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Abstract
Purpose of Review In this review, wewould like to present the
overall concepts of “-omes−epi-omes” interactions, i.e., the
interactions among the four most noticeable “-omes” (ge-
nome, transcriptome, proteome, and metabolome) to the four
“epi-omes” (epigenome, epitranscriptome, epiproteome, and
epimetabolome) as well as discussing the recently identified
epimodifications in humans.
Recent Findings With the advancement of mass spectrometry
and sequencing technologies, novel epimodifications/epi-
marks are gradually revealed in recent years. Nowadays, it is
becoming clear that all the constituents of the genome, tran-
scriptome, proteome, and even the metabolome can further be
modified/decorated with various epi-marks. Given the fact
that a variety of modifications can occur in DNA/RNA, pro-
teins, and metabolites, it is possible that an unknown number
of epimodifications/epi-marks might exist and are yet to be
discovered.
Summary The ability to decipher and manipulate the epi-
omes might present new avenues in drug design for procuring
better treatment of various human diseases.
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Introduction

The term “-omics” is now a very familiar term especially
in the field of life sciences. This suffix seems to be first
coined in the 1980s, to describe the global analysis of
biological molecules. Since then, an explosion of -omics
approaches has been observed in the last few decades.
Although the study of a particular area suffices to consti-
tute an “-omics” approach, e.g., phosphoproteomics, which
is the systematic/global study of phosphoproteins [1].
However, most of these new “-omics” approaches are ac-
tually stemmed from the four main noticeable “-omics”
approaches, i.e., genomics, transcriptomics, proteomics,
and metabolomics. As from the concept of central dogma,
it is not difficult to anticipate the gradual evolvement of
genomics to transcriptomics and to proteomics. For meta-
bolomics, although it is regaining attention lately, this ap-
proach could never attain such high throughput competen-
cy without the recent advancement of tandem mass spec-
trometry (MS/MS) [2]. Even for that, because of the com-
plex diversity of known and unknown metabolites that
might actually be present, therefore, various MS-based
(e.g., GC-MS, LC-MS/MS) as well as non-MS-based
methodologies (e.g., NMR-based) are still required to ful-
fill the objectives in each specific need in metabolomic
study [3•]. Moreover, although each main approach alone
is powerful, throughout these years, it becomes evident for
us to realize that no single omics approach would be
indeed comprehensively/conclusive enough to understand/
solve/explain a particular biological problem. Therefore, in
the future, it is expected that the combined utilization of
multiple approaches in one study would be deemed nec-
essary to get an even more global/comprehensive picture
and facilitate in deciphering the complex biological phe-
nomenon [4•].
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Epimodifications of the Fantastic Four “-omes”

In the past half century, DNA methylation and protein phos-
phorylation are among the most common modifications dis-
covered. It has been a while when histone proteins have been
regarded as just the bulk materials or inert building blocks for
organizing the eukaryotic genome [5], and gene expressions
are primarily controlled by the degree of DNA methylation in
the genome [6]. However, this concept has been changed dra-
matically later when histone H3 was demonstrated to be able
to undergo phosphorylation and acetylation (which are closely
related to cell division and participated in cellular gene regu-
lation) [7, 8]. Since then, DNA methylation and histone mod-
ifications appear to layout the foundation of epigenetics.
Indeed, it is now becoming clear that post-translational mod-
ification (PTM) of proteins happens not just in histones but
virtually in every protein [9]. In here, we would like to
strengthen the notion that although there should presumably
still exist an unknown number and type of post-synthetic mod-
ifications on a variety of biomolecules, however, only those
modifications that exert heritable changes should be consid-
ered as epimodifications, whether decorated in DNA, RNA, or
proteins (although it is not clear if epimetabolites would have
heritable changes to the epigenetic landscape for the moment).
For instance, histone protein modifications are considered as
epiproteomic modifications. Other proteins we think that they
should be categorized within the epiproteome are the
chromatin-associated enzymes/factors that can write, read, or
erase DNA, RNA, or histone protein epi-marks [such as
DNMTs (DNA writers), METTL3-METTL14-WTAP-
KIAA1429 complex (RNAwriters), and Aurora kinases (his-
tone writers); methyl-CpG-binding proteins (DNA readers),
YTH family proteins (RNA readers), and 14-3-3 proteins (his-
tone readers); TETs (DNA/RNA erasers), FTO (RNA eraser),
and PP1 (histone eraser)] [10••, 11, 12, 13••], as their activities
could lead to chromatin remodeling/alteration of DNA meth-
ylation, histone modifications, and ncRNA expression, which
subsequently influent the dynamics and operations of cellular
genetics. Epimodifications of RNA and metabolites are the
more recently studied field and it is intriguing to discover that
RNA, similar to DNA, can also be methylated and
hydroxymethylated [10••, 14]. Likewise, the modification of
metabolites is gradually appreciated in the past few years and
it is believed that with the use of MS/MS technology, more
and more epimetabolites/oncometabolites will be identified
and their functions deciphered in the near future. Nowadays,
MS/MS technology is a powerful tool for the de novo identi-
fication and quantitation of epimodifications in diverse bio-
molecules in the field of life sciences [15, 16].

In this article, we would like to present the overall concepts
of “-omes−epi-omes” interactions, i.e., the relationships
among the four most noticeable “-omes” (genome, tran-
scriptome, proteome, and metabolome) to the four “epi-omes”

(epigenome, epi t ranscr iptome, epiproteome, and
epimetabolome) as well as discussing the recently identified
epimodifications in humans. Lastly, the recent advances in
targeting the epi-omes by various epi-drug strategies will be
discussed.

The Cellular Regulatory Paradigm of “-omes
−epi-omes” Interactions

We would like to present the following models to demonstrate
the gradual shaping of “-omes−epi-omes” interactions (the four -
omes and four epi-omes) (Fig. 1). First, we start with the four
noticeable “-omes”, i.e., genome (G), transcriptome (T), prote-
ome (P), and metabolome (M) (Fig. 1a). The identification of
DNAmethylation in the genome has initially shaped the concept
of epigenome (Epi-G), while the discovery of histone phosphor-
ylation and acetylation in chromatin has founded the
epiproteome (Epi-P) (Fig. 1b). Transcripts of the genome,
whether the coding and non-coding RNA messages, constitute
the transcriptome and are also subjected to various post-
transcriptional modifications, which encompassed the
epitranscriptome (Epi-T) (Fig. 1b). Within the constituents of
the proteome (i.e., enzymes), they can perform various catabolic
and anabolic reactions to produce diverse kinds of biomolecules
andmetabolites; the global study of all themetabolites inside the
cells constitute the metabolome (Fig. 1a). Very recently, it has
been proposed that the modification of metabolome can give
rise to epimetabolome (Epi-M) (the dark matter of metabolism)
(Fig. 1b). Since a variety of metabolites like amino acids, car-
bohydrates, hydroxy acids, lipids, peptides, purines, pyrimi-
dines, and sterols can potentially be undergoing diverse
epimodifications, it is highly possible that a great deal of novel
epimetabolites exist and are waiting to be discovered. From this
point, all eight players are now clearly emerged (Fig. 1b).

As a matter of fact, the transitions of the four -omes to four
epi-omes are largely catalyzed by various enzymes/protein
complexes of the proteome. For example, the modification
of G by P created the Epi-G (genomic DNA being cytosine
methylated by DNMTs). Indeed, constituents of P can modify
itself to become Epi-P; this is not difficult to imagine, for
instance, histone protein kinases phosphorylate histone pro-
teins. Therefore, the transition of G to Epi-G and P to Epi-P is
indeed a very common phenomenon in the cell. Recently,
RNA was demonstrated to be modified by a variety of RNA
modifying enzymes in the cells [17], which confirmed the
transition of T to Epi-T. Finally, several metabolites can be
further modified by some metabolic enzymes in the cells [18,
19], which also supported the M to Epi-M transition.

Inside the cells, -ome(s)/epi-ome(s) and -ome(s)/epi-
ome(s) are closely interacted. We would like to cite a few
examples here: (1) Epi-P→G (Ser10-phosphorylated histone
H3 leads to chromatin DNA condensation) [20], (2) P↔Epi-
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P→G↔Epi-G (deacetylation or acetylation of chromatin-
associated enzyme DNMT1 can enhance or reduce its stabil-
ity, and as a result increasing or decreasing the level of meth-
ylated genomic DNA) [21], (3) T↔Epi-T→P (N6-adeonine
methylated mRNA which affects its stability and translation
efficiency, and as a result influent the level of protein translat-
ed) [22], and (4) T and M interaction (the discovery of
metabolite-binding RNA domains in eukaryotes, in which
cells are capable of using RNA for metabolite-binding and
to sense cellular metabolism) [23]. Besides of the above, we
think it would be tempting to investigate other novel interac-
tions between Epi-M and the other players in this model.
Suffice to say, all the four -omes to the four epi-omes are
dynamically interrelated and all the possible direct/indirect
effects could happen, which may ultimately explain why the
cellular physiology is so complicated.

Novel Epimodifications/Epi-marks in Humans

Epimodifications are largely in part identified by MS/MS dis-
covery/untargeted mode of identification. It is becoming usual
for the identification of new epi-marks nowadays. In here, we
would like to discuss some of the latest epi-marks reported (as
shown in Table 1).

Epigenomic Modifications

It is generally accepted that DNA methylation by DNMTs
promotes chromatin condensation and transcriptional

repression, whereas DNA demethylation by DNA
demethylases is associated with gene/transcriptional activa-
tion. In mammalian cells, DNA methylation is faithfully
maintained and written by three major DNMTs, including
DNMT1 (for maintenance of methylation), DNMT3a, and
DNMT3b (for de novo methylation) [24, 25]. On the oth-
er hand, active DNA demethylation is carried by a class
of enzymes called ten-eleven translocations (TETs), includ-
ing TET1, TET2, and TET3, which are methylcytosine
dioxygenases that convert methylated cytosine to
hydroxymethylated cytosine [26].

Similar to nuclear DNA (nDNA), mitochondrial DNA
(mtDNA) can also be subjected to cytosine methylation
(m5C)/hydroxymethylation (hm5C) [27]. Lately, it has
also been reported that instead of CpG methylation, mi-
tochondrial DNA can undergo GpC methylation (medi-
ated by a mitochondria-targeted DNMT1 transcript var-
iant, mtDNMT1) as potential regulator of mitochondrial
gene expression [28•]. Moreover, recent findings also
indicate that dysfunctional mtDNA methylation could
underlie aging and diseases [29].

Besides of the above, other less familiar DNA
epimodifications can also occur, including cytosine
formylation (5fC, a demethylation intermediate and epi-
genetic mark), cytosine carboxylation (5caC, a demeth-
ylation intermediate and possible epigenetic mark), and
N6-adeonine methylation (m6A, a potential epigenetic
mark) [14, 30]. For a more detailed perspective of the
related information of other DNA epimodifications, we
refer the reader to the following online DNA modifica-
tion database (DNAmod) [31•].

Fig. 1 The cellular regulatory paradigm of “-omes−epi-omes”
interactions. a The possible interactions among the four most noticeable
“-omes”: genome (G), transcriptome (T), proteome (P), and metabolome

(M). b All the possible interactions among the four “-omes” to the four
“epi-omes”: epigenome (Epi-G), epitranscriptome (Epi-T), epiproteome
(Epi-P), and epimetabolome (Epi-M)
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Epitranscriptomic Modifications

Since the first discovery of N6-adeonine methylation
(m6A) as the mos t abundan t reve r s ib le pos t -
transcriptional modification on mRNAs and lncRNAs
in eukaryotes [32], an explosion of over 100 different
types of chemical modifications have been found in cod-
ing and non-coding RNAs [including mRNAs, tRNAs,
rRNAs, snRNAs, and ncRNAs (lncRNAs, miRNAs,
and snoRNAs)] so far with the use of the latest MS
and sequencing technologies [10••, 33–35, 36•]. As men-
tioned, similar to DNA, RNA can also be cytosine meth-
ylated/hydroxymethylated. In addition, other less familiar

RNA epimodifications can also occur, including N1-
adeonine methylation (m1A), pseudouridylation (Ψ),
and 2 ′-O-me t h y l a t i o n ( 2 ′-O-Me ) [All these
epimodifications are closely related to RNA stability,
structure, translational efficiency, and viral replication]
[10••, 37–39]. More recently, it has been suggested the
important role of reversible RNA modifications in mei-
osis and pluripotency [40] as well as in memory forma-
tion [41]. For a more detailed perspective of the related
information of other RNA epimodifications, we refer the
reader to the following online RNA modification data-
bases (RMBase, MODOMICS, and RNAMDB) [42, 43,
44•].

Table 1 An update on
epimodification of biomolecules Type of “-

ome”
Biomolecules Epimodifications [ref]

Genome Nuclear DNA (nDNA) • Cytosine methylation (m5C) [25, 27, 28•]

• Cytosine hydroxymethylation (hm5C) [26, 27]

• Cytosine formylation (5fC) [14]

• Cytosine carboxylation (5caC) [14]

• N6-adeonine methylation (m6A) [30]

Mitochondrial DNA
(mtDNA)

Transcriptome mRNAs • Cytosine methylation (m5C) [10••, 14, 33–35, 36•]

• Cytosine hydroxymethylation (hm5C) [10••, 14, 33–35, 36•]

• N6-adeonine methylation (m6A) [32–35, 36•]

• N1-adeonine methylation (m1A) [10••, 33–35, 36•, 37–39]

• Pseudouridylation (Ψ) [10••, 33–35, 36•, 37–39]

• 2′-O-methylation (2′-O-Me) [10••, 33-35, 36•, 37–39]

tRNAs

rRNAs

snRNAs

ncRNAs

• lncRNAs

• miRNAs

• snoRNAs

Proteome Proteins such as

• Histones

• Histone writers/

readers/erasers

• Chromatin-associated
enzymes/factors

• Serine/threonine/tyrosine phosphorylation (Sph/Tph/Yph) [13••,
45••]

• Lysine acylation [acetylation (Kac), β-hydroxybutyrylation
(Kbhb), crotonylation (Kcr), 2-hydroxyisobutyrylation (Khib),
malonylation (Kma), and succinylation (Ksu)] [13••, 45••,
46–49]

• Lysine methylation (Kme/Kme2/Kme3) [13••, 45••, 57]

• Arginine methylation (Rme/Rme2s/Rme2a) [13••, 45••, 58]

• Ubiquitylation (ub) (at M1/K6/K11/K27/K29/K33/K48/K63
position of ubiquitin, also can undergo monoubiquitylation,
multi-monoubiquitylation, or homotypic/heterotypic
polyubiquitylation) [45••, 53••, 54–56]

• O-glcNAcylation (O-glc) [50]

• Cysteine glutathionylation (Cglu) [51]

Metabolome Metabolites such as

• Amino acids

• Carbohydrates

• Hydroxy acids

• Lipids

• Peptides

• Purines

• Pyrimidines

• Sterols

Modification of metabolites or repairing of damaged metabolites
but without creating new metabolic pathways, e.g.,

• Fatty esters of monohydroxy fatty acids (FAHFAs) [18]

• Methylated epimetabolites such as N-methylglycine [60],
1-methylnicotinamide (1MNA) [61], and symmetric and
asymmetric dimethylarginine (SDMA and ADMA) [19]

• Isomeric variants of epimetabolite such as L- or D-enantiomer
forms of 2-hydroxyglutarate (2HG) [62]
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Epiproteomic Modifications

Acetylation, phosphorylation, methylation, and ubiquitylation
are among the most abundant and well-known reversible his-
tone PTM marks [45••]. Recently, diverse histone acyl lysine
modifications that use intermediates in metabolism have been
gradually reported, including lysine β-hydroxybutyrylation
(bhb) [46], crotonylation (cr) [47], 2-hydroxyisobutyrylation
(hib) [48], malonylation (ma) [49], and succinylation (su) [49]
(which are closely related to cellular metabolism and played
important roles in regulating histone structure and functions).
Other less familiar epiproteomicmodifications include histone
O-glcNAcylation (O-glc) (important for cell cycle transition)
[50], cysteine glutathionylation (glu) (responsible for redox
sensing and regulation of chromatin structure) [51], and the
latest lysine deacetylimination, which converts the
acetyllysine to allysine (as firstly demonstrated in transcrip-
tion factor STAT3) [52]. As mentioned earlier, besides his-
tones, chromatin-associated enzymes/factors that can write,
read, or erase DNA, RNA, or histone protein epi-marks are
l ikely exerting epigenetic effects; therefore, the
epimodification status (such as ubiquitylation) and turnover
of these chromatin-associated enzymes/factors would likely
influent the cellular genetics. Here, we want to address on
the complexity of protein ubiquitylation that at such not only
eight different types of ubiquitin (ub) linkage can occur (at
M1, K6, K11, K27, K29, K33, K48, and K63 position of
ub), but the degree of ub-conjugation can also be variable
(i.e., whether the target molecule is monoubiquitylated,
multi-monoubiquitylated, or homotypically/heterotypically
polyubiquitylated) [53••]. For example, the K48 homotypic
polyubiquitylation, the most studied type of ub-conjugation,
targets protein to proteasomal degradation [54], while K63
homotypic polyubiquitylation is linked to DNA damage/
stress response, translation, and lysosomal targeting [55, 56].
Likewise, although not as complex as protein ubiquitylation,
lysine can undergo mono/di/tri-methylation (Kme/Kme2/
Kme3) [57]; while arginine can undergo mono/dimethylation
(Rme/Rme2). Arginine dimethylation can occur in a symmet-
rical (Rme2s) or asymmetrical (Rme2a) manner [58].
Therefore, close and cautious examination should be under-
taken for epiproteomic studies involving ubiquitylation and
methylation.

Epimetabolomic Modifications

More recently, studies of identification and elucidation of the
biological functions of epimetabolites are emerging.
Epimetabolites are produced by modification of metabolites
or repairing of damaged metabolites but without creating new
metabolic pathways [59]. For instance, several categories of
epimetabol i tes were discovered, including l ipid

epimetabolites [fatty esters of monohydroxy fatty acids
(FAHFAs) with anti-diabetic and anti-inflammatory effects],
methylated epimetabol i tes [N-methylglycine, an
oncometabolite; 1-methylnicotinamide (1MNA), acts as a
methylation sink in naive embryonic stem cells preventing
deposit of H3K27me3 marks; symmetric and asymmetric
dimethylarginine (SDMA and ADMA), in which SDMA
can be used as a urine biomarker for renal insufficiency, while
ADMA levels are significantly associated with an increased
risk of coronary artery disease], and isomeric variants of
epimetabolite 2-hydroxyglutarate (2HG), an oncometabolite,
which exists in L- or D-enantiomer forms [18, 19, 60–62].

From the above, although the presence of diverse
epimodifications/epi-marks have been proven to be existing
in each of the four -omes, however, intensive researches
would still be needed to dissect the inter-omes–epi-omes rela-
tionship as well as their biological function and significance.
Since epimodification of the constituents within a particular -
ome might directly/indirectly affect the constituents of the
other -ome(s)/epi-ome(s), therefore, it is deemed necessary
to have the whole epimodification profile of the four -omes
in order for us to be able to comprehend the physiological
status of the cells at a particular time/event.

Rise of the Epi-drugs

Drugs that target the epi-omes have potential over convention-
al cancer therapeutic approaches. Many epi-drugs are being
developed and undergoing clinical trials. It can be seen that
drugs that target the DNMT and various epigenetic modifiers
(HDAC, Aurora B, EZH2, IDH1/2, LSD1, SETD2, NSD2,
SWI/SNF complex, SMARCA2/4, BRD4, and DOT1L) are
being deployed as a strategy for battling against various hu-
man diseases [63]. Although genome editing by zinc-finger
nuclease (ZFN), transcription activator-like effector nuclease
(TALEN), or a (clustered regularly interspaced short palin-
dromic repeats)/Cas9 (CRISPR-associated 9) system can re-
move or insert genetic elements within the genome [64••],
however, the effect is somewhat permanent and is difficult
to be reverted. Therefore, epigenetic editing by artificial tran-
scription factors (such as zinc finger-based artificial transcrip-
tion factors or fusion of designer DNA binding domains to
epigenetic writers/erasers) have been examined as novel ther-
apeutics in killing of cancer cells as in general the genomic
DNA sequence in these cells are not altered but only the
epimodifications/epi-marks in the target chromatin region
are manipulated which ultimately fine-tune the gene expres-
sion levels by the self, endogenous gene promoters (i.e.,
whether re-expressing of selected epigenetically silenced tu-
mor suppressor genes or silencing of pro-metastatic genes/
oncogenes) [65–67, 68•]. Moreover, natural dietary com-
pounds such as astaxanthin (AST) [69•], phenethyl
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isothiocyanate (PEITC) [70], curcumin (CUR) [71], sulfo-
raphane (SFN) [72], resveratrol (RSVL) [73], and
epigallocatechin-3-gallate (EGCG) [74] have also been dem-
onstrated to have the ability for epigenetically suppressing
cancer cell invasion or proliferation, reactivating tumor sup-
pressors, and enhancing cellular anti-oxidative stress re-
sponses, which suggested the beneficial role of dietary intake
of these phytochemicals. Last but not the least, epi-drugs in
combination with immunotherapeutics has been proposed as a
new avenue to improve anticancer efficacy [75]. To sum up,
all these studies have provided the potentials of epi-drugs that
laid out the foundation and paved the way for future epi-drug
research and development.

Conclusions

With the advancement of MS and sequencing technologies,
novel epimodifications/epi-marks are gradually revealed in
recent years. Given the fact that a variety of epimodifications
can occur in DNA/RNA, proteins, and metabolites, it is pos-
sible that an unknown number of epimodifications/epi-marks
might exist and are yet to be discovered. Nevertheless, it will
be an exciting quest for scientists for the ongoing discovery of
novel epimodifications and hopefully one daywewill conquer
these uncharted epi(c) territories and be able to monitor the
global epi-omic signature of individuals. In this regard, the
ability to decipher and manipulate the epi-omes might present
new avenues in drug design for procuring better treatment of
various human diseases. Suffice to say, the era of epi-omics
research and epi-drug development is on its way.
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