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Abstract
Purpose of Review This review presents an overview of the current knowledge of tumor necrosis factor receptor (TNF-R)-
associated factor (TRAF) molecules in inflammation with an emphasis on available human evidence and direct in vivo evidence
of mouse models that demonstrate the contribution of TRAF molecules in the pathogenesis of inflammatory diseases.
Recent Findings The TRAF family of cytoplasmic proteins was initially identified as signaling adaptors that bind directly to the
intracellular domains of receptors of the TNF-R superfamily. It is now appreciated that TRAFmolecules are widely employed in
signaling by a variety of adaptive and innate immune receptors as well as cytokine receptors. TRAF-dependent signaling
pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or
interferon-regulatory factors (IRFs). Most of these signaling pathways have been linked to inflammation, and therefore, TRAF
molecules were expected to regulate inflammation and inflammatory responses since their discovery in the 1990s. However,
direct in vivo evidence of TRAFs in inflammation and especially in inflammatory diseases had been lacking for many years,
partly due to the difficulty imposed by early lethality of TRAF2−/−, TRAF3−/−, and TRAF6−/− mice. With the creation of
conditional knockout and lineage-specific transgenic mice of different TRAF molecules, our understanding about TRAFs in
inflammation and inflammatory responses has rapidly advanced during the past decade.
Summary Increasing evidence indicates that TRAFmolecules are versatile and indispensable regulators of inflammation and inflam-
matory responses and that aberrant expression or function of TRAFs contributes to the pathogenesis of inflammatory diseases.

Keywords TRAFs . Inflammation . Inflammatory diseases . TLRs . NLRs . Cytokines . NF-κB . IRFs

Introduction

The tumor necrosis factor receptor (TNF-R)-associated factor
(TRAF) family of cytoplasmic proteins was initially identified

as signaling adaptors that bind directly to the intracellular
domains of receptors of the TNF-R superfamily [1, 2, 3••]. It
is now recognized that TRAFmolecules are widely employed
in signaling by a variety of adaptive and innate immune re-
ceptors as well as cytokine receptors [3••, 4•, 5]. Adaptive
immune receptors that can directly recruit TRAF proteins in-
clude T cell receptor, CD28, and co-stimulatory receptors of
the TNF-R superfamily (such as CD40, BAFF-R, TACI,
BCMA, 4-1BB, OX-40, GITR, CD27, CD30, DR3, HVEM,
and TNF-R2) [3••, 4•, 5]. Innate immune receptors that can
indirectly employ TRAF proteins in signaling include Toll-
like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-
like receptors, and C-type lectin receptors [3••, 5]. Cytokine
receptors that can directly or indirectly recruit TRAF proteins
include receptors for IL-1β, IL-2, IL-6, IL-17, IL-18, IL-33,
type I IFNs, type III IFNs, GM-CSF, M-CSF, and TGF-β [3••,
4•, 5].

Upon ligand engagement, one major role of TRAF mole-
cules is to serve as adaptor proteins in the assembly of
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receptor-associated signaling complexes, linking upstream re-
ceptors to downstream adaptor proteins and effector enzymes
[3••, 4•, 5]. This is mediated by the C-terminal TRAF domain,
a distinct feature of all TRAF proteins except TRAF7 (a figure
of TRAF1-7 structures is provided in a previous review [3••]).
The TRAF domain is further divided into N-terminal coiled-
coil region (TRAF-N) and a C-terminal β-sandwich domain
(TRAF-C or MATH domain) [2, 3••, 6]. The uniqueness and
specificity of the binding of each TRAF molecule to various
receptors is mainlymediated byminor structural differences in
the TRAF-C domain that recognizes major and minor consen-
sus sequences of the cytoplasmic tails of receptors or their
associated adaptor proteins [7, 8]. However, a recent study
points out that the binding preferences of TRAF proteins
may be more complicated than previously appreciated as
TRAF molecules also exhibit binding preferences beyond
the established core motifs [9], thus warranting further inves-
tigation on this aspect. In addition to their role as adaptor
proteins, TRAFs (including TRAF2, 3, 5, and 6) also act as
E3 ubiquitin ligases [3••, 4•, 5]. TRAF-dependent signaling
pathways typically lead to the activation of nuclear factor-κBs
(NF-κB1 and NF-κB2), mitogen-activated protein kinases
(MAPKs: ERK1/2, JNK1/2, and p38), or interferon-
regulatory factors (IRFs: IRF3, IRF5, and IRF7). Therefore,
TRAFs function as both adaptor proteins and E3 ubiquitin
ligases to regulate receptor signaling in adaptive and innate
immune responses as well as other biological processes [3••,
4•, 5].

Because of the prominent importance of the TNF super-
family in inflammation, TRAF molecules were expected to
regulate inflammation and inflammatory responses since their
discovery as TNF-R-interacting proteins in the 1990s [1, 2].
However, the in vivo functions of TRAFs in inflammation and
especially in inflammatory diseases had remained elusive for
many years, partly due to the difficulty imposed by early le-
thality and multiple organ abnormalities of TRAF2−/−,
TRAF3−/−, and TRAF6−/− mice [3••]. With the creation of
conditional knockout and lineage-specific transgenic mice of
different TRAF molecules, our understanding about TRAFs
in inflammation and inflammatory responses has rapidly ad-
vanced during the past decade. Here, we provide an overview
of current knowledge of TRAF molecules in inflammation
with an emphasis on available human evidence and direct
in vivo evidence of mouse models that demonstrate or impli-
cate the contribution of TRAF molecules in the pathogenesis
of inflammatory diseases.

TRAF1

Increasing evidence indicates that as a signaling adaptor,
TRAF1 regulates inflammatory responses to the pro-
inflammatory cytokine TNFα and microbial ligands of

TLRs [3••, 10–13, 14••]. Expression of TRAF1 is restricted
to the spleen, lung and testis under normal conditions [10, 15,
16]. As a direct NF-κB target gene, TRAF1 expression is
often upregulated by TNFα and other inflammatory stimuli
[17–20]. When expressed in cells, TRAF1 protein regulates
inflammation by directly interacting with TNF-R2, TRAF2,
TRIF, IKK2, NIK, and ASK1 [3••, 10, 13, 15, 20–25].
Therefore, TRAF1 is able to regulate both canonical and
non-canonical NF-κB pathways as well as activation of the
MAP kinases (JNK, p38, and ERK) to influence pro-
inflammatory cytokine production and inflammatory re-
sponses [3••, 10, 13, 20, 22–26]. Recent human and animal
studies provide evidence implicating TRAF1 in rheumatoid
arthritis, lung inflammation, liver inflammation, and
atherosclerosis.

Sepsis and Rheumatoid Arthritis Genome-wide association
studies first identified single-nucleotide polymorphisms
(SNPs) at the TRAF1-C5 locus (encoding TRAF1 and com-
plement component 5) on chromosome 9 as risk factors for
rheumatoid arthritis (RA) in human patients [27–32]. It was
subsequently found that SNPs of the TRAF1-C5 locus predict
the clinical response to anti-TNF therapy in RA patients [33,
34] and that increased serum levels of TRAF1 correlate with
disease activity and autoantibodies in RA patients [35]. In
particular, the TRAF1/C5 SNP rs3761847 GG homozygote
status is associated with an increased risk of death from sepsis
and malignancies in RA patients [36]. Interestingly, it was
recently revealed that this SNP (rs3761847 GG) leads to re-
duced levels of TRAF1 protein in monocytes and T cells
[14••]. Monocytes from healthy human subjects with SNP
rs3761847 GG of the TRAF1 gene produce increased amounts
of pro-inflammatory cytokines in response to lipopolysaccha-
ride (LPS) due to enhanced NF-κB activation [14••].
Mechanistically, TRAF1 inhibits TLR4-induced NF-κB acti-
vation by interfering with the linear ubiquitination of NEMO
through direct interaction of TRAF1with three components of
the linear ubiquitination (LUBAC) complex, SHARPIN,
HOIP, and HOIL-1 [14••]. Consistent with the negative role
of TRAF1 in LPS-induced inflammation observed in human
monocytes, TRAF1−/− mice are more susceptible to LPS-
induced septic shock [14••]. Furthermore, in a genetic mouse
model of inflammatory arthritis, KRN/I-A(g7) (KxB/N) mice,
the production of anti-GPI autoantibody is markedly impaired
by TRAF1 deficiency [37]. These new findings elucidate how
this RA-associated TRAF1 SNP could contribute to the in-
creased incidence and severity of sepsis, arthritis, and other
inflammatory diseases.

Lung Inflammation TRAF1 has been shown to be involved in
lung inflammation with several different mouse models, in-
cluding intratracheal TNFα-induced inflammation, LPS
inhalation-induced inflammation, and allergic lung
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inflammation. Intratracheal TNFα-treated TRAF1−/−mice ex-
hibit more severe TNFRI-dependent liver injury due to in-
creased production of TNFα by bronchoalveolar cells, sug-
gesting a negative role of TRAF1 in TNFα-induced lung in-
flammation [38]. Inhaled LPS induces an inflammatory re-
sponse that may contribute to the pathogenesis of asthma
and other airway diseases. Interestingly, TRAF1−/− mice are
deficient in recruiting lymphocytes to the lower respiratory
tract after inhalation of LPS, due to decreased expression of
ICAM1, VCAM1, CCL17, and CCL20 in the lungs [39].
Experiments of bone marrow chimeras demonstrate that
TRAF1 in resident lung cells, but not hematopoietic cells, is
responsible for this phenotype [39]. Mice lacking TNFR1 but
not TNFR2 show a phenotype similar to the TRAF1−/− mice,
suggesting a positive role of the TNFR1-TRAF1 pathway in
the induction of chemokines and adhesion molecules in resi-
dent lung cells after LPS inhalation [39]. Similarly, TRAF1
expressed in resident lung cells is also required for the devel-
opment of allergic lung inflammation as revealed by adoptive
transfer experiments of ovalbumin (OVA)-immune wild type
(WT) CD4+ T cells. In response to OVA exposure, TRAF1−/−

recipient mice fail to display eosinophilic inflammation and
airway hyperresponsiveness in this model of asthma [40]. In
sharp contrast, transfer of OVA-immune TRAF1−/− T cells
into naive WT recipients confers significantly more intense
p u lmo n a r y i n f l amma t i o n a n d h i g h e r a i r w a y
hyperresponsiveness following inhaled OVA challenge [41].
This is caused by the T cell-intrinsic bias of TRAF1−/− T cells
to produce increased amount of the Th2 cytokines (IL-4, IL-5,
and IL-13) in response to antigen stimulation [41].
Biochemical analyses revealed that TRAF1 inhibits the induc-
tion of Th2 responses by associating with NIP45 in the cyto-
plasm and thereby preventing the nuclear translocation of
NIP45, a Th2 cell-associated transcription factor [41].
Therefore, TRAF1 proteins expressed in resident lung cells
and T cells play differential roles in lung inflammation.

Atherosclerosis A recent study by Hessler et al. identified a
SNP rs2416804 (GC alleles) of the TRAF1 gene as being
associated with carotid intima-media thickness, a marker for
subclinical atherosclerosis that predicts subsequent clinical
cardiovascular events [42]. TRAF1 expression is significantly
upregulated in atherosclerotic plaques of patients with athero-
sclerosis and also in the blood of patients with acute coronary
syndrome [43, 44]. Consistent with the human evidence,
TRAF1 deficiency in mice attenuates atherogenesis and im-
pairs monocyte recruitment to the vessel wall as demonstrated
by studies with TRAF1−/−LDLR−/−mice on a high-cholesterol
diet [44]. Bone marrow transplantations revealed that TRAF1
deficiency in both hematopoietic and vascular resident cells
contributes to the observed reduction in atherogenesis in mice
[44]. Impaired monocyte recruitment is associated with de-
creased expression of the adhesion molecules ICAM1 and

VCAM1 on endothelial cells [44]. Together, the above evi-
dence warrants further investigation of TRAF1 in the patho-
genesis of atherosclerosis.

Liver Inflammation and Hepatic SteatosisXiang et al. recently
reported that TRAF1 expression is elevated in the livers of
human patients with non-alcoholic fatty liver disease
(NAFLD) [45]. Interestingly, both high-fat diet (HFD)-treated
mice and genetic obese mice (ob/ob) exhibit an increase in
TRAF1 expression in the liver compared with lean controls
[45]. Palmitate, an inducer of lipid accumulation and insulin
resistance in hepatocytes, also increases TRAF1 expression in
hepatocytes [45]. Xiang et al. further investigated the role of
TRAF1 in insulin resistance, inflammation, and hepatic
steatosis using mice with global TRAF1 deficiency or liver-
specific TRAF1 overexpression. In response to HFD treat-
ment or in ob/obmice, TRAF1 deficiency is hepatoprotective,
whereas TRAF1 overexpression in hepatocytes exacerbates
the pathological development of insulin resistance, inflamma-
tory response and hepatic steatosis. A similar liver protective
role of TRAF1 deficiency was also demonstrated in a mouse
hepatic ischemia/reperfusion (I/R) injury model by Zhang
et al. [25]. Mechanistically, hepatocyte TRAF1 directly inter-
acts with ASK1 to promote hepatic steatosis through enhanc-
ing the activation of ASK1-mediated P38 and JNK cascades
in response to HFD or palmitate stimulation [45]. Indeed,
overexpression of a constitutively active form of ASK1 in
the liver reverses TRAF1 deficiency-mediated amelioration
of obesity and insulin resistance, while overexpression of a
dominant negative form of ASK1 in the liver reverses TRAF1
overexpression-induced exacerbation of inflammation and he-
patic steatosis [45]. Thus, the TRAF1-ASK1 axis acts to in-
duce insulin resistance, inflammation, and hepatic steatosis in
response to HFD or palmitate stimulation [45].

Brain Inflammation and Ischemic Stroke In an experimental I/
R strokemodel, TRAF1 expression is markedly induced in the
cortex and stratum of WT mice at 6 h after middle cerebral
artery occlusion (MCAO)-induced stroke onset [24]. In cul-
tured primary cortical neurons, oxygen and glucose depriva-
tion also rapidly increases TRAF1 protein levels [24].
Neuron-specific TRAF1 transgenic mice exhibit enlarged in-
flammatory stroke lesions and detrimental behavioral and
neurological dysfunction following MCAO, which is attribut-
able to the enhancement of neuronal apoptosis [24].
Conversely, TRAF1−/− mice have reduced inflammatory
stroke lesions and ameliorated behavioral and neurological
dysfunction associated with reduced neuronal apoptosis [24].
Mechanistically, TRAF1 directly interacts with ASK1 to in-
duce the MKK4/7-JNK1 pro-apoptotic pathway while
inhibiting the Akt-mTOR-CREB pro-survival pathway in
neurons [24]. Together, these in vivo studies demonstrate the
pathogenic roles of TRAF1 in neurons during ischemic stroke.
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TRAF2

TRAF2 is ubiquitously expressed in various cell types and is
especially important for inflammation in keratinocytes, mac-
rophages, dendritic cells (DCs), Tcells, hepatocytes, epithelial
cells, and fibroblasts [3••, 4•, 5, 46, 47••, 48–50]. As a signal-
ing adaptor protein and an E3 ubiquitin ligase, TRAF2 regu-
lates inflammatory responses mediated by receptors of the
TNF-R superfamily, TLRs, NLRs, RIG-I, cytokine receptors,
S100A8 receptors, and S100A9 receptors [3••, 4•, 5, 46, 49,
51, 52]. TRAF2 transduces receptor signals to induce the ac-
tivation of both canonical and non-canonical NF-κB pathways
as well as the activation of the MAPKs (JNK, ERK1/2 and
p38) and IRFs (IRF3, IRF5 and IRF7) [3••, 4•, 5,46,49].
Intracellular TRAF2 is also required for ER stress-induced
inflammatory responses via the IRE1α-TRAF2-Nur77 signal-
ing axis [53–55]. TRAF2 directly interacts with a variety of
receptors, adaptor proteins, and enzymes that regulate inflam-
mation. These include receptors of the TNF-R superfamily,
IL-17Rs, IL-15Rα, IFNAR1, EMMPRIN, TRAF3, TRAF5,
cIAP1/2, Ubc13, TRADD, TRIF, RIP, Act1, MAVS, SOCS3,
TAK1, IKKε, A20, CYLD, MCPIP1, HGK, MLKL, IRE1α,
and Nur77, among others [3••, 4•, 5, 46, 49–52, 54–74].
Current human and mouse evidence indicates that TRAF2
plays complex roles in skin inflammation, cardiovascular in-
flammation, inflammatory bowel diseases, liver inflamma-
tion, and autoimmune inflammatory diseases (such as lupus,
arthritis, and multiple sclerosis).

Skin Inflammation In primary human keratinocytes, exposure
to ultraviolet (UV) light triggers association of TRAF2 with
TNF-R1 to induce NF-κB activation and inflammation [75].
In mice, keratinocyte-specific deletion of TRAF2 (K-
TRAF2−/−) causes epidermal hyperplasia and psoriatic skin
inflammation with excessive leukocyte infiltration and apo-
ptotic death in the inflamed area by 15 weeks of age [76].
This phenotype partially depends on TNF-induced apoptosis
in keratinocytes, as compound deletion of TNF in K-TRAF2−/
−mice reduces apoptotic death and delays the development of
skin inflammation [76]. Another essential pathway underlying
this phenotype is the constitutive NF-κB2 activation and in-
creased expression of inflammatory molecules observed in
TRAF2−/− keratinocytes, including M-CSF, IL-23, 4-1BBL,
CR1L, and CXCL-16 [76]. Indeed, compound deletion of
TNF and NF-κB2 in K-TRAF2−/− mice prevents the skin in-
flammation caused by TRAF2 deficiency in keratinocytes
[76]. Interestingly, S100A8 and S100A9, two inflammatory
proteins highly upregulated in skin lesions of human patients
with atopic dermatitis, are found to bind to receptors named
Neuroplastin-β and EMMPRIN, which recruit GRB2 and
TRAF2 to induce NF-κB1 activation, keratinocyte prolifera-
tion, and skin inflammation [51, 52]. Consistent with the crit-
ical roles of TRAF2 in skin inflammation, mutations of the

TRAF2-deubiquitinating enzyme CYLD are identified in pa-
tients with familial cylindromatosis (with benign tumors of
skin appendages), and CYLD−/− mice are highly susceptible
to chemically induced skin tumors [72]. Therefore, TRAF2
expressed in keratinocytes plays protective roles in skin in-
flammation through multiple pathways.

Cardiovascular Inflammation Increasing evidence indicates an
important role for inflammation in cardiac hypertrophy and
failure [77, 78]. TRAF2 expression is upregulated in human
atherosclerotic plaques and failing mouse hearts [43, 79]. Two
groups independently demonstrated that cardiac-specific
TRAF2 overexpression in mice leads to remarkably enhanced
cardiac hypertrophy, left ventricular dysfunction, and adverse
cardiac remodeling, which are associated with increased acti-
vation of NF-κB, JNK and Akt-GSK3 β [79, 80]. It would be
interesting to further verify these findings using cardiac-
specific TRAF2−/− mice and to investigate the roles of
TRAF2 in mouse models of atherosclerosis.

Inflammatory Bowel Diseases In humans, the expression of
TRAF2 is significantly higher in inflamed and non-inflamed
tissues of IBD patients than those in healthy control [81, 82].
TRAF2 expression is also higher in inflamed colonic mucosa
tissues than in non-inflamed tissues in patients with Crohn’s
disease (CD), ulcerative colitis (UC), and nonspecific colitis
[81, 82]. Moreover, higher expression of TRAF2 has been
identified as a prognosis factor of UC relapse [82]. Liu et al.
recently reported that TRAF2 overexpression may result from
EZH2 downregulation-mediated epigenetic mechanism in
IBD patients [83]. In mice, the roles of TRAF2 in colitis have
been demonstrated in both germline TRAF2−/− and myeloid
cell-specific TRAF2−/− (M-TRAF2−/−) mice. Germline
TRAF2−/−mice spontaneously develop severe colitis and suc-
cumb within 3 weeks after birth, which result from TNFα-
TNFR1-mediated apoptosis of TRAF2−/− colonic epithelial
cells and altered colonic microbiota (Fig. 1) [48]. In the ab-
sence of TRAF2, compromised epithelial barrier allows com-
mensal bacteria to induce the accumulation of IL-10-secreting
neutrophils in the bone marrow, peripheral blood, and lamina
propria (Fig. 1) [84]. Combined treatment with neutralizing
antibodies against TNFα and IL-10 substantially ameliorates
colitis and prolongs survival in TRAF2−/− mice [84]. Myeloid
cell-specific TRAF2 ablation promotes DSS-induced colitis in
mice, which is associated with increased production of pro-
inflammatory cytokines (TNFα, IL-1 β, IL-6, and IL-12) and
decreased levels of IL-10 [47••]. The anti-inflammatory func-
tion of TRAF2 is independent of NIK-NK-κB2 and is medi-
ated by elevated protein levels of c-Rel and IRF5 in macro-
phages [47••]. Mechanistically, c-Rel and IRF5 are constitu-
tively targeted for K48-linked ubiquitination and proteasome-
mediated degradation by the TRAF3-TRAF2-cIAP1/2 com-
plex similar to that previously described for NIK [47••]. Thus,
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TRAF2 plays protective roles against colitis by acting in both
epithelial cells and myeloid cells (Fig. 1).

Liver Inflammation Expression of TRAF2 is downregulated
during hepatic differentiation of human pluripotent stem cells,
and infection with hepatitis B virus (HBV) induces the expres-
sion of TRAF2 in normal primary human hepatocytes [85,
86]. Studies of mouse models revealed that TRAF2 regulates
liver inflammation by inhibiting apoptosis and necroptosis in
hepatocytes. Tamoxifen-induced TRAF2 deletion in adult
mice leads to increased hepatic necroptosis and rapid lethality,
which is delayed by co-deletion of RIPK3 or treatment with
blocking reagents for TNF-R1 and IFNAR1 [50]. Hepatic

TRAF2 depletion by siRNA injection in mice exacerbates
Fas-induced hepatic apoptosis and accelerates lethality, as
TRAF2 mediates K48-linked ubiquitination and degradation
of caspase 8 [87]. Interestingly, hepatocyte-specific deletion
of TRAF2 in mice does not alter insulin signaling under nor-
mal or HFD conditions, but does attenuate HFD-induced hy-
perglycemia and obesity due to decreased hepatic gluconeo-
genesis, resulting in glucagon resistance [88]. In mouse pri-
mary hepatocytes, TRAF2 directly promotes glucose produc-
tion by enhancing glucagon-induced CREB phosphorylation
and the expression of PEPCK and G6Pase [88]. Furthermore,
specific deletion of TRAF2 from liver parenchymal cells in
mice leads to mild and focal spontaneous ductular reaction,

Fig. 1 Cell- and receptor-specific roles of TRAF molecules in
inflammatory bowel diseases. The cell types with direct in vivo
evidence of TRAFs in IBDs include macrophages (MØ), DCs,
neutrophils, TH2 cells, TH17 cells, and epithelial cells (EPC). TRAF
molecules (TRAF2, 3, 5, and 6) with anti-inflammatory roles in IBDs
are depicted in blue in each specific cell type, and TRAF6 with pro-
inflammatory roles in IBDs is depicted in pink in TH17 cells. The
dominant TRAF-dependent receptors, TRAF-interacting transcription
factors, and TRAF-dependent downstream cytokines and chemokines

are shown for each specific cell type as revealed by in vivo evidence
obtained from mouse models of IBDs. In addition, TRAF6-mediated
regulation of DCs indirectly controls the differentiation of TH1 and
Treg cells, which also contribute to the protective effects of DC TRAF6
against enteritis. The known roles of TRAFs in TCR signaling, the
development and homeostasis of iNKT cells and T cell subsets, and the
activation of CD4 and CD8 T cells are not included in the figure, as their
contribution in IBDs has not been directly tested in vivo in whole animal
models.
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while co-deletion of TRAF2 and RIP in these cells results in
spontaneous hepatocyte apoptosis, hepatitis, and hepatocellu-
lar carcinoma [57]. Taken together, TRAF2 plays complex
and indispensable roles in regulating hepatocyte survival and
function as well as liver inflammation.

Brain Inflammatory Diseases Upregulated expression of
TRAF2 is detected in the brains of patients with Alzheimer’s
disease (AD) and Parkinson’s disease (PD) as well as in the
hippocampi of patients with mesial temporal lobe epilepsy
[89–91]. Interestingly, the 3′ UTR SNP rs7852970 GG of
the Traf2 gene is significantly protective against AD as re-
vealed by SNP association studies [89]. TRAF2 proteins are
present within plaque-associated neurites and some neurofi-
brillary tangles in human AD brains [89]. However, the causal
role of TRAF2 in brain inflammatory diseases has not been
demonstrated with in vivo models and needs further
investigation.

Autoimmune Inflammatory Diseases In human, both down-
and upregulated expression of TRAF2 has been detected in
peripheral blood mononuclear cells (PBMCs) of patients with
systemic lupus erythematosus (SLE) [92, 93]. TRAF2 expres-
sion is elevated in PBMCs of patients with RA and relapsing-
remitting multiple sclerosis (MS) [94, 95]. Studies of mouse
models revealed the critical role of TRAF2 in regulating Tcell
homeostasis and T cell tolerance, which are essential for con-
trolling autoimmune inflammatory diseases. T cell-specific
TRAF2−/− (T-TRAF2−/−) mice display decreased naïve and
memory CD8 T cell subsets and NKT cells in the spleen and
liver due to reduced sensitivity to IL-15 [49]. TRAF2−/
−TNFα−/− mice develop an inflammatory disorder character-
ized by lymphocyte infiltration in multi-organs and accumu-
lation of anti-dsDNA and anti-histone autoantibodies [96].
The pathogenic TRAF2−/−TNFα−/− T cells show constitutive
NF-κB2 activation and produce elevated levels of TH1 and
TH17 cytokines, including IFNγ, IL-17, IL-21, and IP-10
[96]. Interestingly however, T cell-specific deficiency of
HGK, a MAP4K that directly phosphorylates TRAF2 and
targets TRAF2 for lysosomal degradation, also leads to sys-
temic inflammation involving multi-organs and insulin resis-
tance in mice, which are associated with increased levels of
IL-6, IL-17, and TH17 cells [74]. Therefore, a delicately bal-
anced level of TRAF2 proteins in T cells is required to sustain
T cell tolerance, and both increased or decreased TRAF2 pro-
tein levels can lead to autoimmune inflammatory diseases [74,
96].

TRAF3

TRAF3 is closely related to TRAF2 in terms of both structure
and function [5, 9]. TRAF3 is ubiquitously expressed in various

cell types and is pivotal in regulating inflammation in macro-
phages, dendritic cells (DCs), neutrophils, B cells, T cells, he-
patocytes, cardiocytes, osteoclasts, microglia, and neurons (Fig.
2) [3••, 4•, 5, 47••, 97, 98•, 99–110]. Similar to TRAF2, TRAF3
acts as both a signaling adaptor protein and an E3 ubiquitin
ligase in inflammatory responses mediated by receptors of the
TNF-R superfamily, TLRs, NLRs, RIG-I, and cytokine recep-
tors [3••, 4•, 5, 100, 111]. TRAF3 has overlapping functions
with TRAF2 in inducing the activation of both canonical and
non-canonical NF-κB pathways as well as the activation of the
MAPKs (JNK1/2, ERK1/2 and p38) and IRFs (IRF3, IRF5 and
IRF7) [3••, 5, 100, 111]. However, TRAF3 also has distinct
roles and unique binding proteins, and therefore cannot be
substituted by TRAF2 in inflammation and inflammatory re-
sponses. Direct TRAF3-interacting proteins that are important
for inflammation include: (1) receptors: members of the TNF-R
superfamily that do not contain death domains, NLRP12, and
IL-17R [3••, 5, 97, 112]; (2) adaptor proteins: TRAF2, TRAF5,
MyD88, TRIF, RIP, RIP2, MAVS, Act1, STING, and ASC
[3••, 5, 113–115]; (3) enzymes: NIK, IKKε, TAK1, TBK1,
Peli1, A20, DUBA, OTUB1, OTUD7B, USP25, CHIP,
MYSM1, PTPN22, Syk, CK1ε, DNA-PKc, andNDR1, among
others [3••, 5, 116–131]; (4) transcription factors: c-Rel and
IRF5 (Fig. 2) [47••]. Increasing human and mouse evidence
indicates that alterations in TRAF3 expression or function con-
tribute to the pathogenesis of systemic inflammation, cardiac
hypertrophy, inflammatory bowel diseases, liver inflammation,
diabetes, bone inflammatory diseases, brain inflammation, and
autoimmune inflammatory diseases (such as lupus, arthritis,
and multiple sclerosis) (Fig. 2).

Systemic Multi-organ Inflammation We recently investigated
the roles of TRAF3 in myeloid cells during inflammatory
responses using myeloid cell-specific TRAF3−/− (M-
TRAF3−/−) mice [98•]. We found that myeloid cell-specific
deletion of TRAF3 leads to increased serum levels of the
pro-inflammatory cytokines IL-6 and IL-12 but decreased se-
rum levels of the anti-inflammatory cytokine IL-10 in re-
sponse to LPS (TLR4 ligand) or polyI:C (TLR3 ligand) chal-
lenge [98•]. Interestingly, aging M-TRAF3−/− mice (15-22
months old) spontaneously develop chronic inflammation
often affecting multiple organs, including the liver, spleen,
intestines, lung, pancreas, and heart [98•]. These findings
point to an indispensable anti-inflammatory role for TRAF3
in myeloid cells.

Cardiovascular Inflammation TRAF3 expression is upregulat-
ed in human atherosclerotic plaques and failing human hearts
[43,107]. Epigenetic modifications of the Traf3 gene have
been observed in cardiovascular inflammation, including
DNA methylation that has been associated with vascular re-
currence after ischemic stroke in patients treated with
clopidogrel and histone acetylation that has been associated
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with cardiac hypertrophy in mice [132, 133]. Consistent with
human evidence, cardiac-specific TRAF3−/− mice exhibit re-
duced cardiac hypertrophy, fibrosis, and dysfunction [107].
Conversely, transgenic mice overexpressing TRAF3 in the
heart develop exaggerated cardiac hypertrophy in response
to pressure overload [107]. TRAF3 also promotes an

angiotensin II- or phenylephrine-induced hypertrophic re-
sponse in isolated cardiomyocytes [107]. Mechanistically,
TRAF3 directly binds to TBK1, causing increased TBK1
phosphorylation and Akt activation in response to hypertro-
phic stimuli [107]. The above evidence identified TRAF3 as a
key regulator of cardiac hypertrophy.
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Inflammatory Bowel Diseases TRAF3 expression is signifi-
cantly higher in the inflamed colonic mucosa, PBMCs, and
plasma in human patients with CD and UC than in healthy
controls [82, 134]. In the DSS-induced colitis model, M-
TRAF3−/− mice exhibit exacerbated colon inflammation with
increased levels of IL-1 β, IL-6, TNF, and IL-12, which is
mediated by elevated protein levels of c-Rel and IRF5 in
TRAF3−/− macrophages [47••]. Mice genetically deficient in
NLRP12, a cytosolic NLR protein that directly interacts with
TRAF3 and NIK, are also highly susceptible to DSS-induced
colitis and exhibit reduced TRAF3 level and increased activa-
tion of NF-κB2, ERK, and Akt [112]. Similarly, mice defi-
cient in PTPN22, a protein tyrosine phosphatase that directly
binds to TRAF3 and promotes K63-linked polyubiquitination
of TRAF3, show increased severity of DSS-induced colitis
due to decreased TRAF3-type I IFN-mediated protection of
colonic mucosa [126]. Furthermore, mice deficient in NDR1,
a TRAF3-interacting protein that prevents the recruitment of
TRAF3 to the IL-17R-Act1-TRAF6 complex, are resistant to
TNBS-induced colitis with decreased IL-17 signaling and IL-
17-mediated inflammation in epithelial cells [130]. Thus,
TRAF3 plays protective roles in colon inflammation by acting
on multiple signaling pathways in myeloid cells and colonic
epithelial cells (Fig. 1).

Liver Inflammation, Hepatic Steatosis, and Diabetes In
humans, TRAF3 expression is decreased in PBMCs of pa-
tients with chronic HBV infection and is upregulated in livers

of patients with hepatic steatosis or subjected to liver trans-
plantation [106, 135, 136]. The in vivo roles of TRAF3 in
liver inflammation have been elucidated in several different
mouse models. Myeloid cell-specific deletion of TRAF3
markedly attenuates metabolic inflammation, insulin resis-
tance, glucose intolerance, and hepatic steatosis in mice with
either genetic (ob/ob) or HFD-induced obesity [103].
Hepatocyte-specific TRAF3−/− mice also show ameliorated
HFD-induced inflammatory responses, hepatic steatosis, insu-
lin resistance, and type 2 diabetes, while transgenic mice over-
expressing TRAF3 in hepatocytes exhibit the opposite pheno-
type [104, 136]. In response to hepatic I/R injury, hepatocyte-
specific, but not myeloid cell-specific, TRAF3 deficiency re-
duces cell death, inflammatory cell infiltration, and cytokine
production, whereas hepatic TRAF3 overexpression results in
the opposite effects in mice [106]. Mechanistically, glucose
directly increases TRAF3 levels in primary hepatocytes, and
TRAF3 binds to TAK1 to modulate the NF-κB, JNK, and
insulin-AKT signaling cascades in hepatocytes [104, 106,
136]. Therefore, TRAF3 proteins expressed in both myeloid
cells and hepatocytes promote liver inflammatory responses in
obesity and I/R settings (Fig. 2).

Bone Inflammatory Diseases TNF and RANKL mediate bone
destruction in common bone diseases, such as osteoarthritis
and RA, via TRAF3-dependent mechanisms [108, 109, 137].
TNF increases TRAF3 expression in osteoclast precursors
(OPs), and RANKL decreases TRAF3 protein levels by in-
ducing lysosome/autophagy-dependent degradation of
TRAF3 [108, 109, 137]. Both TNF and RANKL induce more
osteoclasts from TRAF3−/− OPs, whereas overexpression of
TRAF3 reduces osteoclast formation from WT OPs induced
by TNF, RANKL, and TNF + RANKL [109, 137]. OP-
specific TRAF3−/− mice have increased osteoclastogenesis
and osteoporosis mediated by increased NF-κB1 and
NF-κB2 signaling [109]. In particular, the importance of the
noncanonical NF-κB2 signaling is highlighted by the evi-
dence that TNF transgenic (TNF-Tg) mice lacking NF-κB2
p100 exhibit more severe joint erosion and inflammation as
well as systemic bone loss than TNF-Tg WT mice [108].
Furthermore, osteoclast-lineage expression of a mutant form
of NIK that lacks its TRAF3 binding domain results in con-
stitutive NF-κB2 activation, osteoporosis, and enhanced in-
flammatory osteolysis in mice following injection of serum
from arthritic K/BxNmice (amodel of serum transfer arthritis)
[138]. Thus, TRAF3 expressed in the osteoclast-lineage plays
protective roles against bone inflammatory diseases.

Brain Inflammation and Ischemic Stroke An autosomal dom-
inant mutation of TRAF3 has been identified as a causative
mutation in a patient with a history of herpes simplex virus-1
(HSV-1) encephalitis in childhood, which resulted from im-
paired TLR3-type I IFN signaling [139]. DNA methylation of

�Fig. 2 Cell-specific roles and signaling networks of TRAF3 in
inflammatory diseases. Direct in vivo evidence not only demonstrated
the major anti-inflammatory roles of TRAF3 in macrophages (MØ),
DCs, neutrophils (NTP), microglia (MG), osteoclast precursors (OP), B
cells, and Treg cells but also revealed the pro-inflammatory roles of
TRAF3 in hepatocytes, cardiomyocytes, and neurons. The proximal
TRAF3-interacting complexes that are critical to inflammatory
responses are depicted for each specific cell lineage, with the symbol
B-^ depicting direct interactions and the symbol B—^ depicting indirect
connections. The inflammatory disease phenotype of each cell lineage-
specific TRAF3 knockout (KO) and transgenic (Tg) mice are also shown,
respectively. Spontaneous inflammation or exacerbated inflammatory
diseases are depicted in red, and delayed or reduced inflammatory
diseases are depicted in green. Evidence shows that the function of
TRAF3 in myeloid cells is dynamically modulated according to the
metabolic states. In lean mice, TRAF3 plays anti-inflammatory roles in
myeloid cells. However, under genetic (ob/ob) or HFD-induced obese
state, TRAF3 plays pro-inflammatory roles and promotes metabolic
inflammation in myeloid cells. It is also noticed that a delicate balance
level of TRAF3 proteins is required to maintain B cell homeostasis and B
cell tolerance, as either TRAF3 deficiency or overexpression in B cells
leads to systemic autoimmune inflammation in mice. The known roles of
TRAF3 in TCR and CD28 signaling, the development and homeostasis
of iNKT cells and CD8 memory T cells, and the activation of CD4 and
CD8 T cells are not shown in the figure, as their contribution in
inflammatory diseases has not been directly demonstrated in vivo in
whole animal models.
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the Traf3 gene is downregulated in patients with ischemic
stroke, and this Traf3 epigenetic regulation is associated with
vascular recurrence and also correlated with an increased
platelet aggregation [140]. Consistent with human evidence,
the in vivo roles of TRAF3 in brain inflammation and ische-
mic stroke have been demonstrated with several mouse
models. Transgenic mice overexpressing TRAF3 show de-
creased levels of IL-17-induced inflammatory factors IL-6,
KC, and MMP3 in the brain and also exhibit delayed onset
and reduced incidence and severity of experimental autoim-
mune encephalomyelitis (EAE) after MOG immunization
[141]. Conversely, M-TRAF3−/− mice, which have TRAF3
deleted in microglia and other myeloid cells, display exacer-
bated EAE [120]. TRAF3 ablation also restores TLR-induced
inflammatory responses and EAE severity in mice deficient in
Peli1, an E3 ubiquitin ligase that mediates K48-linked
ubiquitination and degradation of TRAF3 in microglia
[120]. Interestingly, in a mouse model of ischemic stroke,
TRAF3 expression is induced in neurons in response to I/R
[110]. Neuron-specific TRAF3−/− mice reduces neuronal
death and inflammation following I/R, whereas transgenic
mice overexpressing TRAF3 in neurons exhibit more severe
ischemic stroke [110]. Neuronal effects of TRAF3 are medi-
ated by TAK1-NF-κB/JNK/Rac-1 signaling [110].
Furthermore, mice deficient in CK1ε, a kinase that interacts
with and phosphorylates TRAF3 at Ser349, show aggravated
and sustained brain inflammation after infection with West
Nile virus [129]. Taken together, TRAF3 plays anti-
inflammatory roles in microglia/myeloid cells and pro-
inflammatory roles in neurons via distinct signaling pathways
during brain inflammation (Fig. 2).

Autoimmune Inflammatory Diseases TRAF3 expression is
upregulated in synovial fluid mononuclear cells and PBMCs
of patients with juvenile idiopathic arthritis, and genome-wide
association studies (GWASs) identified TRAF3 as a suscepti-
bility gene for human multiple sclerosis [142, 143]. A PTP22
variant (PTPN22_R620W) that is strongly associated with
human SLE and RA fails to promote TRAF3 ubiquitination
[126]. Mechanistically, TRAF3 is a critical regulator of B cell
homeostasis and activation, Treg and iNKT development and
function, CD4 and CD8 T cell activation, and medullary thy-
mic epithelial cell (mTEC) development [101, 102, 127,
144–147], all of which could impact autoimmune responses.
Indeed, B cell-specific TRAF3−/− (B-TRAF3−/−) mice exhibit
an autoimmune inflammatory phenotype affecting multi-or-
gans, including the liver and kidney [101]. Paradoxically, B
cell-specific TRAF3 transgenic mice also develop systemic
autoimmune inflammation in multi-organs, including pancre-
as, kidney, and joints [105]. Treg-specific TRAF3 ablation
leads to mild tissue inflammation mostly seen in the lung
and liver in mice [144]. Furthermore, TRAF3 plays a central
role in inhibiting the NF-κB2 pathway during mTEC

development, and mice lacking NF-κB2 components fail to
develop mTECs and exhibit systemic autoimmune inflamma-
tion [147]. Therefore, TRAF3 dysregulation plays causal roles
in the pathogenesis of various autoimmune inflammatory
diseases.

TRAF4

Unique among the TRAF family, TRAF4 is mainly in-
volved in developmental, morphogenic, and oncogenic
processes [148–153]. However, TRAF4 also regulates in-
flammation and inflammatory responses mediated by
GITR, TLRs, NOD2, IL-17R, and IL-25R [3•• ,
153–161]. TRAF4 modulates inflammatory responses by
directly interacting with GITR, NOD2, IL-17R, IL-25R,
TRIF, Act1, TRAF6, IKKα , MEKK3, MEKK4,
SMURF2, and p47phox (a component of cytosolic
NADPH oxidase) to control NF-κB, JNK, and reactive
oxygen species (ROS) pathways [149, 153–162]. Current
human and mouse evidence implicates TRAF4 in airway
inflammation, inflammatory bowel diseases (IBD), and au-
toimmune encephalomyelitis.

Airway and Pulmonary Inflammation Initial characterization
of TRAF4−/− mice revealed that loss of TRAF4 expres-
sion results in developmental defects of the upper respi-
ratory tract, respiratory air flow abnormalities, and in-
creased rates of pulmonary inflammation [150, 151].
However, Zepp et al. recently found that TRAF4−/−

mice exhibit blunted airway eosinophilia and Th2 cyto-
kine production in response to IL-25 administration
[161]. Mechanistically, IL-25/IL-25R ligation induces
the recruitment of TRAF4, which is required for the
Act1/IL-25R interaction as well as the recruitment the
E3-ligase SMURF2 to degrade the IL-25R inhibitory
molecule DAZAP2 [161]. Thus, TRAF4 plays a nega-
tive role in pulmonary inflammation during develop-
ment, but a positive role in IL-25-induced airway
inflammation.

Inflammatory Bowel Diseases TRAF4 is overexpressed in pa-
tients with IBDs, and TRAF4 overexpression appears to be an
indicator of endoscopic disease activity in UC patients [163].
Interestingly, TRAF4 is identified as a key negative regulator
of signaling by the Crohn’s disease susceptibility protein
NOD2 [158, 159]. In response to stimulation with bacterial
ligands of NOD2, TRAF4 directly binds to NOD2, MEKK4,
and IKKα, which leads to phosphorylation of Ser426 on
TRAF4 by IKKα and disruption of the NOD2-RIP2 complex
[158,159]. Consequently, TRAF4 inhibits NOD2-induced
NF-κB activation and bacterial killing in macrophages
(Fig. 1) [158, 159]. However, direct in vivo evidence of
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pathological or protective roles of TRAF4 in IBDs is still
lacking and awaits further investigation.

Brain Inflammation and Autoimmune Encephalomyelitis
TRAF4 expression is downregulated in the brain of patients
with schizophrenia [164], which is associated with high levels
of pro-inflammatory cytokines in the blood and cerebrospinal
fluid [165]. Characterization of TRAF4−/− mice revealed that
TRAF4 is required for myelin homeostasis in the central ner-
vous system (CNS) [166]. TRAF4−/− mice exhibit myelin
perturbation and degeneration of a high number of Purkinje
cells, which is linked to the activation of the Nogo receptor-
p75NTR-RhoA pathway in the CNS [166]. In a TH17-medi-
ated EAE model, adoptive transfer of MOG35-55-specific
WT TH17 cells into irradiated TRAF4−/− recipient mice in-
duces an accelerated onset of disease with increased numbers
of immune cell infiltration in the brain [160]. Biochemical
analyses revealed that IL-17/IL-17R engagement recruits
Act1, TRAF6, and TRAF4 [153]. Interestingly, TRAF4 com-
petes with TRAF6 for binding to Act1 on the same site, there-
by inhibiting IL-17-induced production of pro-inflammatory
cytokines (such as GM-CSF and IL-6) and chemokines (such
as CXCL1 and CCL2) in brain resident cells (such as astro-
cytes). Taken together, TRAF4 is important in restricting the
effects of IL-17 signaling and disease pathogenesis in TH17-
mediated autoimmune encephalomyelitis [160].

TRAF5

As a close structural homolog of TRAF2 and TRAF3, TRAF5
regulates inflammatory responses mediated by receptors of
the TNF-R superfamily, TLRs, RIG-I, IL-17R, and gp130 (a
component of IL-6 receptor) [3••, 116, 167–173]. TRAF5 is
important in the inflammatory responses mounted by CD4+
TH2 and TH17 cells, neutrophils, macrophages, hepatocytes,
B cells, endothelial cells, and fibroblasts [67, 168, 169,
171–174]. Upon receptor engagement, TRAF5 has been
shown to induce the activation of both NF-κB1 and NF-κB2
pathways as well as the activation of the MAPKs (JNK and
ERK1/2) by directly interacting with the upstream receptors
and downstream adaptor proteins or enzymes[3••, 116,
167–169]. TRAF5-interacting proteins that participates in in-
flammation include OX40, IL-17R, gp130, TRAF2, TRAF3,
MyD88, MAVS, TAB2, Act1, USP25, and RORγt, among
others [3••, 116, 167–170, 172••, 173–177]. Available human
and mouse evidence implicates TRAF5 in lung inflammation,
cardiovascular inflammation, inflammatory bowel diseases,
liver inflammation, and autoimmune inflammatory diseases
(such as encephalomyelitis, arthritis, lupus, and uveitis).

Airway and Pulmonary Inflammation So et al. reported that in
the presence of OX40 stimulation by an agonistic anti-OX40

antibody, TRAF5−/− mice display enhanced TH2 response to
immunization with the T-dependent antigen KLH in adjuvant
CFA or alum [174]. Similarly, in a model of OVA-induced
allergic airway inflammation, in which endogenous OX40/
OX40L interactions are essential for the priming of TH2 cells
in asthmatic-like responses, TRAF5−/− mice show exaggerat-
ed TH2-driven airway and lung inflammation [174]. TRAF5
deficiency leads to increased numbers of inflammatory cells
and elevated levels of TH2 cytokines IL-5 and IL-13 in bron-
choalveolar lavage (BAL) fluid as well as OVA-specific IgE
in the plasma following OVA challenge [174]. Interestingly,
Bulek et al. found that in a mouse model of IL-17-induced
pulmonary inflammation, the IL-17-Act1-TRAF2-
TRAF5-IKKε signaling axis is required for neutrophilia
and lung inflammation [67]. This is mediated by IL-17-
induced expression of chemokines (CXCL1 and
CXCL2) and cytokines (TNF, IL-6 and G-CSF) in the
lung tissue and especially in airway epithelial cells [67,
175]. Therefore, TRAF5 plays a negative role in TH2-
induced airway and lung inflammation but a positive
role in IL-17-induced airway and lung inflammation
via distinct cell types and signaling pathways.

Atherosclerosis and Cardiac Fibrosis TRAF5 is overexpressed
in human atherosclerotic plaques and is downregulated in total
blood RNA of patients with stable or acute coronary heart
disease [43,178]. TRAF5−/−LDLR−/− mice on a high-
cholesterol diet exhibit accelerated atherosclerosis with in-
creased rolling and adhesion of inflammatory leukocytes
[178]. This is mediated by (1) increased uptake of LDL by
TRAF5−/−macrophages likely via their elevated expression of
CD36; (2) increased production of chemokines KC andMCP-
1 by TRAF5−/− macrophages and endothelial cells; (3) en-
hanced JNK activation and expression of adhesion molecule
ICAM-1 on TRAF5−/− endothelial cells; (4) increased expres-
sion of VCAM-1 on TRAF5−/− monocytes; and (5) reduced
number of TRAF5−/− Treg cells in the spleen [178].
Interestingly, in a mouse model of cardiac hypertrophy,
TRAF5 expression is robustly induced in the heart in response
to transthoracic aorta constriction [179]. TRAF5 deficiency
promotes cardiac hypertrophy and fibrosis, which is associat-
ed with elevated levels of pro-inflammatory cytokines IL-6,
TNFα, and MCP-1 in heart tissues and cardiomyocytes [179].
Thus, TRAF5 has a protective role in cardiovascular inflam-
mation by acting in cardiomyocytes, blood vessel endothelial
cells, and leukocytes.

Inflammatory Bowel Diseases Like TRAF2 and TRAF3,
TRAF5 expression is significantly upregulated in inflamed
colonic mucosa, PBMCs, and plasma of patients with CD
and UC [134]. TRAF5−/− mice are more susceptible to DSS-
induced colitis with increased frequencies of CD4+ TH2 and
TH17 cells as well as enhanced cytokine levels of IFN-γ, IL-4,
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and IL-17A in the colons after DSS treatment [171]. Thus,
TRAF5 deficiency aggravates DSS-induced colitis, most like-
ly by regulating TH2 and TH17-mediated inflammation in
mice [171]. These findings are consistent with previous evi-
dence that TRAF5 controls TH2 and TH17 development by
regulating the OX40, gp130, and IL-17R signaling as well as
RORγt stability [67,172••, 173, 174,176]. Therefore, TRAF5
plays anti-inflammatory roles in colitis mainly by acting in
CD4+ TH2 and TH17 cells (Fig. 1).

Liver Inflammation and Hepatic Steatosis It has recently been
reported that TRAF5 expression is decreased in the fatty livers
of both NAFLD patients and obese mice and also in palmitate-
treated hepatocytes in vitro [180]. TRAF5−/− mice exhibit de-
terioration of HFD-induced metabolic disorders and have in-
creased levels of pro-inflammatory cytokines (IL-1 β, IL-6,
TNFα, and MCP-1) in the liver and serum [180]. Conversely,
transgenic TRAF5 overexpression in the liver significantly
suppresses nonalcoholic steatohepatitis (NASH)-like pheno-
types in mice after HFD treatment and also inhibits the pro-
gression of NAFLD in ob/ob mice [180]. Mechanistically,
TRAF5 regulates hepatic steatosis by targeting JNK1 signal-
ing, as evidenced by the fact that JNK1 ablation markedly
ameliorates the detrimental effects of TRAF5 deficiency on
obesity, inflammation, insulin resistance, hepatic steatosis,
and fibrosis [180]. These findings identify TRAF5 as a pro-
tective factor in liver inflammation and hepatic steatosis.

Brain Inflammation and Ischemic StrokeWang et al. reported
that TRAF5 protein levels are upregulated by cerebral I/R in
the neurons of ischemic mouse brains [181]. TRAF5−/− mice
exhibit reduced infarct size and improved neurological func-
tion following MCAO-induced ischemic stroke [181]. This is
associated with decreased neuronal apoptosis and attenuated
blood-brain barrier (BBB) disruption, which is mediated by
decreased expression and activity of MMP2 and MMP9 as
well as decreased expression of iNOS, COX-2, TNFα, IL-1
β, MCP-1, and ICAM-1 [181]. In contrast, neuron-specific
TRAF5 transgenic mice show exacerbated brain injury and
edema following cerebral I/R [181]. Mechanistically,
TRAF5 induces NF-κB activation and inhibits the Akt/
FoxO1 pathway in neurons to promote inflammatory re-
sponses and brain injury following ischemic stroke [181].

Autoimmune Encephalomyelitis TRAF5 has recently been
recognized as a critical regulator of TH17 development
through multiple mechanisms. TRAF5 inhibits IL-6-induced
early TH17 development by directly interacting with gp130
and antagonizing the recruitment of STAT3 to gp130 in
CD4+ T cells [172••, 173]. Paradoxically, however, TRAF5
also directly interacts with and ubiquitinates the TH17 lineage-
specific transcription factor RORγt via K63-linked
polyubiquitination, thereby stabilizing the RORγt protein to

promote the expression of TH17-related genes such as IL-17A
[176]. Despite the complex negative and positive roles of
TRAF5 in TH17 development and function, TRAF5−/− mice
exhibit greatly exaggerated TH17-mediated inflammation and
autoimmune encephalomyelitis in the EAEmodel [172••]. On
the other hand, in IL-17-responding cells such as epithelial
cells and fibroblasts, IL-17R signaling induces Act1-
mediated K63-linked ubiquitination of TRAF5 and the subse-
quent interaction of TRAF5 with the splicing factor SF2
(ASF) to stabilize the mRNA transcripts of chemokines and
cytokines [67, 175, 182]. Deficiency in USP25, an enzyme
that removes K63-linked ubiquitination of TRAF5 and
TRAF6, also leads to exacerbated EAE severity [177].
Together, the above evidence implicates TRAF5 dysregula-
tion in autoimmune encephalomyelitis mediated by TH17 cells
and IL-17-responding epithelial cells and fibroblasts.

Other Autoimmune Inflammatory Diseases As a key signal
transducer of the IL-17R-Act1 axis, TRAF5 is also involved
in other IL-17-associated autoimmune inflammatory diseases,
including arthritis, lupus, and uveitis (eye inflammation) [168,
176, 183, 184]. For example, an increase in the TRAF5
mRNA level is detected in CD4+ T cells of patients with
SLE [176]. Interestingly, three SNPs (rs6540679 AG,
rs12569232 GG, and rs10863888 AG) of TRAF5 are associ-
ated with two autoimmune uveitis entities, Behçet’s disease
and Vogt-Koyanagi-Harada syndrome in humans [183]. Two
of these SNPs (rs6540679 AA and rs12569232 GG) are also
associated with pediatric uveitis [184]. However, the causal
roles of TRAF5 dysregulation in these autoimmune inflam-
matory diseases remain to be determined with animal models.

TRAF6

Among all TRAF molecules, TRAF6 has been the most ex-
tensively investigated in inflammatory responses. Historically,
TRAF6 was initially considered as the only TRAF molecule
that can regulate signaling of both the TNF-R and the TLR/IL-
1R superfamilies [185, 186]. TRAF6 is ubiquitously
expressed and important for inflammation in various cell
types, especially in T cells, macrophages, dendritic cells
(DCs), osteoclasts, mast cells, epithelial cells, fibroblasts, mi-
croglia, astrocytes, and neurons [3••, 90, 185–193]. Serving as
both a signaling adaptor and an E3 ubiquitin ligase, TRAF6
transduces signals that emanate from receptors of the TNF-R
superfamily, TLRs, NLRs, RIG-I, cytokine receptors, and C-
type lectin receptors in inflammatory responses [3••, 186].
TRAF6 is required for receptor-induced activation of both
canonical and non-canonical NF-κB pathways as well as ac-
tivation of the MAPKs (JNK1/2, ERK1/2, and p38) and IRFs
(IRF3, IRF4, IRF5, and IRF7) [3••, 186, 194–196]. TRAF6
directly interacts with a variety of critical regulators of
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inflammation and inflammatory responses. These include (1)
receptors: members of the TNF-R superfamily, NLRX1,
NLRC3, IL-17Rs, and TGF β receptors [3••, 186, 197–201];
(2) adaptor proteins: MyD88, TRIF, MAVS, TAB2, NEMO,
Ubc13, DAB2, LAT, TRIP6, ECSIT, SOCS1, SOCS2,
SOCS3, TAX1BP1, GIT2, and Keratin 8 [3••, 186,
202–211]; (3) enzymes: TAK1, TBK1, IRAK1, ASK1,
Act1, WWP1, IRE1α, A20, CYLD, USP20, USP25,
Pellino3, Itch, SHP, MST4, IPMK, and PINK1 [3••, 177,
186, 188, 212–223]; (4) transcription factors: IRF4, IRF5,
IRF7, STAT1, STAT3, Smad6, HIF1α, Nur77, and DCP1a,
among others [3••, 186, 196, 219, 224–231]. Both human and
mouse evidence indicates the pivotal importance of TRAF6 in
sepsis, lung inflammation, cardiovascular inflammation, in-
flammatory bowel diseases, liver inflammation, diabetes, pan-
creatitis, neurodegenerative diseases, and autoimmune inflam-
matory diseases (such as autoimmune hepatitis, lupus, arthri-
tis, and multiple sclerosis).

Sepsis TRAF6 expression is downregulated in PBMCs in crit-
ically ill patients with sepsis, and an intronic SNP of TRAF6
(rs4755453) is associated with susceptibility to sepsis-induced
acute lung injury (a protective role identified for the C allele of
rs4755453) [232, 233]. TRAF6 deficiency leads to defective
LPS-, IL1β- and CD40- signaling in mice [234, 235].
Multiple TRAF6-interacting proteins, including IRF5,
ASK1, Akt2, and CRTC2, are activated by TRAF6 and play
important roles in LPS-induced septic shock responses as
demonstrated by in vivo evidence in mouse models
[236–239]. Notably, a variety of TRAF6-interacting proteins
regulate LPS-induced septic shock responses in mouse
models by directly targeting TRAF6 ubiquitination, degrada-
tion or complex formation, including IRAK1, IRAK2, IRAK-
M, A20, NLRX1, NLRC3, CD204, β-arrestin, GIT2, MST4,
Nur77, IPMK, SHP, and Keratin 8, among others [198, 199,
210, 211, 215, 220–222, 230, 240–245]. Therefore, TRAF6 is
a central regulator of sepsis.

Airway Inflammation In cultured human macrophages, ciga-
rette smoke induces TRAF6 degradation, NF-κB activation
and IL-8 production via TLR4-IRAK-dependent signaling
[246]. During lung I/R injury, DAMPs induce autophagy to
amplify the inflammatory response by enhancing K63-linked
ubiquitination of TRAF6 and activation of the downstream
MAPK and NF-κB signaling in alveolar macrophages [247].
In mice, high doses of CpG oligodeoxynucleotides protect
against allergic airway inflammation by stimulating the
TLR9-TRIF-TRAF6-NF-κB2 pathway [195]. In the presence
of TGF β, ligation of OX40 induces conventional CD4+ T
cell polarization to TH9 cells, and OX40L-transgenic mice
develop an extensive autoimmune disease with severe TH9-
driven airway inflammation. However, OX40 fails to induce
TH9 polarization in CD4 T cells of T cell-specific TRAF6−/−

mice due to defective OX40-TRAF6-NIK-NF-κB2 signaling
in TRAF6−/− T cells [194]. In contrast, TRAF6 in DCs is
required for the maintenance of tolerance in the lung to pre-
vent allergic asthma. Specific deletion of TRAF6 from DCs
leads to spontaneous generation of TH2-associated immune
responses in the lung and increased susceptibility to the model
antigen OVA-induced asthmatic airway inflammation with
exacerbated eosinophil infiltration [248]. As a component of
the IL-17R-Act1-TRAF6 signaling axis in macrophages, fi-
broblasts, and epithelial cells, TRAF6 is also required for IL-
17 and IL-25-induced airway and pulmonary inflammation
[177, 200, 249]. Furthermore, TRAF6−/− mast cells show im-
paired production of cytokine IL-6, IL-13, TNF, and CCL-9
following FcεRI aggregation, suggesting a positive role for
mast cell TRAF6 in allergic inflammatory responses [189].
Thus, TRAF6 is an indispensable regulator of airway inflam-
mation by acting in both immune cells and lung resident cells.

Cardiovascular Inflammation TRAF6 expression is upregulat-
ed in human atherosclerotic plaques and human hearts with
hypertrophic cardiomyopathy, dilated cardiomyopathy, and
atrial fibrosis [43, 250–252]. Using LDLR− /− mice
reconstituted with TRAF6−/− fetal liver cells and on a high
cholesterol diet, Stachon et al. reported that TRAF6 is not
required for atherogenesis. Interestingly, however, Polykratis
et al. revealed the opposite protective versus pathogenic roles
of TRAF6 in atherosclerosis using two different conditional
TRAF6 knockout mouse models [253]. Endothelial TRAF6
deficiency reduces atherosclerosis in female ApoE−/− mice by
inhibiting NF-κB-dependent proinflammatory gene expres-
sion and monocyte adhesion to endothelial cells [253]. In
contrast, myeloid cell-specific TRAF6 deficiency causes ex-
acerbated atherosclerosis in both male and female ApoE−/−

mice by increasing ER stress and apoptosis and by reducing
IL-10 production and the efferocytosis capacity of TRAF6−/−

macrophages [253]. In mouse hypertrophic hearts, elevation
of TRAF6 protein levels is induced by ROS generated during
hypertrophic progression [250]. Cardiac-specific TRAF6
transgenic mice show exacerbated cardiac hypertrophy in re-
sponse to pressure overload or angiotensin II challenge,
whereas cardiac-specific TRAF6−/− mice exhibit an alleviated
cardiac hypertrophy phenotype [250]. Mechanistically, ROS
triggers TRAF6 auto-ubiquitination and subsequent TRAF6-
TAB2-TAK1 signaling, which regulates cardiac remodeling
via the p38 and JNK1/2 pathways [250]. Thus, TRAF6 plays
complex roles in endothelial cells, macrophages, and
cardiomyocytes via distinct signaling pathways during cardio-
vascular inflammation.

Inflammatory Bowel Diseases In humans, epigenetic silencing
of TRAF6 by hypermethylation and reduced TRAF6 expres-
sion are detected in PBMCs of IBD patients [254].
Paradoxically, Shen et al. reported that TRAF6 expression is
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elevated in PBMCs and intestinal mucosa of IBD patients and
that soluble TRAF6 levels in plasma are also significantly
higher in patients with CD and UC than in healthy controls
[163]. In mice, dendritic cell-specific deletion of TRAF6 (DC-
TRAF6−/−) results in spontaneous eosinophilic enteritis and
fibrosis in the small intestine associated with a TH2 inflamma-
tory response in the lamina propria [255•]. The aberrant TH2
response is linked to decreased Treg cell numbers in the small
intestine and diminished induction of iTreg cells due to defec-
tive expression of IL-2 in TRAF6−/− DCs [255•]. The TH2-
associated small intestine inflammation is exacerbated in
germ-free DC-TRAF6−/− mice compared to specific
pathogen-free DC-TRAF6−/− mice, suggesting that the enter-
itis phenotype is independent of gut microbiota [256]. In con-
trast, young mice with T cell-specific TRAF6 deletion show
attenuated DSS-induced colitis, which is associated with in-
creased TGF β-Smad2/3 signaling in TRAF6−/− T cells and
increased TH17 differentiation [257]. Interestingly, intestinal
epithelial cell (IEC)-specific deletion of TRAF6 leads to ex-
acerbated DSS-induced colitis in mice, which is dependent on
gut microbiota but independent of TLR-MyD88/TRIF signal-
ing in IECs [258]. Furthermore, activation of NOD2, a major
susceptibility gene of CD, protects mice from TNBS-induced
colitis by increasing the expression of IRF4, which binds to
TRAF6 and RICK to inh ib i t t h e i r K63 - l i nked
polyubiquitination [196]. Together, the above evidence indi-
cates that TRAF6 plays diverse and critical roles in IBDs by
differentially acting in various cell types in the intestines (Fig.
1).

Liver inflammation, Diabetes, and Hepatic Steatosis TRAF6
expression is decreased in PBMCs of chronic hepatitis B
virus-infected patients [259], but is elevated in PBMCs of
patients with type 2 diabetes [260, 261]. Significant associa-
tion is detected between the TRAF6 SNP rs16928973 TT and
diabetic nephropathy (DN) in patients with type 2 diabetes
[262]. In mice, specific deletion of TRAF6 from medullary
thymic epithelial (mTEC) cells leads to autoimmune hepatitis
associated with autoantibodies and abnormal hepatic T cell
populations and functions, caused by impaired mTEC devel-
opment and T cell tolerance to liver autoantigens [190]. In a
model of concanavalin A-induced murine hepatitis, the
OX40-TRAF6-MALT1-caspase 1-gasdermin D signaling is
required to induce pyroptosis in hepatic iNKT cells and the
subsequent liver inflammation and injury [263]. In mouse
primary hepatocytes, insulin induces TRAF6-mediated K63-
linked ubiquitination of APPL1 and Akt activation, and
TRAF6 silencing leads to insulin resistance in hepatocytes
[264]. Interestingly, mice deficient in Pellino3, a negative reg-
ulator of TRAF6 activity, show exacerbated HFD-induced
inflammation, hepatic steatosis, and insulin resistance with
increased expression of IL-1 β, TNF, IL-6, and CCL2 in the
liver [219]. These effects of Pellino3 deficiency result from

augmented TRAF6-mediated K63-linked ubiquitination and
stabilization of HIF1α in the liver [219]. However, direct
in vivo evidence of TRAF6 in hepatocytes, insulin resistance,
and hepatic steatosis is still lacking and awaits further inves-
tigation with hepatocyte-specific TRAF6−/− mice.

Pancreatitis Nishida et al. found that IL-36α, a cytokine de-
tected in fibrotic tissue of chronic pancreatitis, induces inflam-
matory mediators from human pancreatic myofibroblasts via
the IL-36R-MyD88-TRAF6-IRAK1-TAK1 signaling path-
way [265]. In mice, TRAF6 expression is significantly in-
creased in caerulein-induced acute pancreatitis, and TRAF6
plays a protective role in acinar cells against caerulein-induced
apoptosis [207]. LPS-induced SOCS1 and SOCS3 exacerbate
caerulein-induced pancreatitis by directly interacting with
TRAF6 and degrading TRAF6 protein via ubiquitination
[207]. As a convergence point of the TLR4-dependent and
the TLR4-independent signaling pathways, TRAF6 may play
an important role in pancreatitis [207, 266], which remains to
be directly elucidated using conditional TRAF6 knockout
mice in pancreatitis models.

Brain Inflammatory Diseases TRAF6 has been implicated in
the pathogenesis of a variety of human brain inflammatory
diseases, including ischemic stroke, Alzheimer’s disease
(AD), Parkinson’s disease (PD), and Huntington disease
(HD). TRAF6 SNP haplotype rs5030416 (allele C)-
rs5030411 (allele C) has been associated with susceptibility
to ischemic stroke [267], and TRAF6 expression is upregu-
lated in peripheral blood of stroke patients [268]. TRAF6
protein levels are elevated in the brains of PD and HD pa-
tients [90, 193]. Interestingly, abnormal protein aggregates
of TRAF6 are detected in the brains of patients with AD, PD,
and HD [90, 191–193]. In human AD brains, TRAF6 asso-
ciateswith the ubiquitin-associating protein sequestosome1/
p62 and tau in neurofibrillary tangles, and TRAF6 catalyzes
K63-linked polyubiquitination of tau to promote tau aggre-
gation into insoluble tangles [191]. Indeed, tau was recov-
ered as a polyubiquitinated protein in brain lysates fromWT
mice, but was not polyubiquitinated in brain lysates recov-
ered from the TRAF6−/− mice [191]. In human PD brains,
TRAF6 interacts with and ubiquitinates misfolded mutant
PARK7/DJ-1 and PARK1/aSYN to promote the accumula-
tion of insoluble aggregates and Lewy bodies [192].
Similarly in human HD brains, TRAF6 binds to mutant N-
HTT proteins and also ubiquitinates mutant N-HTT to in-
crease the formation of insoluble aggregates [193].
Interestingly, however, instead of the conventional K63-
linked polyubiquitination, TRAF6 promotes atypical
ubiquitination of mutant DJ-1, aSYN and N-HTT with K6,
K27, and K29 linkage formation [192, 193]. Therefore,
TRAF6 appears to act as a key pathogenic E3 ligase in neu-
rodegenerative diseases.
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Table 1 Genetic variations and alterations in expression of TRAF molecules in human inflammatory diseases

Inflammatory disease TRAFs
implicated

Genetic variations and altered expression in patients References

Sepsis TRAF6

Critically ill sepsis Downregulated expression of TRAF6 in peripheral blood leukocytes [232]

Sepsis-induced acute
lung injury

TRAF6 intronic SNP rs4755453 C allele protective against acute lung injury [233]

Cardiovascular
inflammation

TRAF1, 2, 3, 5,
and 6

Atherosclerosis Overexpression of TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6 in human
atherosclerotic plaques

[43]

Acute coronary
syndrome

Elevated expression of TRAF1 in total blood [44]

Downregulated expression of TRAF5 in total blood [178]

Carotid intima-media
thickness

TRAF1 SNP rs2416804 GC associated with carotid intima-media thickness [42]

Heart failure Upregulated expression of TRAF3 in hearts [107]

Hypertrophic
cardiomyopathy

Elevated expression of TRAF6 in hearts [250]

Dilated cardiomyopathy Elevated expression of TRAF6 in hearts [250]

Atrial fibrosis Elevated expression of TRAF6 in hearts [251,252]

Inflammatory bowel
diseases

TRAF1, 2, 3, 4,
5, and 6

Ulcerative colitis and
Crohn’s disease

Elevated expression of TRAF1, TRAF2, TRAF3, TRAF4, TRAF5, and TRAF6 in
PBMCs and colonic mucosa

[81,82,134,163]

Elevated soluble TRAF6 level in plasma [163]

Epigenetic silencing of TRAF6 by hypermethylation in PBMCs [254]

Reduced expression of TRAF6 in PBMCs [254]

Liver inflammation TRAF1, 3, 5,
and 6

Non-alcoholic fatty liver Elevated expression of TRAF1 and TRAF3 in livers [45,136]

Downregulated expression of TRAF5 in livers [180]

Chronic HBV infection Decreased expression of TRAF3 and TRAF6 in PBMCs [135,259]

Brain inflammation TRAF2, 3, 4,
and 6

Alzheimer’s disease Upregulated expression of TRAF2 in AD brains [89]

TRAF2 3′ UTR SNP rs7852970 GG genotype protective against AD [89]

Abnormal aggregates of TRAF6 in AD brains [191]

Mesial temporal lobe
epilepsy

Upregulated expression of TRAF2 in the hippocampus [91]

HSV-1 encephalitis Inactivating mutation of TRAF3 [139]

Ischemic stroke Downregulated DNA methylation of TRAF3 in whole blood samples [140]

Upregulated expression of TRAF6 in peripheral blood [268]

TRAF6 SNP rs5030416 C-rs5030411 C allele associated with ischemic stroke [267]

Schizophrenia Downregulated expression of TRAF4 in the brain [164]

Parkinson’s disease Elevated expression levels of TRAF2 and TRAF6 in PD brains [90]

Abnormal aggregation of TRAF6 in PD brains [90]

TRAF6 associated with mutant DJ-1 and aSYN in Lewy bodies in PD brains [192]

Huntington disease Upregulated expression of TRAF6 in post-mortem HD brains [193]

Abnormal aggregation of TRAF6 associated with mutant N-HTT in HD brains [193]

Autoimmune inflammatory
diseases

TRAF1, 2, 3, 5,
and 6

Systemic lupus
erythematosus

TRAF1/C5 SNP rs10818488 A allele associated with SLE susceptibility [278,279]

TRAF6 SNPs (rs5030437 A allele, rs4755453 C allele, and rs540386 A allele)
associated with lupus susceptibility

[272]

Upregulated expression of TRAF2 and TRAF6 in PBMCs [92,269,270]

Upregulated expression of TRAF5 in CD4+ T cells [176]
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Autoimmune Inflammatory Diseases TRAF6 expression is
elevated in human patients with SLE and RA [4•, 186,
269–271]. Downregulated expression of TRAF6 has also
been detected in PBMCs of SLE patients [93]. Three
TRAF6 SNPs (rs5030437 A allele, rs4755453 C allele, and
rs540386 A allele) are associated with lupus, and the SNP
rs5030437 A allele is also associated with RA [271, 272].
The causal roles of TRAF6 dysregulation in autoimmune in-
flammatory diseases have been demonstrated by several
mouse models with TRAF6 deficiency. In addition to its es-
sential roles in tolerance induction in DCs and mTECs de-
scribed above, TRAF6 is also required for normal function
of CD4+ T cells and Treg cells. An early study by
Chiffoleau et al. showed that chimeric mice reconstituted with
TRAF6−/− fetal liver cells develop a progressive lethal inflam-
matory disease associated with massive organ infiltration and
activation of CD4+ T cells in a TH2-polarized phenotype
[273]. King et al. verified the findings with T cell-specific
TRAF6−/− (T-TRAF6−/−) mice, which also exhibit a systemic
autoimmune inflammatory disease affecting multiple organs
[274]. This autoimmune inflammatory phenotype is mediated
by increased TCR-PI3K-Akt activation and reduced expres-
sion of Cbl-b and consequently independence from CD28 co-
stimulation and impaired anergy induction in TRAF6−/−

CD4+ T cells [274, 275]. Consistent with the notion that
TRAF6 is required for Treg development and maintenance
[257, 276, 277], Treg-specific TRAF6−/− mice spontaneously
develop allergic skin diseases, arthritis, lymphadenopathy,
and hyper IgE phenotypes [277]. Mechanistically, TRAF6
deficiency results in reduced stability and protein level of
FoxP3 in Treg cells, leading to rapid conversion of FoxP3-
expressing Treg cells into TH2-like inflammatory cells in mice
[277]. In summary, TRAF6 protects hosts from various auto-
immune inflammatory diseases by acting in CD4+ TH cell
subsets, Treg cells, DCs, and mTECs.

TRAF7

TRAF7 protein does not have the TRAF homology domain
that defines the TRAF family [3••]. Currently, there is no
human evidence or direct in vivo evidence about TRAF7 in
inflammation and inflammatory diseases.

Here, we summarize genetic variations and alterations in
expression of TRAF molecules in human inflammatory dis-
eases in Table 1 and also provide a list of direct in vivo evi-
dence of TRAF molecules in inflammatory diseases in mouse
models in Table 2.

Conclusions

During the past decade, our knowledge of TRAFmolecules in
inflammation and inflammatory diseases has rapidly grown.
Compelling evidence has demonstrated the central importance
of TRAFs in regulating and controlling inflammation and in-
flammatory responses in both humans and mice. This is
highlighted by mounting evidence of TRAF dysregulation or
dysfunction in human patients with various inflammatory dis-
eases. The causal roles of TRAF dysregulation or dysfunction
in inflammatory diseases have been verified in a variety of
mouse models as reviewed here. It is recognized that although
TRAFs have overlapping roles, each TRAF molecule
(TRAF1 to 6) also plays distinct and indispensable roles in
inflammation and inflammatory responses as demonstrated by
studies of mouse models with genetic engineering of the cor-
responding Traf gene. It is also increasingly clear that for each
specific TRAF molecule, its role in inflammation may vary
substantially depending on the specific receptor pathways en-
gaged, the cellular and organ context, the functional or meta-
bolic state of the cell, and the stoichiometry of other TRAFs
and TRAF-interacting proteins in the cell as revealed by

Table 1 (continued)

Inflammatory disease TRAFs
implicated

Genetic variations and altered expression in patients References

Downregulated expression of TRAF2 and TRAF6 in PBMCs [93]

Rheumatoid arthritis SNPs of TRAF1 rs3761847 GG, TRAF5 rs7514863 T allele, and TRAF6 rs5030437
A allele associated with RA susceptibility

[14••, 27, 272,
280, 281]

Upregulated expression of TRAF2, TRAF3, and TRAF6 in PBMCs [4•, 94, 142,
186, 271]

Multiple sclerosis Upregulated expression of TRAF2 in PBMCs [95]

TRAF3 SNP rs143813189 T allele associated with susceptibility to MS [143]

Type 1 diabetes TRAF1/C5 SNP rs10818488 A allele associated with susceptibility to T1D [279]

Type 2 diabetes Elevated expression of TRAF6 in PBMCs [260, 261]

Diabetic nephropathy TRAF6 SNP rs16928973 TT associated with susceptibility to DN [262]

Uveitis TRAF5 SNPs (rs6540679 AG, rs12569232 GG, rs10863888 AG) associated with
autoimmune uveitis

[183, 184]
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Table 2 Direct evidence of TRAF molecules in inflammatory diseases in mouse models

Inflammatory
diseases

TRAFs
involved

Mouse genotype Disease phenotype References

Spontaneous
systemic
inflammation

TRAF3 Myeloid cell KO: TRAF3flox/flox,
LysM-Cre

Aging mice exhibit spontaneous chronic inflammation affecting multiple
organs

[98•]

Sepsis TRAF1
and 3
TRAF1 TRAF1−/− Resistant to LPS-induced sepsis [14••]
TRAF3 Myeloid cell KO: TRAF3flox/flox,

LysM-Cre
Enhanced inflammatory responses to LPS or polyI:C injections [98•]

Skin
inflammation

TRAF2
and 6
TRAF2 Keratinocyte KO: TRAF2flox/flox,

K14-Cre
Psoriatic skin inflammation and epidermal hyperplasia [76]

TRAF6 Treg KO: TRAF6flox/flox,
FoxP3-Cre

Spontaneous dermatitis with allergic skin inflammation [277]

Airway and
pulmonary
inflammation

TRAF1, 4,
5, and 6

TRAF1 TRAF1−/− Increased inflammation after intratracheal TNFα treatment [38]
Chimera: WT BM→ TRAF1−/− Decreased lymphocyte recruitment after inhalation of LPS [39]
Chimera: WT T cells → TRAF1−/− Decreased allergic lung inflammation mediated by lung resident cells [40]
Chimera: TRAF1−/− T cells→ WT Exacerbated allergic airway inflammation mediated by Th2 cells [41]

TRAF4 TRAF4−/− Increased rates of pulmonary inflammation [150,151]
Blunted airway eosinophilia and Th2 cytokine production in response to

IL-25 administration
[161]

TRAF5 TRAF5−/− Exaggerated Th2-driven allergic airway and lung inflammation [174]
TRAF6 DC KO: TRAF6flox/flox,

CD11c-Cre
Spontaneous Th2 immune responses in the lung and increased susceptibility

to allergic airway inflammation
[248]

T cell KO: TRAF6flox/flox,
CD4-Cre

Impaired Th9 differentiation in response to OX40 stimulation [194]

Cardiac
hypertrophy
and fibrosis

TRAF2, 3,
5, and 6

TRAF2 Cardiac Tg: α-MHC-TRAF2 Tg Exacerbated cardiac hypertrophy, left ventricular dysfunction, and adverse
cardiac remodeling

[79,80]

TRAF3 Cardiac KO: TRAF3flox/flox,
MHC-Cre

Reduced cardiac hypertrophy, fibrosis, and dysfunction [107]

Cardiac Tg: Exaggerated cardiac hypertrophy in response to pressure overload [107]
CAG-loxp-CAT-loxp-TRAF3,
MHC-Cre

TRAF5 TRAF5−/− Exacerbated cardiac hypertrophy and fibrosis [179]
TRAF6 Cardiac KO:

TRAF6flox/flox,
α-MHC-MerCreMer

Alleviated cardiac hypertrophic phenotype [250]

Cardiac Tg: α-MHC-TRAF6 Tg Exacerbated cardiac hypertrophy in response to pressure overload or angiotensin II [250]
Atherosclerosis TRAF1, 5,

and 6
TRAF1 TRAF1−/−LDLR−/− Attenuated high-cholesterol diet-induced atherogenesis [44]
TRAF5 TRAF5−/−LDLR−/− Accelerated high-cholesterol diet-induced atherogenesis [178]
TRAF6 Endothelial cell KO:

TRAF6flox/flox,
Tie2-Cre-ERT2, ApoE−/−

Reduced high-cholesterol diet-induced atherosclerosis in female mice [253]

Myeloid cell KO: Exacerbated high-cholesterol diet-induced atherosclerosis in both female and
male mice

[253]

TRAF6flox/flox, LysM-Cre,
ApoE−/−

Inflammatory
bowel diseases

TRAF2, 3,
5, and 6
TRAF2 TRAF2−/− Spontaneous severe colitis and apoptosis of colonic epithelial cells,

accumulation of IL-10-secreting neutrophils, and drastic changes in the
colonic microbiota

[48]
[84]

Myeloid cell KO: TRAF2flox/flox,
LysM-Cre

Exacerbated DSS-induced colitis [47••]

TRAF3 Myeloid cell KO: TRAF3flox/flox,
LysM-Cre

Exacerbated DSS-induced colitis [47••]
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Table 2 (continued)

Inflammatory
diseases

TRAFs
involved

Mouse genotype Disease phenotype References

TRAF5 TRAF5−/− ExacerbatedDSS-induced colitis with increased frequencies of Th2 and Th17
cells

[171]

TRAF6 DC KO: TRAF6flox/flox,
CD11c-Cre

Spontaneous Th2-associated small intestine inflammation with decreased
Treg cell numbers

[256]

T cell KO: TRAF6flox/flox,
CD4-Cre

Attenuated DSS-induced colitis in young mice [274]

Intestinal epithelial cell KO:
TRAF6flox/flox, Villin-Cre Exacerbated DSS-induced colitis [258]

Liver
inflammatory
diseases

TRAF1, 2,
3, 5,
and 6
TRAF1 TRAF1−/− Reduced HFD-induced inflammation, insulin resistance and hepatic steatosis [45]

Reduced liver inflammation and injury following hepatic I/R [25]
TRAF1−/− ob/ob Reduced liver inflammation, insulin resistance and hepatic steatosis [45]
Hepatocyte Tg: albumin-TRAF1

Tg
Exacerbated HFD-induced inflammation, insulin resistance, and hepatic

steatosis
[45]

Aggravated liver inflammation and injury following hepatic I/R [25]
TRAF2 Tamoxifen-induced KO: Increased hepatic necrosome assembly and rapid lethality in adult mice after

tamoxifen treatment
[50]

TRAF2flox/flox, Rosa-Cre
ERTS

Hepatocyte KO: Attenuated HFD-induced hyperglycemia and obesity, and acquired resistance
to glucagon

[88]
TRAF2flox/flox, albumin-Cre

Liver parenchymal cell KO:
TRAF2flox/flox, Alfp-Cre Mild and focal spontaneous ductular reaction [57]
TRAF2flox/flox, Ripk1flox/flox,
Alfp-Cre

Spontaneous hepatitis and formation of dysplastic foci [57]

TRAF3 Myeloid cell KO: TRAF3flox/flox,
LysM-Cre

Reduced HFD-induced inflammation, insulin resistance, and hepatic steatosis [103]

TRAF3flox/flox, LysM-Cre,
ob/ob

Reduced liver inflammation, insulin resistance and hepatic steatosis [103]

Hepatocyte KO: Reduced HFD or ob/ob-induced inflammation, insulin resistance, and hepatic
steatosis

[104,136]

TRAF3flox/flox, albumin-Cre Reduced liver inflammation and injury following hepatic I/R [106]
Hepatocyte Tg: Exacerbated HFD-induced inflammation, insulin resistance and hepatic steatosis [136]

CAG-loxp-CAT-loxp-TRAF3,
albumin-Cre

Exacerbated liver inflammation and injury following hepatic I/R [106]
TRAF5 TRAF5−/− Exacerbated HFD-induced inflammation, insulin resistance, and hepatic

steatosis
[180]

TRAF5−/− ob/ob Exacerbated liver inflammation, insulin resistance, and hepatic steatosis [180]
Hepatocyte Tg: albumin-TRAF5

Tg
Reduced HFD-induced inflammation, insulin resistance, and hepatic steatosis [180]

TRAF6 Medullary thymic epithelial cell
KO:

Spontaneous autoimmune hepatitis associated with autoantibodies and
abnormal hepatic T cell populations and functions

[190]

TRAF6flox/flox, Foxn1-Cre
Bone

inflammation
and arthritis

TRAF1, 3,
and 6

TRAF1 TRAF1−/− Reduced autoantibody production in inflammatory arthritis [37]
TRAF3 Osteoclast KO:

TRAF3flox/flox, cathepsin
K-Cre

Increased osteoclastogenesis and osteoporosis [109]

TRAF6 TRAF6−/− Severe osteopetrosis and defective osteoclast formation [234, 235]
Treg KO: TRAF6flox/flox,

FoxP3-Cre
Spontaneous arthritis with increased IgE and loss of cartilage tissues [277]

Brain
inflammation
and EAE

TRAF1, 3,
4, 5,
and 6
TRAF1 TRAF1−/− Reduced stroke lesion following cerebral I/R [24]

Neuron Tg: pPDGF-TRAF1 Tg Enlarged stroke lesion following cerebral I/R [24]
TRAF3 Myeloid cell KO: TRAF3flox/flox,

LysM-Cre
Exacerbated EAE severity [120]

TRAF3 Tg: pCAGGS-TRAF3 Tg Delayed onset, and reduced incidence and severity of IL-17-induced [141]
EAE
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comprehensive analyses of different inflammatory responses
and disease models. In conclusion, TRAF molecules are ver-
satile and indispensable regulators of inflammation and in-
flammatory responses, and aberrant expression or function
of TRAFs contributes to the pathogenesis of inflammatory
diseases.

Perspective

Given the central importance of TRAFs in inflammation and
inflammatory diseases, it would be envisioned that TRAFs
and TRAF-dependent signaling pathways represent rational
therapeutic targets for human inflammatory diseases.
Development of therapeutic strategies and agents that specif-
ically targets TRAFs and TRAF-dependent signaling path-
ways will thus be the next major challenge in the field. This
could be particularly difficult considering the broad and high-
ly diverse roles of TRAFs in inflammation and other immune
responses depending on the stimuli, cell type, tissue environ-
ment, and functional state of the hosts. In this regard, insights
gained into the proximal TRAF signaling complexes and de-
tailed structures of the interactions between each TRAF and
its specific signaling partners will guide the design of context-
specific therapeutics. In addition, local or cell-specific drug

delivery would be beneficial to improve the therapeutic effi-
cacy and avoid systemic side effects of TRAF-targeting ther-
apeutics. To date, only TRAF6-specific therapeutic agents
have been tested in inflammatory disease settings. Inhibition
of TRAF6 expression using specific small interfering RNA
reduces the severity of arthritis and joint inflammation in a
mouse RA model [282]. Notably, structure-based in silico
approaches have been employed to screen and identify com-
pounds that specifically block TRAF6-CD40 or TRAF6-
RANK interactions, which serve as lead compounds for fur-
ther drug development and optimization [283, 284]. The small
molecule inhibitor (SMI) of CD40-TRAF6 interaction,
6877002, effectively reduces in vivo inflammation in mouse
models of peritonitis, polymicrobial sepsis, and EAE
[283, 285]. Another SMI of CD40-TRAF6 interaction,
6860766, potently ameliorates in vivo inflammation in
mouse models of polymicrobial sepsis and HFD-induced
obesity [283, 286]. These findings provide proof-of-
concept evidence that manipulation of TRAF expression
and function holds therapeutic potential for inflammato-
ry diseases. Further development of therapeutic strate-
gies and agents that specifically target other TRAF mol-
ecules or signaling complexes will add to our armament
to improve the treatment of human inflammatory
diseases.

Table 2 (continued)

Inflammatory
diseases

TRAFs
involved

Mouse genotype Disease phenotype References

Neuron KO: TRAF3flox/flox,
CaMKIIα-Cre

Reduced neuronal death and inflammation following cerebral I/R [110]

Neuron Tg:
CAG-loxp-CAT-loxp-TRAF3,
CaMKIIα-Cre

More severe ischemic stroke following cerebral I/R [110]

TRAF4 TRAF4−/− Spontaneous degeneration of a high number of Purkinje cells [166]
Chimera: WT Th17 cells →

TRAF4−/−
Earlier onset of EAEwith increased numbers of immune cell infiltration in the

brain
[160]

TRAF5 TRAF5−/− Greatly exaggerated severity of Th17-associated EAE [172]
Reduced infarct size and improved neurological function following cerebral

I/R
[181]

Neuron Tg: pPDGF-TRAF5 Tg Exacerbated brain injury and edema following cerebral I/R [181]
TRAF6 TRAF6−/− Defective ubiquitination of tau in the brain [191]

Systemic
autoimmune
inflammation

TRAF2, 3,
and 6

TRAF2 TRAF2−/−TNFα−/− Spontaneous lymphocyte infiltration in multi-organs, increased Th1 and
Th17 cytokines, and accumulation of autoantibodies

[96]

TRAF3 B cell KO: TRAF3flox/flox,
CD19-Cre

Spontaneous lymphocyte infiltration in multi-organs, increased mature B
cells in periphery, and accumulation of autoantibodies

[101]

B cell Tg: Igh-TRAF3 Tg Systemic autoimmune inflammation in multi-organs [105]
Treg KO: TRAF3flox/flox,

FoxP3-Cre
Mild tissue inflammation mostly seen in the lung and liver [144]

TRAF6 Chimera: TRAF6−/− fetal liver →
WT

Spontaneous progressive lethal inflammatory disease with massive
multi-organ infiltration and activation of Th2 cells

[273]

T cell KO: TRAF6flox/flox,
CD4-Cre

Spontaneous multi-organ autoimmune inflammatory disease [274]

Treg KO: TRAF6flox/flox,
FoxP3-Cre

Spontaneous dermatitis, arthritis, lymphadenopathy, and hyper-IgE pheno-
types

[277]
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