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Abstract
Purpose of Review This article discusses the advances, methods, challenges, and future directions of data-driven methods in
advancing precision oncology for biomedical research, drug discovery, clinical research, and practice.
Recent Findings Precision oncology provides individually tailored cancer treatment by considering an individual’s genetic
makeup, clinical, environmental, social, and lifestyle information. Challenges include voluminous, heterogeneous, and disparate
data generated by different technologies with multiple modalities such as Omics, electronic health records, clinical registries and
repositories, medical imaging, demographics, wearables, and sensors. Statistical and machine learning methods have been
continuously adapting to the ever-increasing size and complexity of data. Precision Oncology supportive analytics have im-
proved turnaround time in biomarker discovery and time-to-application of new and repurposed drugs. Precision oncology addi-
tionally seeks to identify target patient populations based on genomic alterations that are sensitive or resistant to conventional or
experimental treatments. Predictive models have been developed for cancer progression and survivorship, drug sensitivity and
resistance, and identification of the most suitable combination treatments for individual patient scenarios. In the future, clinical
decision support systems need to be revamped to better incorporate knowledge from precision oncology, thus enabling clinical
practitioners to provide precision cancer care.
Summary Open Omics datasets, machine learning algorithms, and predictive models have enabled the advancement of precision
oncology. Clinical decision support systems with integrated electronic health record and Omics data are needed to provide data-
driven recommendations to assist clinicians in disease prevention, early identification, and individualized treatment.
Additionally, as cancer is a constantly evolving disorder, clinical decision systems will need to be continually updated based
on more recent knowledge and datasets.

Keywords Precision oncology . Precision medicine . Health analytics . Predictive analytics . Artificial intelligence . Big data in
health . Personalizedmedicine . Omics . Clinical decision support

Introduction

Cancer is a multifaceted disease, driven by selected modifica-
tions of genes and proteins at both the genetic and epigenetic
levels. Nearly one in six deaths was due to cancer in 2015,
making it one of the leading causes of mortality worldwide.
According to the WHO, the incidence of cancer is expected to
increase by 70% over the next two decades. Common sub-
types of cancer are lung cancer, liver cancer, colorectal cancer,
stomach cancer, and breast cancer [1].

Traditional methods of treating cancer include chemother-
apy, hormone therapy, and biological modifiers such as cancer
growth factor inhibitors, radiation therapy, and surgery.
Traditional treatments for cancer, which are based on type,
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stage, and histological grade, are suboptimal due to large inter-
person variability in response and toxicity profiles.

Precision oncology (PO) is a paradigm shift from treatment
plans based on expected outcome of the average patient to
treatment plans tailored for disease prevention and maximum
therapeutic benefit for each individual patient.

PO identifies mechanisms of cancer evolution, de-
velops therapies for subgroups of patients, and supports
physicians to provide targeted patient care in a timely
manner. For example, molecular testing has been used to
identify genetic markers, such as EGFR for lung cancer,
which helps identify the most effective medication to be
administered [2, 3]. It integrates omics-based data with
clinical, environmental, social, and behavioral information
to identify subpopulations of patients based on genomic
alterations and thus greatly improves the probability of
successful prevention or treatment.

Cancer Prevention and Early Detection PO aims to enhance
cancer prevention through targeted risk reduction models and
also to improve survivorship through early detection. Risk
prediction models may use genetic status along with environ-
mental and behavioral information to gauge the risk of devel-
oping disease. In addition, identifying cancer at an early stage
significantly improves survivorship. In the case of breast can-
cer [4, 5], for example, liquid biopsies detect tumor DNA in
the blood stream and offer the possibility of detecting cancer
with a blood test much before cancer is visible. [6, 7]

Drug Development and Therapy In traditional medicine, de-
velopment of a cancer drug requires such information as
oncogene addiction, cancer cell specificity, tumor re-
sponse, and therapeutic impact [8]. Even in the case of
same type of cancer, treatment responses of drugs vary.
Modeling is performed with the assistance of software such
as BIO-CAD or BODIL [9, 10]. Precision medicine fol-
lows the concept that the effectiveness of the drug depends
on the patient’s individual genetic profile, and therefore, a
particular drug can have varying levels of effectiveness
over different patients. Thus, PO adds another level of
complexity by studying the patient’s specific genetic pro-
file as well as the nature of the cancer to determine the
most effective treatment for an individual [2].

Cancer Treatment Patients with a similar cancer subtype
often respond differently when treated with the same che-
motherapeutics. Recent research has focused on exposing
the complex interplay of genomics and chemotherapeutic
sensitivity, resistance, and toxicity [11]. Therapies based
on precision medicine depend on the patient’s genotype,
phenotype, and biomarkers. Identifying biomarkers to help
determine the most appropriate treatment for cancer offers
many benefits including higher probability of selecting an

effective initial treatment and avoidance of treatments like-
ly to be ineffective [12].

Targeted therapies act on mutations that cause cancer pro-
gression by turning certain genes on or off. Compared to che-
motherapy and radiation, targeted therapies often have fewer
and less severe side effects as they reduce the Boff-target^
toxicity to non-tumor cells [13].

Immunotherapy Immunotherapy drugs such as monoclonal
antibodies, chimeric antigen receptor (CAR)-T cells, and
anti-tumor vaccines stimulate or direct the immune system
to better recognize and kill tumor cells [14]. Immune check-
points are a mechanism used by cancer cells to escape from
the immune system. To address this problem, immune check-
point inhibitors have been effective in treating a variety of
tumor types including advanced lung cancer and melanoma
[15].

Combination Therapy Precision oncology has the potential to
expand use of combination therapies and explain causes of
drug resistance. For patients with higher and more dangerous
levels of malignancies, combination therapy involving multi-
ple immunotherapies as well as traditional chemotherapy [16]
may be effective. The blockading of immune checkpoints has
been one of the most powerful breakthroughs in cancer im-
munotherapy, with the intent of eliciting the anti-tumor spe-
cific T cell response [17–20].

Data Analytics

Data analytics has propelled precision oncology in all areas of
biomedical research, drug discovery, data-driven clinical tri-
als, predictive analytics, and clinical decision systems. This
requires data integration and analysis of heterogeneous and
disparate data from multiple modalities (Table 1). Rapid im-
provements in technologies related to Bomics,^ increasing
amounts of data generated, and customized data analytic
methods, have exponentially expanded advances in PO.
Technologies such as gene therapy and next-generation se-
quencing are continuing to advance and become more afford-
able and available to the general public [3].

Data Sources and Characteristics for Precision
Oncology

The simultaneous convergence of several factors has created
both challenges and opportunities for precision oncology: the
exponential growth of large-scale datasets in omics, clinical
trials and cancer imaging, improvements in computational
genomics, deep learning and predictive analytics methods,
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and the dramatic drop in cost of sequencing a human genome
from $100 million in 2001 to $1000 [21].

The large amount of data generated by different technologies
with multiple modalities provides continuing challenges for data
integration, analysis, and interpretation. The data obtained by the
next-generation sequencing is around 3 GB and can vary up to
200 GB. For example, large-scale personal genomics and
pharmacogenomics datasets have been generated and are used
to uncover unique signaling pattern that occur in specific sub-
groups of patients. Drugs have been developed that target these
unique patterns.

Data analytics for precision oncology broadly consists of (a)
biomedical research such as identification of biomarkers and
cancer causing gene evolution pathways; (b) drug discovery in
repurposing and discovering targeted drugs based on resistance
or sensitivity; (c) data-driven clinical trials to help in population
stratification, adaptive trials, and identifying patients from elec-
tronic health record (EHR) and omics systems for clinical trials;
(d) modeling and clinical decision systems that help researchers
and clinicians in early detection, diagnosis, and combination
therapies (Fig. 1). Primary data sources for precision medicine
include the following:

& Patient biological data
& Scientific literature such as Medline and PubMed
& Data obtained directly from clinical trials

& Clinically significant variant database such as ClinVar
& EHR/EMR, death/cancer registries, insurance data
& Wearables/sensors
& Medical Imaging data such as The Cancer Imaging

Archive [22]
& Molecular Omics sources such as the Encyclopedia of

DNA Elements (ENCODE) [23], Genotype Tissue
Expression (GTEx) [24], the NIH Epigenomics Project
[25], The Cancer Genome Atlas [26, 27] and Drug
Screen [28].

Types of Data and Data Sources

Omics and Cancer Databases

Omics databases contain comprehensive catalogs of molecu-
lar profiles such as the genomic (DNA), transcriptomics (tran-
scribed RNA from genes), epigenetic (methylation profiles of
tissues), proteomic (protein profiles of specific tissues and
cells), and metabolic data in biological samples. Together, this
information is dubbed Bsystems biology^ and provides a ho-
listic view of the organism [29].

Table 1 Diverse data in precision oncology

Data source Data types Characteristics Examples

Omics Sequence data High dimensional, uncommon distributions.
Heterogeneous, data noise (technical

and biological).
Lack of standards for Next-Generation

Sequencing (NGS) data

Repositories such as Genbank and
Uniprot. HUGO: human genes

dbSNP: point mutations

HIS Structured, unstructured,
image, text

Longitudinal patient data.
Volume—large amounts of records;

but individual record sparse.
Veracity—noisy, incomplete (more

as clinical notes).

EHR

Other HR Structured data Sparse data Death registers; cancer register;
insurance company records

Wearables, sensors and mobile
technologies

Streaming data Continuously monitored data, high
throughput

Velocity—data accumulated at high
speeds.

Blood pressure monitoring, ECC
monitoring, blood glucose
monitoring, heart rate
monitoring, and so on.

Clinical trials Efficacy and toxicity
information

Higher standard in data collection,
quality and cleaner data. Smaller
data.

dose finding, survival trials

Other sources Spatial data, environmental
data

Variety Ecological survey, assessment of
water quality, EPA air quality,
toxic data, pesticide use.

Epidemiological studies Surveys, aggregated data,
lifestyle data

Structured, semi-structured Dietary studies, studies to estimate
prevalence and incidence of
disease.
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Different types of Omics data can be found from reposito-
ries that include genomic data (such as UCSC Cancer
Genomics Browser) , DNA methylat ion (such as
MethyCancer), transcriptome data (such as NONCODE),
drug sensitivity and response information (such as GDSC),
alliteration and mutation based data (such as cBioPortal),
and multidisciplinary information (such as canSAR) [30].
Sequence data is generally stored in FASTQ or Bam formats.

The Pan-Cancer project, developed by the Cancer Genome
Atlas research network, aims to analyze multiple tumor types
and molecular aberrations in cancer types to enable scientists
to discover new aberrations [26]. Similarly, several projects
such as the Cancer Cell Line Encyclopedia [31] and the
Genomics of Drug Sensitivity in Cancer [32] are generating
large genomic databases to specifically interrogate links be-
tween genomic biomarkers and drug sensitivity in cancer cell
lines.

Large pharmacogenetic databases can be used to predict
drug sensitivity. Computational algorithms for predicting
drugs can be improved based on genomic profiles and
drug-response data [11]. Based on these predictions, clini-
cal trials may be designed to test the results of such algo-
rithmic predictions on tumor response and toxicity in
patients.

Medical Imaging Data

Quantitative medical imaging provides tumor phenotype data
including tumor shape, size, volume, and texture. These fea-
tures can be correlated with clinical outcomes data and used
for evidence-based clinical decision support in conjunction
with the other information provided by clinical reports, omics,
and lab tests.

Medical imaging data is commonly generated utilizing
techniques such as computed tomography (CT), magnetic res-
onance imaging (MRI), or positron emission tomography
(PET). A hybrid scanner that combines the twomodalities into
a single scan is called MRI/PET. Incorporating the informa-
tion from both anatomy and metabolic activity helps to better
distinguish benign frommalignant nodules or masses found in
imaging. This knowledge improves disease characterization,
treatment evaluation and restaging, and decreases unnecessary
radiation exposure to the patient.

Computer-aided detection (CAD) has also been used in
cancer imaging. Computer-aided diagnostics (CADx) can
measure the malignancy by using the features of the image.
New systems proposing an integrated CAD system that can
both detect and diagnose nodules in lung cancer have been
proposed [33].

Fig. 1 Data sources and analytics
driving precision oncology: data
analytics for precision oncology
broadly consists of (a) biomedical
research, (b) drug discovery, (c)
data-driven clinical trials, and (d)
modeling and clinical decision
systems. This requires data
integration, analysis, modeling,
and interpretation of
heterogeneous and disparate data
from multiple modalities
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Radiomics is the field that studies the processing and analy-
ses of medical tomographic images. Radiomics provides imag-
ing biomarkers with potential to help in detecting and diagnos-
ing cancer, assessment of prognosis, prediction of response to
treatment, and monitoring of disease status. The multimodal
imaging features in radiomics are useful for predicting progno-
sis and therapeutic responses [34]. Radiomics supports clinical
decision support systems as it extracts a large number of quan-
titative features from digital images and mines the data for
hypothesis generation [35].

The processing and analysis of images in oncology contain
the following parts: first, the region of the tumor in the image is
segmented; second, feature extraction is used from the tumor
region; and third, feature selection is performed based on the
goal of the clinical application [36].

The methods used in radiomics include the methods from
classical image engineering for the prepossessing and seg-
mentation [37], from machine learning for the feature extrac-
tion [38], and frommultivariate statistics for individual feature
(covariate) selection and interpretation [39].

Electronic Health Record

EHR are digital records containing the patient medical informa-
tion such as medical history, patient diagnosis and treatment, lab-
oratory examination, medication, and ancillary clinical data [40].

These records include unstructured data, such as clinical
notes, and structured data including International
Classification of Diseases (ICD) codes and administrative data.
Data from EHR can be used to generate hypotheses about risk
factors for cancer and to improve the care for a patient [41], for
example, by identifying adverse drug effects based on certain
patient characteristics [42]. Furthermore, EHR-linked DNA
biobanks allow research in precision medicine [43].

Analyzing data from EHR often includes a large amount of
preprocessing and data cleaning [44]. Missing values are very
common in EHR, and imputation methods can be used [45].
Since the important parts of EHR are in free-text form, methods
from natural language processing are often required before addi-
tional analysis canbedone [46].Finally, variousdatamining tech-
niques, such as association rule learning and sequential pattern
learning, are used to extract information of clinical interest [47].

Difficulties in obtaining EHR data can occur due to the
patient’s lack of follow-up, unreachability due to recovery,
treatment at another medical facility, or death [48].

Clinical Trials

Clinical studies are investigations of patients in a clinical set-
ting. Some examples of the use of clinical studies in PO in-
clude the validation of biomarkers [49], finding the correct
dosage of a target or immune-activating drug [50] and show-
ing the effectiveness of such a drug [51]. Clinical trials can be

distinguished into interventional studies, where patients are
randomized to different treatments and observational studies,
where the research and researcher collect data on subjects
without involving in treatments.

In interventional clinical trials, the investigator has control
over the treatment that each patient receives. Conducting such
trials requires the approval by health authorities and an ethics
commission. The Declaration of Helsinki, currently in its sev-
enth revision, provides the basis for such national regulatory
bodies that are responsible for approval of a clinical trial [52].
Different types of clinical trials can be distinguished based on
how the patients are randomized to treatments [53]. For ex-
ample, in precision medicine, the effectiveness of a target drug
may be investigated in a parallel group study, where a
predefined number of patients with particular molecular alter-
ations are randomized to either a conventional treatment or to
the target drug; alternatively, the effectiveness of the target
drug could also be investigated by a cluster design, where
patients are separated into clusters and subsequently clusters
are randomized to different treatments.

In observational studies, randomization is not under the
control of the investigator and therefore such studies are sus-
ceptible to various forms of bias and confounding. For this
reason, they lack the internal validity of and do not provide the
same level of evidence as randomized trials [54]. However,
observational studies are useful in understanding public
health; furthermore, in some cases, such as when it is not
ethically feasible to randomize patients into specific interven-
tional groups (toxicity studies, etc.), observational studies are
the only ethically appropriate study design [55]. An example
of the latter situation in oncology is in an investigation of the
abortion–breast cancer hypothesis, a controversial hypothesis
that says that abortion increases the risk for breast cancer [56].
This study could not be performed by a randomized or pro-
spective design given the ethical issues around forced
abortions.

The most common outcomes in oncological studies are
binary data (for example, presence or absence of disease or
death), incidence rates for relapse, and progression-free sur-
vival times. Common statistical methods to analyze such data
include logistic regression and the Cox proportional hazards
model [57, 58].

Sensor Informatics: Wearable, Implantable,
and Ambient Sensors

The collection of health information can be performed through
use of various technologies. Wearable body sensors continu-
ously measure factors such as pulse, blood pressure, sleeping
patterns, and inflammation. This information can helpmedical
professionals improve the quality of treatment. The field of
data stream mining is concerned with extracting information
from such sensors [59]. Methods used to analyze sensor data
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differ from other data analysis techniques in that they analyze
sequentially, instead of by processing the data in batches.
Several machine learning algorithms for clustering, regres-
sion, and classification have been modified to work with these
kinds of data [60].

Precision Oncology Research Areas

Table 2 shows the research focus areas that form the building
blocks of Precision Oncology, along with the applications,
methods, and outcome.

Prognostic and Predictive Biomarkers

There are two types of biomarkers: prognostic and predictive.
Prognostic biomarkers guide in the determination of oncology
outcome risks, while predictive biomarkers help determine
effective therapy decisions. Sometimes, a biomarker may
have both good prognostic and strong predictive properties
(e.g., circulating tumor cells [CTCs]) [71].

The identification of new biomarkers starts with the pro-
cess of identifying the distinctive features and measuring the
quantity of biological molecules that transform or convert into
the composition, function, and dynamics of an organism.
Biomarkers are commonly analyzed using techniques such
as reverse transcriptase or proteomic analysis such as
CyTOF® mass spectrometry.

Data is analyzed using a variety of multivariate statistical
techniques, depending on the data type. For example, pattern
recognition-based techniques such as principal component
analysis (PCA) are utilized to screen LC/MS or NMR-based
data.

Gene Evolution Pathway

This type of data is drawn from collections of regulatory mol-
ecules, their interactions, and their effect on gene and gene
expression in a pathway. After sequencing, these pathways
are generally interrogated through comparative studies such
as an enrichment or nodal analysis. Gene functions can be
derived from this, and the obtained information can be used
to generate new drugs and biomarkers [72]. The Cancer

Table 2 Research Methods in precision oncology

PO research areas How it is used Method Outcome

Identify prognostic
biomarkers and
predictive
biomarkers.

Facilitate diagnosis.
Determine effective therapy decisions.

Association studies between genes,
proteins, and cancer onset.

Has shown good results in several cancer
types such as RCC [61] or prostate cancer
[62]

Cancer causing gene
evolution pathways

Determine genes influencing the onset
of cancer.

Develop specific, gene-targeted
therapy. [2, 8]

Nodal analysis, NGS techniques,
whole
genome sequencing, patient studies,
pathway interaction studies.
Pathway inhibition studies

Understanding of several pathway
mechanics that cause cancer onset.

Several corresponding risk genes such
as KIT, MET, and PDGFRA have been
identified from these pathways that help in
early identification of cancer [63].

Classify patient
population
biomarker
subgroup selection.

Used to identify patients, and
individuals susceptible to cancer.

Used to classify subgroups of patients
that can respond to specific
treatments

Staining, molecular technologies,
sequencing, subgroup analysis and
multiple testing methods

Recently, biomarkers such as PD-L1 IHC,
which relates to immunoblockading, have
been of interest [64], as well as PDGFR
alpha [65]

Developing gene
targeted drugs.

Used in Btargeted therapy^
(targets and influences specific,
pre-identified, genes.)

Drug resistance studies and prediction
models.

Enrichment studies, clinical trials,
sequencing studies.

Mechanism-based mathematical
modeling
for drug resistance [66].

Targets specified gene mutations and
alterations. Some studies show increased
effectiveness with the incorporation of
nanoparticles [67].

Developing
immune-activating
drugs

Focuses on activating and directing an
anti-tumor immune response, gen-
erally mediated by T cells [68].

Analysis of pathways connected to
apoptosis (particularly about ligands
such as PD-L1), enrichment studies,
clinical trials, sequencing studies.

Advances for selective targeting for cancer in
the past few years have produced several
effective drugs such as nivolumab [69, 70].

Estimating cancer
progression

Making decisions about treatment,
continuous monitoring, preventive
medicine.

Modeling depending on omics,
lifestyle, environment, data mining,
Markov models.

Individual risk factors, avoiding invasive
procedures for patients, cost-effective
for the healthcare provider.
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Genome Anatomy Project (https://cgap.nci.nih.gov/) is one of
the most comprehensive databases on cancer genomics,
transcriptomics, and proteomics. Predictions are made using
genome-wide association studies (GWAS) and gene set en-
richment analysis (GSEA).

Drug Research and Therapy

New research is being conducted to understand drug sensitiv-
ity based on omics, with the goal of developing less toxic
treatments for cancer. In the past few years, research has been
invested in the treatment of cancer at the molecular level,
leading to new kinds of cancer treatments such as the targeting
intracellular signaling pathways.

The programmed death-ligand 1 (PD-L1) pathway has
been found to be of particular interest with regard to cancer.
Monoclonal antibodies have been developed to the receptors
controlling these pathways (CTLA-4, PD-1/PD-L1) and have
been quite successful in the past few years [18].

Identification of genetic mutations that can influence the
development of cancer has led to development of several
drugs which have shown impressive responses in the majority
of patients. The effectiveness of these drugs tends to be short
lived, so techniques such as combination therapy may be use-
ful in increasing effectiveness of the treatment [19].

Mina et al. designed an algorithm to analyze molecular data
from the Cancer Genome Atlas (TCGA) international consor-
tium (6456 genomes from 23 tumor types). This algorithm iden-
tified cancer evolutionary dependencies from genomic alteration
occurrences. While these genomic alterations were shown to
impart resistance to certain drugs, it also resulted in novel dis-
coveries of tumor subtype sensitivity to other drugs [20].

Companion diagnostic tests are used to stratify patients
with the FDA providing guidance on co-developing these
along with the drug to help identify patients who will benefit
the most or with serious adverse effects.

Data-Driven Clinical Trials

In observational studies, molecular alterations and histology
can be treated as covariables, while in interventional clinical
trials, they can also be used to define inclusion-exclusion
criteria and to perform stratified randomization [73].
Moreover, when molecular profiling is done while recruiting,
it is possible to perform a data-driven trial [74].

Methods for such trials include group sequential designs
[75], enrichment designs for subpopulation selection [76],
adaptive treatment selection based on genetic information
[77], subgroup selection based on predictive biomarkers
[78], and endpoint selection based on observed effectiveness
[79]. The main advantage of such a trial is flexibility [80];

secondary advantages may be an increase in power if the right
subgroups or the right endpoint are selected [79] and a poten-
tial reduction in sample size in sequential designs [80].

Modeling and Clinical Systems for Precision
Oncology

The development of technologies that produce high-
throughput data (such as RNA-seq or mass spectrometry) has
made mathematical modeling techniques an absolute require-
ment for interpretation. Because of the availability of reference
data (found in repositories such as GEO or ENCODE), model-
ing can produce accurate output that can be used for
hypothesis-driven studies. The different kinds of modeling ap-
proaches used for systems biology can be broadly classified as
ordinary differential equation based modeling (ODE), Petri
Net-based modeling, Boolean modeling, modeling based on
linear programming, and agent-based modeling (AGM) [81].

Ordinary differential equations relate the change in bio-
chemical quantities over time by modeling them as functions
and derivatives of functions. In precision medicine, they are
primarily used to understand pathway mechanics. Common
applications include modeling dynamic gene regulation [82],
and calculation of cell growth/death rates [83]. They are also
integrated with larger models such as Bayesian Networks
which can help analyze large gene regulatory networks [82].

Petri nets are mathematical models that represent a bio-
chemical system as a bipartite graph where nodes represent
events and arrows represent preconditions for these events
[84]. In precision medicine, Petri nets are used to model com-
plex interactions between gene expression and molecular in-
teractions [85]. Once the system is represented, many proper-
ties of the system can be derived automatically [86].

Petri nets are by no means the only formalism that can be
used to model such networks of genes. A simple alternative to
Petri nets are Boolean network model that use proposition
logic to derive properties of the biochemical system, for ex-
ample genome-wide molecular interactions [87]. While genes
are not simple binary switches, it has been observed that the
pattern of expressed and suppressed genes can in many cased
still often be approximated well by Boolean networks [88,
89]. Another simple alternative is to connect the states of the
biological system by linear functions and to use linear regres-
sion, linear classification, and linear programming to derive
the properties of the system [90]. More complex approach that
does not require linear relationships between the components
of the system can be analyzed by agent based simulation [91].

With respect to cancer, modeling has been used to analyze
the impact of factors such as interactions between the immune
system and the environment, or the reaction to therapy.

Curr Pharmacol Rep (2018) 4:145–156 151

https://cgap.nci.nih.gov/


Mathematical models also include gene-based interactions,
drug-based interactions and patient responses, and scans (such
as MRI or Xray). This kind of modeling can help construct
and address hypotheses, such as the development of resistance
by tumor cells [92].

Models researching drug resistance which use mechanisms
such as cellular signaling networks as inputs can be broadly
classified into mechanistic modeling, which include experi-
mental techniques such as molecular dynamic simulation
(used to investigate the development of drug resistance) and
data-driven predictionmethods such as omics data-based node
biomarker screening [66].

Modeling Cancer Progression

Biological models of tumor progression have various appli-
cations and are recognized as promising research tools for
oncology [93]. Such models simulate the behavior of indi-
vidual elements in the cancer treatment paradigm, such as
cancer cell responses, immune cell responses, and energy
transfer.

Predictive Models for Cancer Survivorship

Genetic information may be used in predictive models for
cancer survival. In parametric and semi-parametric models,
such as the Weibull model or the proportional hazards mod-
el [94], genetic subgroups can be incorporated as
covariables, used for stratified survival models, or treated
as a frailty term [95]. Furthermore, penalized and hierarchi-
cal survival models have been proposed to deal with the
pathway information [96].

Predictive Analytics for Data-Driven Clinical Trials

Use of predictive analytics (PA) to generate strata reduces
the heterogeneity of patients. This may be based on pa-
tient treatment outcome or on time-to-disease progression.
Strata can be used either up-front in the study design or
for post-hoc stratified analysis of data. In identifying stra-
ta, PA has the ability to reduce randomization failure and
size of clinical trials. It can also decrease bias, provide
feedback, and allow drugs to fail earlier in the clinical
trial, thus reducing time and cost.

Data mining may be used to understand gene-phenotype
and disease relationships and develop disease progression
models. For example, PA can be used in identifying FDA-
approved dose finding models for clinical trial along with
tools to estimate progression of clinical trial patients in the
experimental group.

Clinical Decision Systems to Support Precision
Oncology

The decreasing cost of sequencing and enhanced data analysis
methods allow for effective analysis of petabytes of biomed-
ical data [97]. According to the 2016 Precision Medicine
Essentials Brief, however, only 29% of hospitals in the USA
are utilizing precision medicine.

Given the high value, yet complex nature of PM, doctors
need to be educated in how to integrate PM into their prac-
tices, how to counsel patients based on genomic information,
and how to reliably compare patient profiles with possible
drugs and intervention in an acceptable amount of time.

Because the field is evolving so quickly, some means of
continuing education are required to help doctors keep track of
new biomarkers and therapy options as they are being
discovered.

Currently, although there are a number of tools for
predicting and annotating genomic changes that support var-
iant identification, variant annotation, and visualization, tools
to support clinicians in the interpretation of these data in a
clinical setting are very limited.

A clinical decision support (CDS) system could ideally
include EHR factors such as age, race, gender, and other
health parameters such as emergency or long-term care; how-
ever, most clinical support systems only use subsets of this
data [98]. In rural areas, CDS systems on mobile devices can
capture and support community health workers in differential
diagnosis and recommending additional diagnostic tests [99].
Quantitative medical imaging features such as intensity,
shape, size, volume, and texture can also be included in a
CDS. This offers information on tumor phenotype. These fea-
tures can be correlated with clinical outcomes data used for
evidence-based clinical decision support in conjunction with
the other information.

Systems that use multiomics data, with algorithms to
understand phenotype-genotype, gene-gene and gene-
environment interactions, can suggest therapies to clini-
cians based on predicted drug-efficacy. These approaches
are critically needed to facilitate the adoption of PO in
clinical settings. This may require a complete overhaul of
the cancer treatment ecosystem, with different clinical
workflows and personalized information for each patient.
The lack of standard interfaces for such integration, along
with varying formats used for genomic test, further com-
plicates the process.

Discussion and Conclusion

The continued emphasis by governments on creating open
datasets for omics, drastic reductions in cost of processing
genetic information (with an expected drop to $100 within
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the next 10 years) [100], along with increased speed and lower
cost of high-throughput systems contributing to omics data,
and the continuing refinement of mathematical models and
predictive analytics has created a unique potential for preci-
sion medicine, in general, and precision oncology, in particu-
lar, to optimize cancer care delivery. While these factors en-
able significant new developments in disease treatment, they
also present significant challenges. Data integration and ana-
lytics must keep up with the exponential increase. A major
challenge involves the need to create some means by which to
process and disseminate all of this information in meaningful
ways to researchers, clinicians, and patients.

PO can help improve cancer therapy by anticipating drug
resistance and proposing alternative strategies such as immu-
notherapy. Genetic alterations in cells pose challenges for pre-
cisionmedicine in the prediction of drug resistance for a tumor
cell. Strategies to combat resistance against these drugs must
also be taken into account, such as blocking parallel pathways
[101]. The evaluation of these genetic aberrations is both time
consuming, expensive, and remains yet another challenge to
overcome [102].

As genetic profiling becomes more widespread and cost-
effective, data-driven designs for clinical trials with increased
predictability in outcomes and timelines will become more
common. Data-driven patient selection, based on suitability,
can optimize the eligibility criteria at the study level [103].
The eligibility criteria can be modified during the trial based
on real-time data. Besides the additional financial costs, the
main challenges with such trials is the increased complexity of
the logistics in performing such trials.

Combination therapies are also commonly in use, allowing
a multifaceted approach to cancer. A greater understanding is
needed to combat the unexplained drug resistance seen in
cancer. PO can help improve cancer therapy by anticipating
drug resistance and proposing alternative strategies, such as a
shift from chemo/radiotherapy to immunotherapy for an indi-
vidual patient.

New models of predictive analytics incorporating new
knowledge will need to be designed to better predict cancer
progression, cancer survivorship, drug discovery, and drug
resistance. Extensions of these models have been proposed
that incorporate biomarkers [104] and pathway-specific infor-
mation [105].

In addition to all of the promising research regarding cancer
treatment, the data and analytics revolution also holds great
potential for cancer prevention. Several important risk factors,
such as oncogenes, have been identified and have put us in a
position to take preventive measures before the onset of the
disease.

Expert clinical and intelligent systems are required to trans-
late knowledge into clinical practice and propel the large-scale
adoption of genomic-based precision oncology into clinical
practice.

Logistically, it is still difficult to incorporate precision med-
icine in clinical practice due to lack of integrated systems. In
particular, even where implemented, it may take multiple days
from the time a biopsy is analyzed until the recommended
treatment is found. As time is a critical factor in late-stage
cancer, a faster turnaround time is needed to make precision
medicine applicable and pragmatic for hospital application.

Many of the existing clinical systems do not assist clini-
cians in providing PO-based recommendations; hence, pa-
tients are unable to benefit from new knowledge in PO for
early diagnosis, prevention, or therapies. This is a challenge
as hospitals have already invested in a plethora of EHR sys-
tems, primarily with the limited goal of hospital and patient
management. The lack of standard models for EHR systems,
standard interfaces for such integration, and standard repre-
sentations for genomic test results will continue to challenge
interoperability. A redesign of EHR systems to include or
even integrate omics data with patient data, ability to update
new omics evidence into EHR, along with new workflows, is
required to provide real-time and data-driven precision oncol-
ogy patient care.

In the future, artificial intelligence-based clinical systems
will enable clinicians to provide targeted diagnosis and treat-
ment, benefiting cost-effectiveness, outcomes, and the pa-
tient’s quality of life, while minimizing treatments that may
be ineffective or even unnecessarily toxic for that individual.
As cancer is a constantly evolving disorder, predictive models
and clinical decision support systems will need to continuous-
ly update themselves to keep pace with the constant expansion
of datasets and new knowledge.
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