  − 0.1361 0.1087 9.19 0.1361 4.5998 0.0851
C9H9NO (3)  − 0.1853  − 0.0196 0.1657  − 0.1024 0.0828 12.07 0.1024 6.0386 0.0632
C13H16O5 (4)  − 0.2243  − 0.0539 0.1704  − 0.1391 0.0852 11.73 0.1391 5.8685 0.1134
C9H10O (5)  − 0.1762  − 0.0946 0.0816  − 0.1354 0.0408 24.50 0.1354 12.2549 0.2246
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Conclusions

The endophytic fungi are unique microorganisms for pro-
ducing antibacterial secondary metabolic compounds and 
also have gained the attention of the scientific community 
because of their potential applications in the fields of 
agriculture and pharmaceutical industries. The result of 
this study substantiates the presence of antibacterial com-
pound from the endophytic Phoma sp. D1 fungal strain 
isolated from the Bryophyllum pinnatum. This is easily 
cultured and optimized in in vitro conditions for maxi-
mum production of the antibacterial bioactive compound. 
From the present observation, it can be concluded that 
Phoma sp. D1 has potential to produce an antibacterial 
bioactive compound which may be used in the field of 
pharmacology and also as a prospective source of valu-
able drugs. However, further work will need to be under-
taken to determine its toxicity profile, reliability, and 
economical value.
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