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Abstract
Purpose of Review In this review, we discuss the roles of the gut microbiota and dietary phytochemicals in improving human
health. Recent studies have reported that the human gut microbiota can be altered by dietary phytochemicals, including phenolics,
carotenoids, and dietary fibers. In addition, both pathogenic and nonpathogenic bacteria show regulatory effects with phyto-
chemicals, suggesting potential synergistic effects in the improvement of human gut health and prevention of chronic diseases.
Recent Findings Numerous studies have been conducted on gut microbial alterations induced by phytochemicals, such as
phenolics and carotenoids. Butyrate, a short-chain fatty acid produced via bacterial fermentation in the colon, also shows a
significantly beneficial effect in the maintenance of gut microbial homeostasis. However, the molecular mechanisms underlying
the effects of diets and the interactions of the gut microorganisms remain poorly understood. The gut microbiome profile changes
have been observed in chronic inflammation-induced diseases, including colitis, Crohn’s disease, immune dysfunction, colon
cancer, obesity, and diabetes. The anti-inflammatory effects of dietary phytochemicals against these diseases may be partially
mediated by the regulation of microbial profiles. The latest advances in biomedical technology, such as next-generation sequenc-
ing (NGS), and continuous cost reduction associated with these technologies have enabled researchers to perform an ever-
increasing number of large-scale, high-throughput computational analyses to elucidate the potential mechanism of
phytochemical–microbiome interactions.
Summary Information obtained from these studies may provide valuable insights to guide future clinical research for the
development of therapeutics, botanicals, and drug efficacy testing, many of which will be discussed in this review.
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Introduction

The term ‘microbiota’ refers to microbial communities [1].
The human gastrointestinal (GI) tract harbors more than 100
trillion total microbes, including bacteria, archaea, microbial
eukaryotes, and viruses [2, 3]. Although this number varies in

individual studies, it remains clear that microbial biological
functions are important [4]. The gut microbiota has several
beneficial effects on human health, including promoting in-
nate and adaptive immunity [5, 6], maintaining the intestinal
epithelial integrity [7, 8], helping the metabolism and synthe-
sis of essential nutrients such as vitamins and carbohydrate [9,
10], and resisting pathogens [11, 12]. Currently, scientists can
explore the characteristics of the human microbiota from low
to high resolution by collecting and analyzing high-
throughput sequencing data with computational methods and
algorithms [13, 14]. The National Institutes of Health (NIH)
common fund-supported HumanMicrobiome Project initiated
the profiling of the signature of the human microbiota and
interpreted the high-throughput data obtained from 16S
rRNA sequencing (relative abundance and diversity) and shot-
gun sequencing (functions and pathways) [3]. Subsequently,
the gut microbiota of healthy subjects and patients with
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specific diseases has been explored dynamically in the last
decade [15–18]. Phytochemicals are bioactive compounds
that are abundantly distributed in fruits and vegetables
[19–22]. A strong correlation between specific classes of phy-
tochemicals and modification of the responding microbiota
was observed [23–25]. However, comprehensive understand-
ing of the interactions among phytochemicals and the gut
microbiota remains in the early phase.

In this review, we will cover the roles of several classes
of phytochemicals in the modification of the human gut
microbiota. We will explore the relationship between the
human gut microbiota and chronic diseases, including in-
flammatory bowel disease (IBD), colorectal cancer
(CRC), and obesity. We will also discuss the potential
mechanism underlying the triangular regulation of phyto-
chemicals, the gut microbiota, and human diseases, along
with other significant factors, including dietary patterns,
lifestyles, and environmental exposure. The purpose of
this review is to highlight the importance of interactions
between phytochemicals and the gut microbiota, and dem-
onstrate the strong potential for the development of mul-
tiple platforms of diagnosis and therapies using this infor-
mation, which will guide future clinical studies.

Phytochemicals in theModification of the Gut
Microbiota

Flavonoids

Flavonoids are a major subgroup of phenolics that contain two
phenyl rings and one heterocyclic ring, and are widely distrib-
uted in fruits and vegetables, such as blueberry and cranberry
[26–28]. Evidence suggests that flavonoids and their deriva-
tives influence the profile of the gut microbiota for improve-
ment of host immune function and metabolism [29–31], and
the metabolic process reveals that flavonoids have both prebi-
otic and antibacterial effects [32]. Possible growth enhance-
ment of Bifidobacterium, Lactobacillus, and Enterococcus spe-
cies and inhibition ofClostridium andBacteroides species were
observed during the coculture with flavonoids, and the changes
in the human gut microflora were assessed by fluorescence in
situ hybridization [33]. The bacterial species Eubacterium
ramulus and Clostridium orbiscindens were also involved in
flavonoid metabolism [34, 35]. Quercetin and its glycoside
derivatives are abundant flavonols (subcategorized as flavo-
noids [36]) that are consumed via regular diets [37, 38]. A study
showed that quercetin, not its glycoside derivatives, inhibited
the growth of the bacteria Bacteroides galacturonicus,
Lactobacillus, Escherichia coli, Enterococcus caccae, and
Ruminococcus gauvreauii in a dose-dependent manner [29].
Other flavonoids also showed antimicrobial properties against
food-borne pathogens and are widely applied in the food

industry [39]. Naringin (a flavanone) and rutin (a flavonol)
metabolism have been determined to be microbiota-dependent,
based on results obtained for mixed cultures with the human
microflora [40]. All evidence suggest that flavonoid metabo-
lism and the gut microbiota influence each other, and the gut
microbiota has a strong impact on flavonoids and the associated
metabolites, leading to strong health benefits.

Anthocyanins

Anthocyanins represent a major subgroup of flavonoids that
are distributed in the common vegetables and fruits consumed
in the US market, such as blueberry, raspberry, purple cauli-
flower, and lettuces [41–44]. Raspberry anthocyanins
(glycosides) have been significantly degraded in the presence
of the active human microflora during coincubation [45].
Anthocyanins from potato, black rice, and malvidin 3-
glucoside also exhibited significant impacts on the growth of
the gut microbiota , inc luding on the growth of
Bifidobacterium spp., Lactobacillus spp., Staphylococcus
aureus, and Salmonella typhimurium, during in vitro fermen-
tation [33, 46, 47]. This bidirectional effect between anthocy-
anins and the gut microbiota was also observed in vivo. The
catalytic gut bacteria Eubacterium ramulus and Clostridium
saccbarogumia were involved in the deglycosylation of
cyanidin-3-glucoside, a major derivative of cyaniding [48].
Black raspberry anthocyanins restored the growth of
Eubacterium rectale, Faecalibacterium prausnitzii, and
Lactobaci l lus spp. , and inhibi ted the growth of
Desulfovibrio spp. and Enterococcus spp. in C57BL/6J mice
[49]. The luminal abundances of Firmicutes (Clostridium
spp.) and Bacteroidetes (Barnesiella spp.) were significantly
altered by raspberry anthocyanins [50]. The relative abun-
dances of Bacteroides, Prevotella, Porphyromonas, and
Lactobacillus significantly increased and those of
Bifidobacterium and Clostridium decreased in rats fed with
blackcurrant anthocyanins [51]. Berry anthocyanins sup-
pressed the growth of the proinflammatory bacterium
Bilophila wadsworthia and increased the abundance of
Gammaproteobacteria in the high-fat-diet group [52, 53]. In
human clinical trials, subjects fed anthocyanin-rich red wine
exhibited increased relative abundances of Eggerthella lenta,
Bifidobacterium, and Enterococcus at the genus level in feces
[54]. An 8-week study with 51 subjects fed anthocyanins and
prebiotic fibers showed increased phylum levels of
Bacteroidetes and reduced levels of Firmicutes and
Actinobacteria [55]. A majority of anthocyanins undergo me-
tabolism in the lower small intestine and colon, which was
mediated by the colonic microbiota [29]. Even through a large
amount of studies and results have been reported, further re-
search of specific bacteria and anthocyanins interactions and
their molecular mechanisms are needed to be elucidated.
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Hydrolyzable Tannins

Tannins are polyphenolic compounds and are subcategorized
into ellagitannins, gallotannins, complex tannins, and con-
densed tannins [56]. Ellagitannins are hydrolyzable tannins
that are present in berries, walnuts, plant seeds, and herbs
[57–60]. Ellagitannins were hydrolyzed to ellagic acid, and
ellagic acid was then gradually metabolized by the colon mi-
crobiota to produce urolithin A and urolithin B [60]. In addi-
tion, it has been demonstrated that the antioxidants urolithin C
and urolithin D were also present at significantly high concen-
trations in the intestines [61]. Evidently, urolithin metabolites
production and tannins metabolism occurs primarily in the
human lower GI tract and are microbiota-dependent. To iden-
tify specific microbes that are involved in ellagitannin metab-
olism, human clinical studies have reported that species be-
longing to the genera Bacteroides, Prevotella, and
Ruminococcus are the dominant gut microbes in subjects that
consumed urolithin-enriched walnut and pomegranate ex-
tracts, and the family Coriobacteriaceae is associated with
urolithin metabolites and blood cholesterol levels [62]. Other
studies have suggested that the genera Clostridium,
Bifidobacterium, Lactobacillus, and Bacteroides are involved
in the production of urolithins [63, 64]. Bifidobacterium and
Clostridium were also involved in pomegranate
ellagitannin metabolism in a bacteria-species-dependent
manner, as determined by measuring the optical density
of culture media [65]. Gallotannin is another type of hy-
drolyzable tannin [66, 67]. A human clinical trial revealed
that gallotannins underwent microbe-mediated metabo-
lism and released free gallic acid in the GI tract [68].
Although many studies have suggested that hydrolyzable
tannin metabolism is microbiota-related, the mechanisms
underlying the antioxidant and anti-inflammatory activi-
ties of tannin metabolites and urolithins in the improve-
ment of human health remain poorly understood [60].

Carotenoids

Carotenoids are tetraterpenoids, colored pigments that are
present in fruits and vegetables [69]. The subgroups include
xanthophylls (lutein, zeaxanthin) and carotenes (alpha-caro-
tene, beta-carotene, and astaxanthin), and these compounds
exhibit high antioxidant activity in the maintenance of human
health [70–73]. Astaxanthin is an oxycarotenoid that is abun-
dant in certain microalgae and marine animals [73–75].
Dietary astaxanthin (50 mg/kg) altered the relative abun-
dances of the phyla Bacteroidetes and Proteobacteria; genera
Butyricimonas, Bilophila, and Parabacteroides; and species
from Verrucomicrobia and Akkermansia in C57BL/6J mice
[76]. Astaxanthin (200 mg per kg body weight per day) re-
duced the bacterial load of gram-negative pathogen
Helicobacter pylori 119/95p on Helicobacter pylori-infected

BALB/cA mice, and reduced the gastric inflammation and
Helicobacter pylori-specific T cell cytokine release [77]. A
pilot study showed that dietary astaxanthin (0.04%, w/w)
modified cecal microbiota at the phylum by both gender and
genotype in vivo [23]. Astaxanthin application selectively re-
duced the abundance of cecal Proteobacteria and Bacteroides
in female wide-type and BCO2 knockout mice C57BL/6J
mice. In addition, astaxanthin significantly increased the
abundance of Actinobacteria and Bifidobacterium in male
wide-type mice only.

Fibers and Butyrates

Whole-plant foods include vegetables, whole grains, and fruits
and contain high amounts of fibers. Digestible fibers are
among the major bioactive components of whole-food dietary
interventions and significantly change the profile of the human
gut microbiota [78–80]. Butyrate is a short-chain fatty acid
that is commonly produced by bacterial fermentation of die-
tary fibers in the colon [81, 82]. This fatty acid plays several
important biological roles, including as an inhibitor of histone
deacetylase, an energy metabolite for the production of ATP,
an activator of G protein-coupled receptors, an antioxidant, an
anti-inflammatory agent, and a promoter of brain health
[83–89]. Human clinical trials determined that dietary fiber
intake was strongly associated with the abundances of specific
gut microbes, including those of the bacterial class Clostridia,
phylum Actinobacteria, and order Bifidobacteriales [90].
Soluble corn fibers (21 g per day) significantly altered the
bacterial phyla Firmicutes and Bacteroidetes and families
Ruminococcaceae, Lachnospiraceae, Eubacteriaceae, and
Porphyromonadaceae in a randomized human clinical study
[91]. Furthermore, metabolic pathways, including metabolism
of carbohydrates, nucleotides, vitamins, and amino acids, were
also induced by dietary fiber consumption. Studies have re-
ported that a high-fiber diet influences the composition of the
intestinal microbiome, indicating that the process of fiber fer-
mentation is highly microbiota-dependent [92, 93]. Thus, to
fully appreciate the benefits to human health and understand
the potential underlying mechanisms to guide the improve-
ment of dietary requirements in the future, further research is
needed.

From the above discussion, one could see that there are
significant interactions between dietary phytochemicals and
gut microbiota (summarized in Table 1) that could impact
human health, to be discussed below.

Gut Microbiota and Phytochemical
Interactions in Chronic Diseases

The human gut microbiome and chronic diseases have been
extensively studied in recent years [94–96]. An increasing
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number of studies have reported that microbial profiles sys-
tematically represent the interactions between the gut micro-
biota and microbiota-derived metabolites. The signature pro-
files are variable and highly dependent on the chronic diseases
exhibited by the subject. In this review, the microbiota signa-
tures of IBD, colorectal inflammation/CRC, and obesity/
metabolic syndrome are discussed.

IBD and Gut Microbiota

IBD is induced by severely dysregulated and excessive im-
mune response to commensal microbes, especially pathogens
[97, 98]. IBD has been subcategorized into two major types:
ulcerative colitis (UC) and Crohn’s disease (CD) [99]. With
the development of gene sequencing technologies, especially
16S ribosome RNA and metagenomic sequencing and pow-
erful bioinformatics tools, the reliability and accuracy of the
description of gut microbial profiles and bacterial functions
during intestinal inflammation in IBD have increased [13,
100]. UC is characterized as a continuous inflammation in
the colon [99]. Compared with the ‘normal’ gut microbiota,
patients with UC suffer from a reduction in bacterial diversity,
microbiota instability (over- or under-expression of certain
species), and adverse effects of therapies and drugs [97].
Some signature changes have been observed in human clinical
trials, where UC patients exhibited abnormalities of the gut
microbiota, such as total depletion of the phyla Firmicutes and
Bacteroidetes [101]. Other clinical reports have shown that

UC patients exhibited increased abundances of the phyla
Actinobacteria and Proteobacteria, with decreased bacterial
diversity. In vitro, Fusobacterium varium, Fusobacterium
nucleatum, and Escherichia coli were isolated from patients
with UC and were possibly responsible for the induction of
chronic inflammation in the colon [102–106]. Unlike UC, CD
occurs in the entire GI tract, with mixed healthy and inflamed
areas [97]. A systematic review and meta-analysis revealed
that the abundance of Mycobacterium avium subspecies
paratuberculosis was positively correlated with CD [107].
Reduced abundances of the genera Faecalibacterium and
Roseburia, as well as increased levels of Escherichia coli
and Ruminococcus gnavus, were also observed in patients
with CD [108]. Currently, the gut microbiota–host
interaction-induced mucosal immune response dysfunc-
tions and intestinal chronic inflammation are the major
causes of IBD, leading to reduced gut bacterial diversity
and microbial dysregulation. To restore the gut microbiota
homeostasis and prevent IBD, dietary intervention has
become a critical and promising approach.

Phytochemicals show strong anti-inflammatory activity
in vivo and in vitro, and might have potential applications in
the treatment of IBD [109–112]. In human clinical trials, 40
patients with IBD were tested on an anti-inflammatory diet
(IBD-AID) treatment [113–115]. The IBD-AID diet contained
fish, egg, and various fruits and vegetables to improve IBD
patients’ carbohydrate modification, ingestion of pre- and
probiotics, balance of the fatty acids intake, and overall dietary

Table 1 Summary of phytochemical and microbiota interaction

Phytochemical Altered microbiota Reference

Flavonoids Bacteroides galacturonicus, Lactobacillus, Escherichia coli, Enterococcus caccae, Bifidobacterium
catenulatum, Ruminococcus gauvreauii

[29]

Bifidobacterium, Lactobacillus, Enterococcus, Clostridium, Bacteroides [33]

Eubacterium ramulus, Clostridium orbiscindens [34, 35]

Anthocyanins Bifidobacterium ssp., Lactobacillus ssp., Staphylococcus aureus, Salmonella typhimurium [33, 46, 47]

Eubacterium ramulus, Clostridium saccbarogumia [48]

Eubacterium rectale, Faecalibacterium prausnitzii, Lactobacillus spp., Desulfovibrio ssp., Enterococcus spp. [49]

Firmicutes (Clostridium spp.), Bacteroidetes (Barnesiella spp.) [50]

Bacteroides, Prevotella, Porphyromonas, Lactobacillus, Bifidobacterium, Clostridium [51]

Bilophila wadsworthia, Gammaproteobacteria [52, 53]

Eggerthella lenta, Bifidobacterium, Enterococcus [54]

Bacteroidetes, Firmicutes, Actinobacteria [55]

Hydrolyzable tannins Bacteroides, Prevotella, Ruminococcus, Coriobacteriaceae [62]

Clostridium, Bifidobacterium, Lactobacillus, Bacteroides [63, 64]

Bifidobacterium, Clostridium [65]

Carotenoids Bacteroidetes, Proteobacteria; Butyricimonas, Bilophila, Parabacteroides; Verrucomicrobia, Akkermansia [76]

Helicobacter pylori [77]

Proteobacteria, Bacteroides, Actinobacteria, Bifidobacterium [23]

Fibers and butyrates Clostridia, Actinobacteria, Bifidobacteriales [90]

Firmicutes, Bacteroidetes, Ruminococcaceae, Lachnospiraceae, Eubacteriaceae, Porphyromonadaceae [91]
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pattern. The results showed that over 60% of IBD patients had
good or very good response to dietary treatment in the clinical
assessment. The symptom reduction and life quality improve-
ment was effective. Unfortunately, the underlying mechanism
of efficiency was not elucidated. For other phytochemicals,
flavonoids and polyphenols played anti-inflammatory roles
against IBD through increasing intestinal bacterial diversity,
reducing the relative abundance of Escherichia coli and
Fusobacteria, and increasing the abundance of Bacteroidetes
[116, 117]. Flavanols EGCG from green tea and tannic acids
from gelatin tannate also showed strong anti-inflammatory
activity in vitro bymodulating gut microbiota, yet the accurate
interaction was not fully understood [118, 119].With accumu-
lated evidence of gut microbiota interaction with phytochem-
icals, future human clinical trials of selected dietary supple-
mentation would help to develop effective and less toxic bo-
tanical therapies against IBD.

Gut Microbiota in Colorectal Inflammation and CRC

The human colonic mucosa is populated with a wide range of
microorganisms, usually in a symbiotic relationship with the
host [120]. The imbalance of colon microbiota raises the risk
of the colon exposed to metabolic and inflammatory stimuli
[101, 121]. This imbalance, or dysbiosis, is a multifactorial
issue that has been found to be associated with lifestyle (in-
dicative of dietary habits and sedentary behaviors), DNA mu-
tations, inflammation, and, most recently, changes in microbi-
ota [122–125]. Recent studies have attempted to identify mi-
crobial changes that may enhance the process [126–130]. For
example, Proteobacteria is a phylum that houses more than
200 genera of gram-negative bacteria, including several
well-known pathogens, such as Escherichia coli ,
Salmonella, andHelicobacter pylori [131]. Several preclinical
and clinical studies have demonstrated that these pathogens
were found to be associated with human colon inflammation
and CRC [132–136]. Meta-analyses of human clinical studies
revealed that Helicobacter pylori infection was associated
with a nearly 50% significant higher risk of CRC [137, 138].
A case–control study from Germany in 2003–2007 showed
slightly higher levels of Helicobacter pylori (around 46.1%)
in CRC cases than in healthy controls (40.1%). Firmicutes
comprises mostly gram-positive phyla in human colon [130,
139]. The overall gut mucosa Firmicutes accounted for
43.46% and 63.46% in healthy individuals and CRC patients,
respectively [140]. Staphylococcaceae, a family class of
Firmicutes, was found to be more abundant in human CRC
patients than in healthy controls [141]. In contrast, another
human clinical study showed that Firmicutes at the mucosal
tissue of tumors was lower at 37.12% compared to normal
mucosa at 44.72% of total mucosal bacteria [142].
Fusobacterium is a gram-negative bacteria and has been
shown to be more prevalent in individuals with CRC than in

healthy rats and humans [141, 143]. Furthermore, among in-
dividuals, those with a high abundance of Fusobacterium
were apparently more likely to have adenomas than those with
a low abundance of this genus [144]. A significant increase of
Fusobacteria occurred on the gut microbiota of CRC patients
from 0.03% to 10.58% compared with healthy individuals
[140]. These findings suggest that such microbiota may accu-
mulate during the colorectal carcinogenesis. Meanwhile, by
transplanting fecal microbiota from both CRC patients and
healthy individuals into germ-free mice, the tumor burden
increase was strongly associated with the abundance of the
genus Bacteroides in the mice gut [143]. Evidence suggests
that inflammatory and metabolic stimuli, along with the mi-
crobial community, are important for the prognosis of colon
carcinogenesis. Investigation of the colon microbiota and the
associated modulatory cellular pathways is an area with great
potential for research.

Phytochemicals show anticancer and anti-inflammatory ac-
tivities on various human cancers [20, 145, 146].
Phytochemicals also modulate the intestinal microbial ecolo-
gy, especially the gut microbiota, as early as a few days after
switching between carefully controlled diets [147–149].
Evidence suggested that dietary polyphenols stimulated the
growth of certain Lactobacillus strains [150]. Berry phenolics
inhibited the growth of both gram-positive and gram-negative
pathogenic bacterial strains, but, interestingly, the lactic acid
bacteria group was hardly affected [151]. Lactobacillus
acidophilus CECT 362 was resistant to tea phenolic extracts
containing caffeine, (−)-epicatechin, (−)-epicatechin gallate,
(−)- epigallocatechin, (−)-epigallocatechin gallate, and gallic
acid, whereas food-borne bacteria were inhibited [152].
Polyphenolic extracts from green tea, honey, peppers,
blackcurrants, raspberries, cinnamon, and peppermint also ex-
hibited inhibitory activity against Helicobacter pylori
[153–155]. Polyphenols in olive oil diffused into the gastric
juice and exerted a potent bactericidal effect against eight
strains of Helicobacter pylori at very low concentrations
(1.3 μg/mL) [156]. Tea-extracted phenolics (epicatechin, cat-
echin, 3-O-Me gallic acid, gallic acid, and caffeic acid), aro-
matics, and metabolites (3-(4-OH phenyl)propionic acid, 3-
phenylpropionic acid, 4-OH phenylacetic acid) showed selec-
tive growth effects on human gut microflora and reduced the
growth of pathogenic bacteria, including Clostridium
perfringens, Clostridium difficile, and Bacteroides spp., sig-
nificantly [157]. Despite systemic similarities between rodents
and humans, it is important to understand the complexity,
exposure-related differences, and mechanisms of action of
phytochemicals in gut microbial modulation [158].
Phytochemicals contribute to the maintenance of human GI
health, largely via modulation of the gut microbial balance
with simultaneous inhibition of pathogens and stimulation of
beneficial bacteria. Hence, regular consumption of a diet rich
in phytochemical contents may beneficially balance the gut
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microbial ecology, helping prevent GI disorders and, thus,
enhancing host health.

Gut Microbiota, Obesity, and Metabolic Syndrome

Obesity is commonly defined as body mass index (BMI)
values greater than 30 kg/m2 [159, 160] and widely character-
ized by the pathophysiology of lipid accumulation in body
compartments and excessive secretion of pro-inflammatory
adipokines by adipocytes and macrophages [161, 162].
Obesity and insulin resistance can lead to the development
of metabolic syndromes, including high blood glucose levels,
high blood pressure, high serum triglyceride levels, low high-
density lipoprotein levels, and large waist circumferences,
which increase the risk of heart disease, diabetes mellitus,
and stroke [163, 164]. Genetic changes in the body may not
fully explain the dramatic increase in the occurrence of obesity
in the past few decades [165, 166]; instead, environmental
factors, such as high-caloric diet and sedentary lifestyle, are
among the major driving forces [167]. An increasing number
of studies have shown that the gut microbiome diversity and
composition are associated with both diet and human diseases
such as obesity, metabolic syndromes, and type 2 diabetes
[168–174]. The gut microbiota transplantation from conven-
tional mice to lean and insulin-sensitive germ-free mice (a
process called conventionalization) led to a 60% increase in
adiposity and caused insulin resistance [175]. Subsequently,
the same laboratory reported that the gut microbial composi-
tion in obese (ob/ob) mice showed a 50% reduction in the
abundance of Bacteroidetes and an increase in the abundance
of Firmicutes compared to the abundances in lean (ob/+) and
wild-type (+/+) mice [176]. To understand the causative role
of the gut microbiome in obesity, a landmark study was con-
ducted showing that germ-free mice transplanted with the gut
microbiota from obese (ob/ob) mice exhibited substantially
increased adiposity compared to mice transplanted with the
gut microbiota from lean (ob/+) mice [177]. The mechanism
was interpreted based on increased capacity for energy har-
vest, as demonstrated by the increased acetate and butyrate
levels. Similar results were also reported on Western-diet-
induced obesity C57BL/6J mice, and the microbiota profile
was shifted to an increased abundance of Firmicutes and a
decreased abundance of Bacteroidetes [178]. Meanwhile,
one bacterial class, Mollicutes, in the phylum Firmicutes
was found to be significantly up-regulated by diet-induced
obesity, which increased host energy harvest, as indicated by
the enrichment of microbial genes and KEGG pathways in-
volved in the import and anaerobic fermentation of dietary
carbohydrates. The lipopolysaccharides (LPS) are an endotox-
in produced at the outer membrane of all gram-negative mi-
crobes [179] and cause systemic inflammation to initiate in-
sulin resistance and obesity (a phenomenon called metabolic
endotoxemia) [180, 181]. LPS-producing pathogens,

i nc lud ing the fami l i e s En te robac t e r i aceae and
Desulfovibrionaceae (phylum of Proteobacteria), were found
to be enriched in high-fat-diet-induced obesity mice and rats
[182, 183]. A significant decrease in fecal Enterobacteriaceae
was observed in obese adolescent humans who lost 4–7 kg
following a 3-month energy-restricted diet and a physical ex-
ercise program [184]. In addition, diurnal oscillations of the
microbiota were linked to obesity and metabolic syndromes
[185, 186]. Mice fed a high-fat diet with disturbance in circa-
dian rhythm exhibited altered microbial compositions and pre-
sented higher weight gains and glucose intolerance than mice
fed the same diet with a normal circadian rhythm [185].
Moreover, germ-free mice transplanted with feces from jet-
lagged human subjects exhibited dysbiosis, which caused
weight gain and glucose intolerance [185].

Cranberry extracts, composed of phenolic acid, flavonols,
anthocyanins, and proanthocyanidins, reduced weight gain,
visceral adiposity, and insulin resistance by reinforcement of
antioxidative defense and prevention of intestinal inflamma-
tion in obese mice fed a high-fat/high-sucrose diet [187]. In
this study, cranberry extracts restored the metabolic homeo-
stasis in a positive correlation with the abundance of
Akkermansia [187]. Strikingly consistent results were ob-
served in mice fed 1% concord grape polyphenols (high in
anthocyanins, flavan-3-ols, and flavonols). Grape polyphe-
nols substantially increased the abundance of Akkermansia
muciniphila, leading to altered intestinal gene expression.
This effect, in turn, regulated intestinal epithelial integrity
and inflammatory marker levels, finally resulting in improved
lipid deposition (reduced adiposity and weight gain) and glu-
cose tolerance (decreased glucose absorption and increased
insulin secretion) [188]. In cafeteria-diet-induced obese rats,
a negative correlation was observed between weight gain and
enrichment of microbial pathways involved in flavonoid bio-
synthesis [189]. The results indicated that dysbiosis caused by
obesogenic diets could disrupt the biosynthesis of flavonoids,
which may lead to decreased host utilization of flavonoids,
resulting in an obesity phenotype [189]. The gut microbiota
exhibited conversion of flavonoids, which were mainly dis-
tributed in the phyla Actinobacteria, Firmicutes, and the fam-
ilies Clostridiaceae, Enterococcaceae, Eubacteriaceae,
Erysipelotrichaceae, Lactobacillaceae, Lachnospiraceae,
Ruminococcaceae, and Streptococcaceae [32]. In addition,
glucoraphanin (which can be metabolized to isothiocyanates),
which is abundant in cruciferous vegetables such as broccoli,
cauliflower, and mustard, could mitigate obesity, insulin resis-
tance, and related metabolic disorders by browning white fat,
inhibiting metabolic endotoxemia-related chronic inflamma-
tion, and decreasing oxidative stress in mice fed a high-fat diet
[190]. Glucoraphanin exerted its anti-obesity effect via a de-
crease in the abundances of the phylum Proteobacteria, many
bacteria from which can produce endotoxins [182, 190].
Moreover, Ganoderma lucidum, a medicinal mushroom that
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is used in traditional Chinese medicine, reduced obesity and
insulin resistance by suppressing metabolic endotoxemia-
related chronic inflammation in mice fed a high-fat diet by
decreasing the endotoxin-bearing Proteobacteria and
Firmicutes to Bacteroidetes ratios [191]. Fecal transplantation
from mice treated with the Ganoderma lucidum extracts to
mice fed a high-fat diet could effectively reverse obesity and
fat accumulation, as well as the dysregulation of proinflam-
matory cytokines and intestinal tight junctions. These findings
indicate that modulation of the gut microbiota is the mecha-
nism underlying the treatment of obesity.

Current Challenges in and Applications
of Human Microbiota Studies

Some of the challenges of the human microbiota studies are
associated with interpretation of the metagenomic data with a
lack of standard parameters and references and with the po-
tential biases of technicians and methods during sample prep-
aration. These challenges include, but are not limited to, the
following: (1) variations in data processing and analysis using
different computational tools; (2) difficulty in sample collec-
tion of the mucosal and cecal microbes, as well as GI tract
tissue under inflammation and oxidative stress; (3) microbiota
composition changes during fermentation and degradation
and during passage from the rectum to lumen; (4) DNA ex-
traction efficiency for gram-positive and gram-negative bac-
teria are different, and the results also vary in different chem-
ical isolation kits.

Conclusion

There is solid evidence that gut microbes play key roles in the
reduction of the risk of chronic diseases, and phytochemicals
are interactive with them. Currently, comprehensive preclini-
cal and clinical studies reveal the gut microbial profiles of both
healthy subjects and those suffering from chronic diseases
such as inflammatory bowel disease (IBD), colorectal cancer
(CRC), and obesity. Dietary intervention seems to be a less
aggressive, low risk, and effective approach to prevent and
treat such diseases. In the future, we will understand the bio-
logical functions of the gut microbiota and the interactions
with phytochemicals, which will contribute to the improve-
ment of health benefits for humans.
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