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Abstract
Purpose of Review In this review, we discuss how environ-
mental exposures predominate the etiology of colorectal can-
cer (CRC).With CRC being a personalized disease influenced
by genes and environment, our goal was to explore the role
metabolomics can play in identifying exposures, assessing the
interplay between co-exposures, and the development of per-
sonalized therapeutic interventions.
Recent Findings Approximately 10% of CRC cases can be
explained by germ-line mutations, whereas the prevailing ma-
jority is caused by an initiating exposure event occurring de-
cades prior to diagnosis. Recent research has shown that die-
tary metabolites are linked to both a procarcinogenic or pro-
tective environment in the colon, which is modulated by the
microbiome. In addition, excessive alcohol has been shown to
increase the risk of CRC and is dependent on diet, the re-
sponse of microbiome, and genetic polymorphisms within
the folate and alcohol metabolic pathways. Metabolomics
cannot only be used to identify this modulation of host me-
tabolism, which could affect not only the progression of the
tumors but also response to targeted therapeutics.

Summary This review highlights the current understand-
ing of the multifaceted etiology and mechanisms of CRC
development but also where the field of metabolomics
can contribute to a greater understanding of exposures
in CRC.
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Introduction

Cancer is a major cause of morbidity and mortality affecting
all populations worldwide, with far-reaching socioeconomic
consequences. Improved methods for selection of appropriate
therapeutic interventions are critical to addressing this public
health concern [1]. With the dawn of the millennium and
through the completion of the Bhuman genome project,^ con-
certed efforts were invested in profiling gene variants that
promote tumorigenesis and multidrug resistance, in an attempt
to identify biomarkers that would facilitate successful diag-
nostic and therapeutic interventions [2]. However, some of
the challenges associated with this approach have included
the genomic complexity and molecular heterogeneity of can-
cer, establishing the biological relevance of genetic changes to
tumorigenesis, and the need for characterizing all of the asso-
ciated downstream effects. Despite extensive gene character-
ization and the identification of thousands of mutations linked
to cancer, it is increasingly apparent that only a limited num-
ber of molecular pathways that are responsible for driving
carcinogenesis have been recognized, and the mechanistic ba-
sis of many genetic signatures remains largely unknown
[3–5]. Indeed, for diseases that contribute to mortality in the
Western population, environmental factors have an attribut-
able risk of 80–90%; thus, both genetic and environmental
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factors in tandem with gene-environment interactions need to
be considered contributors to susceptibility, expression, and
risk [6, 7].

Exposures play such a large role in carcinogenesis, that in
2011 the World Health Organization (WHO) calculated that
19% of all cancer deaths worldwide (more than 1.3 million
people) were linked to some form of environmental stressor
[8], and up to a third of those were estimated to be caused by
exposures to carcinogens in the workplace [9]. However, these
stark statistics are compounded by the sheer numbers of
chemicals one can potentially be exposed to; in the USA,
the Environmental Protection Agency Toxic Substance
Control Act (EPA-TSCA) Chemical Substance Inventory con-
tains over 85,000 different chemical moieties registered for
commerce that are freely exposed to the public domain [10].

Over the past 46 years, the International Agency for
Research on Cancer (IARC), acting as the world authority
on determining the cancer-causing potential of different sub-
stances, has evaluated the cancer-causing potential of 900
likely candidates with approximately 100 classified as
Bcarcinogenic to humans.^ The adoption of new tools that
can contribute to and expedite exposure research is rapidly
needed to alleviate the complexity of exposure research.
Chemical profiling of blood is one such way to determine if
an exposure event has taken place. Currently, just over 4500
metabolites have been identified within human blood using
mass spectrometry-based metabolomics [11]. Although the
vast majority documented is naturally abundant species essen-
tial to cellular function, exogenous exposure chemicals such
as pesticides and environmental pollutants have been detected,
quantified, and linked to a range of diseases [12, 13].

Multileveled analytical strategies that integrate genetic
traits, environmental exposures, and epidemiology data can
help understand complex cancer mechanisms, contributing
to the generation of an expressed phenotype of exposure
(Fig. 1). This concept, termed as the Bexposotype,^ is a holis-
tic snapshot of the multileveled downstream effects on all
biological systems within the body that are influenced by an
incident exposure. The process of analyzing and temporally
measuring all of the exposures that an individual accrues over
their lifetime is defined under the umbrella of the exposome
[15], and projects such as the Human Exposome and HELIX
Projects are driven by understanding the complex effects the
environment plays on our personal lives [16]. Exposomics
aims to analyze cumulative internal exposures (host factors
which affect the cellular environment) and external exposures
(toxicants and social determinants) and assess their impact on
disease outcomes and risk (https://www.cdc.gov/niosh/topics/
exposome/.). It is known that during the life course of an
individual, a wide range of stressors can modulate every
aspect of their health. These stressors come from every part
of daily life and can have a profound effect on the molecular
events that take place within our cells, that if left unchecked by

DNA proof reading and correctionmechanisms can lead to the
development of unregulated cell growth and cancer (Fig. 2).

In recent years, profiling-based gene, metabolite, and pro-
tein approaches have emerged as tools capable of elucidating
the interplay between epigenetic aberrations induced by envi-
ronmental stimuli, and disease etiology in cancer, and thus
have utility in the exposome pipeline linking exposures to
biological impact [17, 18]. In addition, advancements in
high-throughput analytical, statistical, and big data capabili-
ties have paved a path for translational assessment of disease
mechanisms through a systems biology approach.
Consequently, to elucidate pathways and mechanisms influ-
enced by environmental stimuli and genetic alterations, a
Bmultileveled^ approach is crucial for phenotype stratification
in patient cohorts and identification of downstream molecular
effectors involved in tumorigenesis. The field of metabolo-
mics is capable of assisting by providing profiling tools that
can analyze the pool of metabolites within a sample [19]. This
in turn can bridge the downstream genetic and upstream en-
vironmental gap, and in combination with other profiling ap-
proaches has potential to make meaningful contributions to
the field of precision medicine [20]. As an analytical technol-
ogy, mass spectrometry is in a prime position to deliver on
exposure analysis as it offers high sensitivity, acute selectivity,
and dynamic range to analyze a broad range of metabolites.
Mass spectrometry-basedmetabolomics, the analysis of all the
low molecular weight chemical entities in a sample, can be
used to directly quantify chemical exposure from human bio-
logical media such as blood, urine, and sweat, and can also
investigate the downstream pathway and mechanistic conse-
quences of an exposure event [21]. Initial work has highlight-
ed the need for standardize analytical protocols to enable re-
producible data comparisons over time and even across labo-
ratories [22, 23]. When tested by biological questions, this
approach has been applied in several situations such as work-
place exposure of trichloroethylene, which has previously
been linked to an increase in liver, kidney, and blood cancers
[24]. By applying an untargeted metabolomics discovery ap-
proach, correlations to immunosuppression, hepatotoxicity,
and nephrotoxicity inferred a deeper understanding of the mo-
lecular mechanisms of this type of exposure.

In addition, pharmacometabolomics, a tool that monitors
metabolites to estimate a pharmaceutical drug response, can
be used to assess inter-individual variability in tumor response
and adverse events, driving the search for a means of identi-
fying and deciphering molecular signatures that predict the
behavior and drug sensitivities of distinct tumor phenotypes
[25].

Herein, this review discusses the field of metabolomics and
its application to understanding the etiology and mechanisms
of cancer in a move towards understanding environmental
exposures, gene-environment interactions, and ultimately the
development of precision medicine for this disease. We focus
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on colorectal cancer (CRC) as a prime example of complex
disease in which both genetic and environmental influences
(diet, alcohol, and pathogenic bacteria) are causative factors.

Metabolomics Studies on Colorectal Cancer

CRC is the third most common cancer in both males and
females and the second leading cause of cancer death across
both genders in the USA [26]. Only 10% of individuals that
develop CRC carry germ-line mutations. These mutations re-
sult in a number of familial syndromes including Lynch syn-
drome, where mutations to DNAmismatch repair genes result
in microsatellite instability, and familial adenomatous
polyposis, which arises due to mutations in the adenomatous
polyposis coli (APC) tumor suppressor gene [27]. Metabolic
pathways linked to CRC predominantly include those in-
volved in cellular growth. Upregulation of glycolysis and tri-
carboxylic cycle pathways are vital metabolic traits that are
hijacked by cancer cells to enable rapid and unregulated
growth; this modulation has been detected in tumor tissues
from CRC patients [28, 29]. Upregulation of the pentose-
phosphate pathway, another potential route for energy produc-
tion, has also been detected using mass spectrometry-based
metabolomics methods on HCT116 colon cancer cells [30].
Metabolic consequences of genetic aberrations in CRC have
been a focus of metabolomics studies, particular models of
APC suppression that activate β-catenin signaling
[31, 32]. A comprehensive study which examined urinary me-
tabolites and also gene expression on tumors from APC(Min/+)
mice and CRC patient revealed consistent metabolic changes.
The urinary metabolome revealed hypermethylated metabo-
lites and increased polyamine synthesis and nucleic acid syn-
thesis [33]. Other studies have used anti-proliferative agents in
models of CRC to determine their effects on tumor

development and metabolism. These studies examined the
effect of ginseng [34, 35], rice bran [36, 37], pomegranate
extract [38], natural products [39], chemotherapeutics [40,
41], and anti-microbial peptides [42] which collectively re-
vealed decreased energy utilization and cell growth in mice
and humans. However to understand the etiology of CRC,
which is predominantly environmental, it is important to iden-
tify the causative agents. In addition to identification of the
causative agent, the combinatorial effect of multiple exposures
(internal and external) is important for risk assessment. Most
studies have primarily focused on the analysis of a single
exposure; therefore, it is not possible to ascertain the com-
bined effect, let alone decipher how differences in the internal
environment (inflammation, stress, genetics) respond to exter-
nal environmental exposures. This is where top-down meta-
bolomics approaches come into play, allowing for the mea-
surement of downstream metabolites that can be related to
combined exposures at a populat ion level [43] .
Metabolomics can also bridge the downstream genetic and
upstream environmental gap, allowing for the analysis of both
metabolites and chemical compounds that result from an ex-
posure concurrently. This can also be directly applied to CRC
patients identifying cluster of individuals that have similar
profiles and outcomes.

Exposure Metabolites and Colorectal Cancer

At present, metabolomics studies that examine the effect of
environmental exposures on CRC risk are few, but interest is
growing due to novel insights it has provided thus far. CRC is
perhaps one of the prime examples of an environmentally
mediated disease; this is evidenced by studies on migrant pop-
ulations that assume CRC risk of the host population within
one generation [44]. Even though CRC incidence rates have

Fig. 1 Metabolomics within the
gene-environmental continuum.
The causation for most cancers
resides at the interface of genetic
and environmental exposure. By
using multiple platforms, a more
comprehensive analysis of the
effects the exposome plays on
cancer phenotype can be
assessed. By analyzing the
downstream metabolic products
of altered gene expression,
metabolomics can be used to
refine mechanistic understanding
of exposure while also potentially
identifying novel biomarkers.
Adapted from [14]
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been falling over the past couple of decades due to increased
screening and removal of precancerous polyps, CRC inci-
dence rates have been increasing for individuals under the
age of 50, which is of high concern [45]. Thus, identification
of environmental risk factors is imperative to provide inter-
vention approaches in high-risk populations.

Specific environmental influences have been associated
with CRC in epidemiological studies. They include diets rich
in red, processed, and grilled meats, pre-existing diseases
(obesity, inflammatory bowel diseases, type 2 diabetes),
smoking, and alcohol use. Other suspected risk factors include
disruption to circadian rhythms (night-shift work) and the
presence and organization of pathogenic microbiota [46–48].
Dietary exposures and cancer risk is well-established, somuch
so that IARC recently classified one dietary constituent, proc-
essed meats and red meat, as class 1 and class 2A carcinogens,
respectively [49]. As dietary risk in CRC has been discussed
comprehensively in other reviews [50, 51], we will describe
here the metabolites that potentially interacted with other co-
exposures, leading towards increased carcinogenesis.

Ingested materials that enter the colon consist of a com-
plex milieu of partly digested food products, xenobiotics, and
pollutants. The role of the colon is to complete digestion and
eliminate waste products from this milieu, a process that is
aided by the host microbiome. As mentioned, processed
meats (meat that has been transformed through salting, cur-
ing, fermentation, smoking) and red meats have been associ-
ated with CRC. These meats contain genotoxic N-nitroso
compounds, polycyclic aromatic hydrocarbons and heterocy-
clic amines (upon heating). A recent study identified oxida-
tive stress markers dityrosine and 3-dehydroxycarnitine in
fecal samples from individuals that consumed red meats,
supporting a causal relationship between and aberrant micro-
environment in the colon that could lead to a disease [52].
Interestingly, the carcinogenic compounds found in these
types of meats are also prevalent in other environmental
sources such as cigarette smoke, dust, and automobile en-
gines. This suggests that individuals exposed to high levels
of these environmental pollutants could also have a higher
risk of CRC. In addition to meats, high fat intake can increase
the risk of CRC through increased bile acid secretion and
microbial production of genotoxic secondary bile acids.
Secondary bile acids have been shown to disrupt cell mem-
branes and generate reactive oxygen species (ROS) and reac-
tive nitrogen species causing DNA damage [53]. In addition
to procarcinogenic-ingested compounds, there are a number
of dietary nutrients that have been suggested to act as
chemoprotectants, including the aforementioned ginseng
and rice bran, which upon administration were shown to de-
crease cellular proliferation and carcinogenesis in vivo
[34–37]. In addition to these dietary products, vitamin D
has also been linked to decreased CRC risk [54]. Vitamin D
is a ligand for the nuclear vitamin D receptor (VDR), which

upon activation causes downstream regulation of a multitude
of genes involved in cellular proliferation and tumor angio-
genesis. One of these genes (CYP3A4) is of particular impor-
tance as it is involved in the elimination of secondary bile
acids; thus, downregulation of VDR could increase the risk of
CRC in individuals with a high fat diet [55, 56].
Metabolomics studies on mouse models of Vdr inactivation
showed patterns of increased primary and secondary bile acid
production associated with inflammatory bowel diseases and
CRC [57]; however, metabolomics studies have not been
carried out on CRC patients to determine the association.
Fiber is also a well-established chemoprotectant involved in
elimination of secondary bile acids and increasing the pas-
sage and weight of stools. Moreover, one of its most important
properties is through the actions of its metabolic products, bu-
tyrate, propionate, and acetate, which are produced by micro-
bial fermentation in the colon. Butyrate in particular has been
shown to play a major role as an anti-proliferative agent, also
increasing apoptosis and the production of healthy bacteria.
Metabolomics studies carried out on feces collected from pa-
tients with CRC have consistently shown decreased butyrate
levels compared with controls [58–60]. Folate, derived from
fruits and vegetables, is an essential intermediate in one-
carbon metabolism and increases the production of S-
adenosylmethionine (SAM). SAM is a ubiquitous methyl do-
nor, enabling the metabolism of polyamines, DNA synthesis,
and DNA methylation. Individuals with folate deficiency have
increased DNAhypomethylation and impaired DNA synthesis;
in addition, low levels of folate accelerate alcohol-induced pro-
duction of oxidative stress as described below. Given the evi-
dence for the roles of dietary metabolites in CRC, further anal-
ysis is required to assess the biological effects of these
metabolites.

Moreover, it is clear that co-exposure of diet with other
environmental factors augments or ameliorates their effects.
One such intricate balance has emerged between the diet, al-
cohol, and microbiome.

Alcohol and Colorectal Cancer

Excessive alcohol consumption and its associated health and
societal problems vary worldwide; however, the burden
of disease and death is a significant public health prob-
lem in nearly all countries [61]. There is evidence from
epidemiological studies to show that alcohol consump-
tion is associated with CRC [62]. A 2011 meta-analysis
showed a higher association with CRC among subjects
with heavy drinking (RR≥4 drinks/day = 1.52 (95% CI, 1.27–1.81))
compared with moderate drinkers (RR2 to 3 drinks/day = 1.21 (95%
CI, 1.13–1.28)). In addition, this link was found to be stronger in
individuals of East Asian decent (heavy drinkers, RR = 1.81
(95% CI, 1.33–2.46); p = 0.04) [63]. The same conclusion was
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drawn from a 2006 meta-analysis study, which included more
than 6300 patients; heavy drinkers had a higher risk of CRC than
moderate drinkers [64]. Age, gender, volume and quality of al-
cohol consumed, and pattern of drinking have all been shown to
modulate risk [61, 62].

Genetic polymorphisms for enzymes in the alcohol and folate
metabolic pathways play a major role in CRC risk. Ethanol is
metabolized to acetaldehyde via alcohol dehydrogenases (ADH),
catalase (CAT), and CYP2E1 enzymes. It is further oxidized via
acetaldehyde dehydrogenase (ALDH), isoforms 1A1, 1B1, and
2 to acetate and eliminated by the liver [65, 66]. Ethanol-induced
cancer is closely linked to the pathways involved for its metab-
olism and is mainly attributed to the production of acetaldehyde
which has been classified as a carcinogen by IARC [67].
Evidence for the association between ethanol, acetaldehyde,
and cancer is derived from epidemiological studies, as well as
frommechanistic data from the rodent models. Ethanol oxidation
by ADH and CYP2E1 results in the production of acetaldehyde;
however, the latter induces the generation of ROS (Fig. 2) [68].
Compared with wild-type mice, the development of fatty liver
and oxidative stress is alleviated in Cyp2e1−/− mice [69, 70].
Moreover, there is evidence to support a genotoxic mechanism
whereby acetaldehyde reacts with DNA bases, forming DNA
adducts, resulting in genetic mutations. N2-ethyl-2′-
deoxyguanosine (N2-ethyl-dG), the major stable acetaldehyde
DNA adduct, has been reported at high levels in alcoholics.
DNA adducts can also be produced by ROS; 4-
hydroxynonenal (4HNE) is a lipid peroxidation product that re-
acts with deoxyadenosine or deoxycytidine to form stable exo-
cyclic etheno-DNA adducts (Fig. 2) [71–74]. However, large
inter-individual variability exists in the presence of etheno-
DNA adduct in alcohol consumers, and significant correlations
have not been established [75].

There is also evidence that polymorphisms in methylene-
tetrahydrofolate reductase (MTHFR) contribute to a lower risk
of CRC. The CT/TT genotype shifts folate metabolism away
from DNAmethylation to DNA synthesis. Moderate to heavy
alcohol drinkers with this genotype have a lower risk of CRC
when compared to never/occasional drinkers with the CC ge-
notype (OR = 0.68 (95% CI, 0.47–0.98)) [76]. Furthermore,
MTHFR plays an important role in the one-carbon metabolic
pathway converting 5,10-methylenetetrahydrofolate to 5-
methyltetrahydrofolate (Fig. 2) and directs folate pools to-
wards methionine in the transsulfuration pathway.
Methionine is the precursor of the sulfur-containing amino
acid cysteine (cystathionine β-synthase (CBS) catalyzes ho-
mocysteine conversion to cysteine). This pathway leads into
the synthesis of glutathione (GSH) via a heterodimer enzyme
comprising a catalytic glutamate-cysteine ligase (GCLC) and
a modifier (GCLM) subunit (Fig. 2). GSH plays a key role in
maintaining redox homeostasis and protecting the cells from
oxidative stress. A recent study utilizing global knockout
Gclm mice found that the cells were protected against hepatic

steatosis, despite showing increased oxidative stress, suggest-
ing that an adaptive response was triggered through activation
of the AMPK pathway [77]. The abovementioned metabolic
pathways have been the subject of multiple studies on cancer
metabolism; however, metabolomics studies are required to
fully understand the effect of alcohol on the folate pathway
and the role of MTHFR [78].

Acetaldehyde concentrations are generally quite low in tis-
sues, however, levels can increase under a combination of large
volumes of ethanol ingestion and inefficient ethanol-
metabolizing enzymes; in the colon, alcohol levels can reach
the same as those seen in blood [75]. ALDH2 is crucial for
acetaldehyde catabolism, since most of the acetaldehyde gen-
erated is eliminated by actions of this enzyme. The mutant
ALDH2*2 allele encodes a catalytically inactive subunit,
whereas ALDH2*1/2*2 encodes only 6.25% of the active en-
zyme. Individuals carrying the mutant allele are slow acetalde-
hyde metabolizers and subsequently accumulate large pools of
the metabolite [79]. Studies on Aldh2−/− mice found that eth-
anol treatment increased plasma acetaldehyde levels compared
with the wild type [80, 81]. Approximately 40% of individuals
of East Asian descent carry the inactive variant ALDH2*2,
resulting in extremely low ALDH2 activity. Individuals with
the ALDH2*2 allele have increased risk for developing cancer
of the upper aerodigestive tract, as well as oropharyngeal, la-
ryngeal, and esophageal cancers [82, 83]. Another recent study
found that 39 out of 40 human samples with colonic adenocar-
cinoma were positive for ALDH1B. Since the expression of
this protein is very low in healthy colon, the dramatic increase
observed in the tissues demonstrates a link between elevated
ALDH1B1 and CRC [86]. Increased plasma acetaldehyde
levels have also been measured in Aldh1b1−/− mice after a
single dose of ethanol [65]. A strong association has also been
seen in individuals that have polymorphisms in ADH1B and
CRC [62, 84]; ADH1B*1/*1 carriers (n = 246) were shown to
have a much slower metabolism of ethanol compared with
ADH1B*2 carriers (n = 559) [85].

In order to evaluate the association between alcohol consump-
tion and CRC in human populations, studies currently rely on
self-reported questionnaire data, which is subject to misclassifi-
cation due societal pressure. Metabolomics could be used to
strengthen the causal association through the use of non-
invasive biomarkers which could be used as an approach for risk
assessment. A recent study analyzed serum from two population
cohorts (case-control) to quantify previously identified bio-
markers of alcohol consumption [87]. Unfortunately, no associ-
ation was seen between these biomarkers and CRC. This may
have been a consequence of the time frame from alcohol con-
sumption to sampling, and a lack of personal history on the
nature of the individual’s lifetime drinking, both of which were
not known. However, this study highlights the potential and con-
siderations for metabolomics analysis for assessing alcohol con-
sumption in relation to CRC, particularly to assess the validity of
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questionnaire data. Other metabolomics studies have identified
biomarkers of alcohol consumption, which are promising and
need validation in additional cohorts [88]. In addition to bio-
markers, mechanisms of ethanol-induced injury that lead to
CRC can be investigated through further investigation of meta-
bolic pathways, revealing interactions between alcohol and other
co-exposures to understand inter-individual variability.

Microbial Co-exposure and Mechanisms
of Colorectal Cancer

One important consideration for almost all exposures is the
interaction with the microbiome. For the past decade, the
microbiome has been under surveillance as a potential me-
diator of CRC. It is known that the colonic microbiome is
responsible for co-metabolism of dietary and environmental
compounds that enter the colon, and the resultant metabo-
lites produced can have either carcinogenic or tumor-
suppressive properties as well as regulating microbial
growth and diversity. One example is microbial fermenta-
tion of dietary fiber which produces short chain fatty acids
as mentioned previously. These acids could effectively low-
er the pH of the colon if produced in excess; however, bi-
carbonate secretion, controlled by cellular carbonic
anhydrase, ensures that colonic pH is maintained at approx-
imately pH 7.4 [89]. This balance can be affected by multi-
ple processes, including bacteria exotoxins which can stim-
ulate bicarbonate secretion [90], or by disease, cancer cells
produce elevated levels of lactic acid and protons which
modify carbonic anhydrases enabling the cancer cells to
survive [19, 91]. In addition to host cellular processes, en-
vironmental changes caused by switches in diet, microbial
infection, or drug treatment can cause a modulation of the
microbial communities within the colon. Dietary changes
can rapidly alter the growth of different bacterial species,
changing disease risk and metabolite production. This was
exemplified in an investigation of the microbiome and me-
tabolome in subjects given a 2-week dietary exchange [92].
A switch from a high fat, high protein, and low fiber diet, to
the inverse, resulted in increased saccharolytic fermentation
and butyrogenesis with decreased secondary bile acid pro-
duction. In addition, a decrease in proliferative and inflam-
matory biomarkers was observed in the colonic mucosa,
revealing that dietary exposure can alter the microbiome,
metabolites, and disease risk [93].

Previous research has shown that several invasive path-
ogenic bacteria are linked to CRC, most notably entero-
toxigenic Bacteroides fragilis [94], Fusobacterium
nucleatum [95, 96], and Escherichia coli strain NC101
[97]. Mechanisms of action reveal DNA damage, inflam-
mation, and immune-cell infiltration in models; however,
direct causation has yet to be ascertained in CRC patients

[98]. It is also important to consider how the community of
bacteria interacts as a whole; this is evident from studies
that have identified chronic bacterial biofilms in CRC.
Chronic biofilms are conglomerates of bacteria encased
in a polymeric matrix, which colonize and breech the mu-
cus barrier. Biofilms in CRC cause a state of increased
cellular proliferation and inflammation but do not contain
higher abundances of pathogenic strains compared with
tumor-associated bacteria which are not within a biofilm
[47]. Interestingly, normal colon tissues that have biofilms
have similar bacterial diversity associated with CRC tis-
sues than with normal colon tissues without biofilms, indi-
cating a stepwise progression from a dysbiotic microbiome
to biof i lm product ion and carc inogenes is [99] .
Furthermore, metabolomics was used to examine the me-
tabolism of biofilms in CRC and revealed biofilm-
associated metabolites [46], indicating that biofilms pro-
duce metabolites that could affect the tumor microenviron-
ment and response to therapeutics [100]. However, what is
not clear is the exposure that triggered biofilm formation
and tumor development in this study. A new paradigm
developed for exposomic approaches suggests a meet-in-
the-middle approach to tackle this problem [101].
Prospective cohort studies that measure exposures and pre-
clinical response can be used to identify associated bio-
markers. These exposure biomarkers can then be used to
mine retrospective case-control studies to essentially iden-
tify casual relationships [102].

As aforementioned, alcohol can result in oxidative stress
within the colon and a progression to CRC. The microbiome
is also involved in the metabolism of alcohol; microbial co-
oxidation of ethanol increases the production of acetaldehyde.
Microbial genera involved in ethanol oxidation have been
identified as gram-positive Ruminococcus, Collinsella,
Coriobacterium, and Bifidobacterium and gram-negative
Prevotella [103]. E. coli has also been linked to the accumu-
lation of acetaldehyde in the intestinal lumen [104]. Due to the
ensuing oxidative stress caused by chronic alcohol exposure,
obligate anaerobes are less likely to prevail than other species
that are more tolerant to the microenvironment, such as
Proteobaceria, a species linked to inflammation [105]. For
the host, this inflammation is likely to be exacerbated by
downstream acetaldehyde production. Endotoxin circulation
from gram-negative bacteria subsequently leads to increased
intestinal barrier permeability, a facet compounded by bacte-
rial overgrowth observed in moderate drinkers [106]. The cre-
ation of such dysbiotic environments has also been shown to
be vital factors in the promotion of other alimentary cancers
[107] and even liver disease [108]. Interestingly, modulation
of bacterial species in the gut has even been shown to play a
psychological role in which the gut-brain axis has been altered
by microbiotic communication affecting gut-barrier function
and influence behavior in alcohol dependence [109].
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Therapeutics and Pharmacometabolomics
in Colorectal Cancer

Since the evolution of metabolomics in 1998 [110], the devel-
o pmen t a nd g r ow t h o f t h e s u b - d i s c i p l i n e o f
pharmacometabolomics [111] has blossomed to such an ex-
tent that a community-led White Paper has called for US
Government inclusion of the area in to the highest level of
funding considerations [112]. This confidence has been driven
by the potential to deliver in areas that genome-based research
alone has failed to achieve a full understanding of and has
heralded the post-genomic diagnostic era in which detailed
knowledge of expressed phenotype is vital. Applications in-
clude revealing primary and secondary markers of disease
states, providing in-depth understanding of underlying molec-
ular mechanisms of diseases, and the potential to uncover
biomarkers activated by drug treatment thus identifying re-
sponse phenotypes [112].

One area of use for these strategies is cancer, and several
reviews have been written that provide comprehensive back-
ground on the area [113–117]. As the lifetime risk of devel-
oping CRC in the USA is 1 in 21 (4.7%) for men and 1 in 23
(4.4%) for women [118], it is no surprise that concerted efforts
have been made to apply these methodologies to this disease.
Identification of early onset biomarkers and prognostication
has been a focus of CRC researchers since early detection and
diagnosis can make curing the disease easier. One set of me-
tabolites, the acetylated polyamines, monoacetylspermidine
and N1,N12-diacetylspermine, are constantly upregulated in
biological fluids and tissues of CRC patients [46, 119–124].
These metabolites are end products of polyamine metabolism
transported from the cell for excretion. Polyamines have been
associated with the development of CRC, and ornithine decar-
boxylase (ODC), the first enzyme in the polyamine synthesis
pa thway, i s a t a rge t f o r the chemothe rapeu t i c
difluoromethylornithine (DFMO). DFMO inactivates ODC
and suppresses tumor formation [125]. Therefore, this meta-
bolic pathway is of particular interest for drug development
for CRC patients, andDFMO is currently under assessment in a
number of clinical trials. Serum amino acids [126] and urinary
nucleosides [127] have also been identified as candidates for
future assay design alongside methods for modeling stratified
markers for disease staging [128]. The ultimate aim for all these
approaches is understanding mode of action of disease better
and eventually creation of a rapid and robust blood or urine-
based screening test that can be routinely used within the clinic
and thus reduce the number of patients with a poorer prognosis.

Upon treatment with chemotherapeutics, inter-patient vari-
ability in response can be large and lead to higher levels of
toxicity to some patient sub-groups alongside lower efficacy of
the active drug. Pharmacometabolomics profiling techniques
have already shown that drug toxicity can be predicted in CRC
patients treated with the chemotherapeutic capecitabine [129]

in which a panel of low-density lipoprotein-derived lipids pre-
dicted a higher toxic response over the treatment period. The
efficacy of such drug treatments have also been shown to be
markedly affected by a host’s microbiome with researchers
also calling for measurement of microbiome activity to be
included as an integral part of pharmaceutical development
[130]. Ultimately, the greatest impact of any metabolomics
technology in CRC investigation lies within the integration
of metabolic data into multidimensional datasets forming a
systems wide approach. Only by combining information from
pharmacogenomics [131], pharmacoproteomics [132], and
transcriptomics experiments alongside drug pharmacology-
based pharmacokinetic and pharmacodynamics processes
[133] can the fullest picture of how an individual will respond
to drug intervention be painted.

Conclusion

Metabolomics is a vital tool for evaluating exposures and their
impact on biological outcomes, particularly in a disease with a
multifaceted etiology such as CRC. Using metabolomics
within the context of the exposome could identify subsets of
individuals that have similar exposure history and related in-
ternal biological underpinnings, thus providing entry points
for precision medicine approaches. Pharmacometabolomics,
a discipline that monitors metabolites to understand the re-
sponse of a pharmaceutical drug leads itself to exposomics
and precision medicine [134]. However, caution exists in that
the complex makeup of the internal environment must be
known before administration of the drug, as has been evi-
denced by interactions of the microbiome with immunothera-
peutics, dramatically affecting their efficacy [135]. Thus,
drugs must be tailored to respond to the genetic underpinnings
of the disease manifestation as well as from onslaughts from
the internal environment. This will dramatically improve drug
efficacy and move towards precision medicine approaches.
Therefore, oncology metabolomics can be applied in diagnos-
tic techniques, studies of disease pathophysiology, prognosti-
cation, and prediction and assessment of response to therapy
[136]. While profiling-based technologies at all stages of the
central dogma are currently specialized and complex in nature,
signatures identified by these approaches can be incorporated
into miniaturized Blab-on-chip^ systems applicable to the clin-
ic in the future [137]. Thus, metabolomics can be applied to
studies on CRC to uncover mechanisms of cancer develop-
ment and identify gene-environment interactions. Moreover,
metabolomics can aid in assessment of disease severity and
response to pharmacological interventions in the clinic via
pharmacometabolomics and even be used to identify patients
in early prediagnostic stages of the disease. Ultimately, this
work is leading to improved awareness of environmental risk
factors, early diagnosis, and outcomes for CRC patients.
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