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Abstract
Purpose of Review This review gives a perspective on the
current Bstate of the art^ in metabolic drug-drug interaction
(DDI) prediction. We highlight areas of successful prediction
and illustrate progress in areas where limits in scientific
knowledge or technologies prevent us from having full
confidence.
Recent Findings Several examples of success are highlighted.
Work done for bitopertin shows how in vitro and clinical data
can be integrated to give a model-based understanding of
pharmacokinetics and drug interactions. The use of interpola-
tive predictions to derive explicit dosage recommendations for
untested DDIs is discussed using the example of ibrutinib, and
the use of DDI predictions in lieu of clinical studies in new
drug application packages is exemplified with eliglustat and
alectinib. Alectinib is also an interesting case where dose ad-
justment is unnecessary as the activity of a major metabolite
compensates sufficiently for changes in parent drug exposure.

Examples where Bunusual^ cytochrome P450 (CYP) and
non-CYP enzymes are responsible for metabolic clearance have
shown the importance of continuing to develop our repertoire
of in vitro regents and techniques. The time-dependent inhibi-
tion assay using human hepatocytes suspended in full plasma
allowed improved DDI predictions, illustrating the importance
of continued in vitro assay development and refinement.
Summary During the past 10 years, a highly mechanistic un-
derstanding has been developed in the area of CYP-mediated
metabolic DDIs enabling the prediction of clinical outcome
based on preclinical studies. The combination of good quality
in vitro data and physiologically based pharmacokinetic model-
ingmay now be used to evaluate DDI risk prospectively and are
increasingly accepted in lieu of dedicated clinical studies.

Keywords Drug-drug interaction . Prediction .

Physiologically based pharmacokinetic model . Metabolism .

Regulatory submission . Cytochrome P450

Introduction

Quantification of a drug-drug interaction (DDI) effect in a
man is the basis for explicit dose recommendation in drug
labels to minimize the risk of adverse events or reduced
efficacy, thereby supporting appropriate use of the drug. It
is therefore essential that such quantitative DDI assess-
ments are made with confidence. There has been a steady
development of in vitro assays and the reagents available
for the study of drug metabolism and metabolic enzyme
inhibition. This, combined with advances in our capability
to extrapolate in vitro data to in vivo, has brought us past
a Btipping point^ such that applying a model-based syn-
thesis of the available data has become normal in drug-
drug interaction assessments [1–5••]. Simple static
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models, built upon DDI studies reaching back to the
1970s [6•], still find utility in early drug discovery where
there are very limited data available for the drug candi-
date. However, the greatest DDI effects are observed
where the metabolism of an orally administered drug is
substantially inhibited in the first pass metabolism, poten-
tially in both the intestine and liver. The combination of
increased drug reaching the systemic circulation as well as
reduced systemic clearance will result in a significantly
higher exposure (area under the plasma concentration-
time curve [AUC]) than when inhibition of systemic
clearance alone is considered. An example of this can be
seen when comparing the DDI effect of ketoconazole on
alprazolam and midazolam which are low and high clear-
ance cytochrome P450 (CYP) 3A substrates, respectively.
In the recent study of Boulenc et al., peak concentration
(Cmax) for alprazolam and midazolam were increased by
1.18- and 4.21-fold, whereas AUC was increased by 2.63-
and 16.95-fold, respectively, when co-administered with
multiple once-daily doses of 400 mg ketoconazole [7].
Mechanistic static models have significantly extended
mathematical model usage, by incorporating additional
considerations such as intestinal metabolism, enzyme in-
duction, and enzyme inactivation [8, 9]. Nevertheless,
these mathematical models cannot capture the full dynam-
ic nature of drug metabolism in vivo since only a fixed
concentration of inhibitor is considered. For example,
DDI effects on simultaneous co-administration versus
staggered dosing situations may be different, especially
when the interacting drugs have short half-lives and high
first pass metabolism. Details of the different approaches
to DDI predict ion were recently described in a
Pharmaceutical Industry Innovation and Quality working
group publication from Bohnert et al. and will not be
discussed further in this review [10•].

A more powerful approach to DDI prediction can be
taken using physiologically based pharmacokinetic
(PBPK) modeling, especially when human pharmacoki-
netic data are available. Validated PBPK models allow
high confidence in prospective DDI predictions [1]. This
application of modeling and simulation has been reflected
in the regular inclusion of PBPK model information into
new drug application (NDA) submissions [4, 5••] and re-
cent use in final drug product labeling text with explicit
dosage recommendations (see examples below). Similarly,
the simulations may support selection of dose strengths to
be developed. In order to generate a well-validated PBPK
model for a drug, a large amount of data need to be col-
lected. Such data include pharmacokinetics of drug sub-
stance and metabolites, drug solubility and permeability,
plasma protein binding, contributions of individual en-
zymes to hepatic and extrahepatic clearance, enzyme in-
hibition, inactivation and induction, clearance by non-

metabolic routes (e.g., urinary and biliary secretion infor-
mation), and any existing clinical drug-drug interaction
information. Only when a good description of compound
pharmacokinetics and metabolism has been established
can drug-drug interaction predictions and the conse-
quences for efficacy and safety be adequately addressed.

Improvements in in vitro technologies and the buildup of
system knowledge (enzyme abundance, physiological param-
eters, effect of disease, age, sex, and polymorphism status)
have allowed increasingly realistic computational models of
the human body to be developed [11]. Confidence in compet-
itive CYP inhibition measurement and consequent DDI pre-
diction is typically high. In contrast, although availability,
consistency, and sensitivity of time-dependent inhibition
(TDI) measurement have improved considerably [12], chal-
lenges still exist in the quantitative extrapolation of TDI data.
This is especially true in complex situations, for example,
where time-dependent inhibition is combined with active up-
take or enzyme induction. The human immunodeficiency vi-
rus (HIV) drug ritonavir, used to boost the bioavailability of
antiviral agents such as saquinavir by inhibition of CYP3A4,
is an example of a complex case. As well as being a CYP3A4
substrate, ritonavir inhibits, inactivates, and induces CYP3A4
[13–15]. It also inhibits and induces other drug-metabolizing
enzymes [16].

The other facet of DDI assessment, that of victim DDIs, can
be made with confidence for drugs principally metabolized by
well-characterized metabolic enzymes (e.g., CYPs 1A2, 2C8,
2C9, 2C19, 2D6, 3A4). However, model validation is more dif-
ficult and prediction confidence is lower for enzymes such as
aldehyde oxidase (AO), flavin monooxygenases (FMOs) and
UGP-glucuronosyltransferases (UGTs) where human pharmaco-
kinetic data for selective substrates and for in vivo interactions
with inhibitors are lacking.

This review draws on recent Roche experiences combined
with key literature examples to provide an overview of the
current state of the art in DDI prediction and ongoing devel-
opments in the field. The structures of the drugs featured in
this review, together with information relevant to their meta-
bolic DDIs, can be found in Table 1.

The Recent Past: Mechanistic Understanding
of DDIs Through Retrospective Modeling

Bitopertin Case Study—Drug-Drug Interaction
with CYP3A4 Inhibitors

Bitopertin inhibits the glycine transporter type 1 (GlyT1),
which is expressed in the central nervous system and in pe-
ripheral tissues, mainly in erythroid cells [17, 18]. Bitopertin is
cleared slowly and almost exclusively by oxidative metabo-
lism, primarily via CYP3A4 (fm(CYP3A enzymes) > 90% in vitro)
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Table 1 List of investigated drugs, their pharmacology and relevant metabolic DDI information

Drug Pharmacological activity 

(target disease)

Relevant DDI 

information

Bitopertin

Glyt-1 inhibitor

(clinical development for 

schizophrenia)

Substrate of 

CYP3A4/5

(fm (CYP3A) > 0.9)

Ibrutinib

BTK inhibitor

(oncology)

Substrate of 

CYP3A4/5

fm(CYP3A4/5) > 0.9)

Eliglustat

Glucosylceramide 

synthase inhibitor

(Gaucher disease)

Substrate of 

CYP2D6 and 

CYP3A4

fm(CYP2D6) = 0.86

fm(CYP3A4) = 0.14

Alectinib

ALK inhibitor

(oncology)

Substrate of 

CYP3A4/5

fm(CYP3A4/5)=0.4–0.5

Inhibitor of CYP2C8

Ki = 0.147

Fingolimod

Prodrug of sphingosine 1 -

phosphate receptor agonist

(multiple sclerosis)

Substrate of CYP4F 

enzymes

Tofogliflozin

SGLT2 inhibitor

(diabetes)

Substrate of 

CYP2C18, 

CYP4A11 and 

CYP4F enzymes

RO5263397

TAAR1 agonist

(clinical development for 

schizophrenia)

Sensitive substrate 

of UGT2B10

MK-7246

CRTH2 inhibitor

(clinical development for 

respiratory diseases)

Sensitive substrate 

of UGT2B17
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with less than 0.1% of the administered dose excreted in the
urine as unchanged drug [19•]. The half-life is approximately
2 days.

The pharmacokinetics of bitopertin was predicted prior to
clinical studies using a PBPKmodel developed on the basis of
non-clinical data [20]. After entry into the clinic, the model-
predicted pharmacokinetics were found to be in close agree-
ment with observations and the model was refined [21] and
then applied to simulate the potential for drug-drug interac-
tions. The clinical effect of CYP3A4 inhibition on bitopertin
exposure was assessed in two studies in healthy volunteers
with open-label, two-period, fixed-sequence designs [19•].

Ketoconazole, a strong CYP3A4 inhibitor, increased the
bitopertin AUC from 0 to 312 h (AUC0–312 h) 4.2-fold (90%
confidence interval [CI] 3.5–5.0) while erythromycin, a mod-
erate CYP3A4 inhibitor, increased the AUC from time zero to
infinity (AUC0–inf) 2.1-fold (90% CI 1.9–2.3). The AUC0–inf

ratios predicted by PBPKmodeling for these interactions were
in good agreement at 7.7 and 1.9, respectively (note that the
AUC0–312 h ratio underestimated the full DDI to some extent).
The effect on Cmax was minor, <25% for both inhibitors. This
was consistent with a high absolute bioavailability as simulat-
ed by PBPK for bitopertin with very limited first pass extrac-
tion in both the intestine and the liver. After discontinuation of
ketoconazole, the bitopertin elimination half-life decreased,
becoming similar to that observed in the absence of ketocona-
zole indicating the reversibility of the CYP3A4/5 inhibition
(Fig. 1). For bitopertin, therefore, an excellent picture of the
pharmacokinetics and a model describing the CYP3A-
mediated drug-drug interactions could be developed and ret-
rospectively validated using emerging clinical data. Details of
the PBPKmodel can be found in Supplementary Table 1. DDI

study and simulation data are also available in the
Supplementary Materials.

Current State of the Art: Interpolation and Limited
Prospective DDI Prediction Gain Regulatory
Acceptance

PBPK models have initially found use in incorporating the
results of DDI studies into an overall description of the phar-
macokinetics, then in interpolating results from DDI studies
with strong probe inhibitors/inducers for the enzyme of inter-
est (Bmechanistic DDI study^) to DDIs with moderate and
mild inhibitors/inducers. In addition, PBPKmodels have been
applied to extrapolation of DDI results to subpopulations such
as organ failure, geriatrics, or certain phenotypes of the in-
volved metabolic enzymes where it is often ethically and/or
practically challenging to investigate DDI [22, 23]. Such sim-
ulations have been used for guiding dose adjustment in drug
labels in lieu of actual clinical study results since 2009 [1].
Ibrutinib and eliglustat are two examples selected to illustrate
how a PBPK model was developed for drugs mainly metabo-
lized by CYP3A and CYP2D6, respectively, and applied to
DDI assessment which were accepted in final product labels.

Ibrutinib Case Study—Model-Based Interpolation
of CYP3A4 Inhibition DDIs

Ibrutinib is a Bruton’s tyrosine kinase inhibitor developed for
treatment of leukemia. Ibrutinib is completely absorbed after
oral administration and extensively metabolized in the intes-
tine and liver mostly by CYP3A4 and lesser extent by
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Fig. 1 Effect of ketoconazole on exposure of bitopertin. Symbols are
mean (±standard deviation) plasma concentration-time profiles after ad-
ministration of 400 mg/day ketoconazole (filled black circles), bitopertin
10 mg alone (empty blue squares), or concurrently with ketoconazole

(filled red triangles). The lines are the plasma concentrations simulated
with a PBPK model in GastroPlus. Single dose of bitopertin alone
(dashed blue line), bitopertin with ketoconazole (dotted red line), keto-
conazole 17 days (solid black line)
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CYP2D6 [24]. The absolute bioavailability of ibrutinib
560 mg (approved dose) was 3.9 and 8.4% in the fasted and
fed states, respectively [25]. The intestinal and hepatic bio-
availability (Fg and Fh) evaluated after oral (140 mg) and
intravenous (100 μg, 13C6 labeled) administration in the fed
state were determined as 47.0 and 15.9%, respectively, in an
IV microdose study with grapefruit juice pretreatment [25]. A
PBPKmodel was developed by integrating available physico-
chemical properties, in vitro experiments, and clinical phar-
macokinetic (PK) data [26]. The intrinsic clearance of
ibrutinib in human liver microsomes was inhibited 95.8% in
the presence of 1 μM of a strong CYP3A inhibitor, ketocona-
zole [27], and this information was incorporated into the
PBPK model for DDI simulations with various CYP3A4
modulators. Capability of the PBPK model to predict
CYP3A4 DDI for ibrutinib as substrate was examined by
predicting fold increase in Cmax and AUC of ibrutinib in the
presence of ketoconazole and compared to the observations in
the clinical study [28] (predicted vs. observed: 19- and 29-
fold for Cmax and 28- and 24-fold for AUC). Subsequently,
the PBPK model was verified by showing consistency be-
tween prospectively simulated fold decrease in Cmax and
AUC of ibrutinib in the presence of a CYP3A inducer, rifam-
picin, and the observations [28] (predicted vs. observed: 11-
and 13-fold for Cmax and 10- and 10-fold for AUC). The
verified PBPK model was then used to simulate unstudied
clinical DDIs with mild (fluvoxamine, azithromycin), moder-
ate (diltiazem and erythromycin), and strong (voriconazole,
clarithromycin, itraconazole) CYP3A inhibitors to guide dose
reduction from 560 to 140 mg in concurrent administrations
with moderate CYP3A4 inhibitors.

The PBPK model simulations of DDI with moderate
(efavirenz) and strong (carbamazepine) CYP3A inducers sup-
ported ibrutinib dose of 560 mg in co-administrations with
moderate CYP3A inducers since predicted exposure was
within defined therapeutic exposure range [27]. The DDI risk
assessment and dose modification guidance for ibrutinib
based on the PBPKmodeling and simulations were submitted
in new drug applications and approved in the USA [27, 29],
Canada [30], EuropeanUnion [31], and Japan [32] and used in
drug labels.

Eliglustat Case Study—Model-Based Extrapolation
to Polymorphic CYP2D6 Phenotype Individuals

Eliglustat is an oral glucosylceramide synthase inhibitor and
indicated to treat symptoms of Gaucher disease type 1 [33].
This drug is extensively metabolized by CYP2D6
(fmCYP2D6 = 86%) and to a lesser extent by CYP3A4
(fmCYP3A4 = 14%). Clinical DDI investigations in CYP2D6
intermediate metabolizers (IMs) and extensive metabolizers
(EMs) showed increase inAUC of eliglustat by approximately
5-fold (IMs) to 10-fold (EMs) when co-administered with

paroxetine (strong CYP2D6 and weak CYP3A4 inhibitor)
and by 4-fold (in both IMs and EMs) when co-administered
with ketoconazole. Eliglustat is a time-dependent inhibitor of
CYP2D6 and multiple dose PK exhibited dose- and time-
dependent behavior. Multiple doses of eliglustat increased
AUC of metoprolol (CYP2D6 substrate) by approximately
2-fold in EMs and IMs. A PBPK model of eliglustat was
developed and its ability to describe PK in different
CYP2D6 phenotypes including poor metabolizers (PMs) and
to predict clinical DDIs was confirmed. The PBPKmodel was
then used for predicting DDIs with moderate inhibitors of
CYP2D6 (terbinafine) and CYP3A4 inhibitors (fluconazole)
in EMs and IMs. Moreover, DDIs with moderate to strong
CYP3A4 inhibitors (fluconazole and ketoconazole) in PMs
were predicted using the PBPK model since CYP3A4 inhibi-
tion effect on eliglustat has not been clinically investigated in
PMs. Predicted fold increase in AUC0–24 h of eliglustat in
concomitant administration with ketoconazole in PMs was
6.2 [34], higher than that in EMs and IMs, due to higher
dependency on elimination through CYP3A4 metabolism,
and concomitant use with strong CYP3A inhibitors is contra-
indicated in this population. The PBPK model enabled not
only interpolations from DDI with strong enzyme inhibitors
to the moderate inhibitors but also extrapolations of DDIs to
other CYP2D6 phenotypes which complemented DDI risk
assessments of eliglustat as a dual CYP2D6 and CYP3A4
substrate across CYP2D6 phenotypes. Dosage adjustment
guidance in the drug label approved by FDA [34] based on
these clinical studies and PBPK model predictions are sum-
marized in Supplementary Table 2.

Repaglinide Case Study—Model-Based Prediction
of Insignificant DDI Effect to Support Appropriate
Dosing Recommendations

As a clinically relevant probe substrate, repaglinide is com-
monly used to assess the DDI risk for CYP2C8 inhibitors.
Repaglinide is an antidiabetic drug whose metabolism is me-
diated by CYP2C8, CYP3A4, and to a lesser extent UGT
enzymes [35, 36]. For assessing the DDI risk, therefore,
assigning the appropriate fm(CYP2C8) value for repaglinide is
of great importance given the sensitivity of predicted AUC
ratios to fm values [37]. CYP2C8 and CYP3A4 have been
reported to contribute equally to the in vitro metabolism of
repaglinide, ∼50% [36]. However, an alternative fm(CYP2C8)

value of 0.83 has been proposed based on meta-analysis of
in vivo data [38]. As these two fm> values would result in very
different maximal repaglinide DDI effects assuming complete
enzyme inhibition (2.4 and 5.9 for fm values of 0.59 and 0.83,
respectively, following oral administration), it was important
to consider both possibilities in the DDI assessment.

A number of clinically relevant DDIs with repaglinide have
been reported (Table 2). These DDIs include interactions with
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inhibitors of CYP2C8, CYP3A4, and OATP1B1/3 as well as
compounds which interact via multiple mechanisms. The ex-
tent of clinical DDIs with repaglinide may be assessed as (1)
large extent (≥5-fold AUC change) due to inhibition of mul-
tiple processes or TDI of CYP2C8 [39, 40] and (2) a substan-
tially lower risk can be anticipated for inhibition of a single
process, <2.5-fold AUC change for competitive CYP3A4 or
CYP2C8 inhibitors [41, 42].

Alectinib (Alecensa®) is a small molecule kinase inhibitor
which has received FDA accelerated approval for the treat-
ment of patients with anaplastic lymphoma kinase (ALK)-
positive metastatic non-small cell lung cancer (NSCLC) who
have progressed on or are intolerant to crizotinib treatment
[43]. Alectinib has shown weak competitive and time-
dependent inhibition of CYP3A4 in vitro which has not trans-
lated in vivo [44]. Alectinib is also a competitive inhibitor of
CYP2C8 with an unbound in vitro Ki value of 0.147 μM [45].
DDI predictions with repaglinide were performed using a
PBPK modeling approach to evaluate the clinical relevance
of the CYP2C8 liability. The measured fu(plasma) and blood to
plasma concentration ratio used in the PBPK simulations were

0.003 and 2.64 (consequently the fu(blood) was 0.0011). In the
PBPK assessment of repaglinide, DDI potential fm(CYP2C8)

values of both 0.59 and 0.83 were used. In order to investigate
the sensitivity of the DDI simulations to the in vitroKi value of
alectinib, the following scenarios were tested for both
repaglinide models: true in vivo Ki = 1×, 1/3×, 1/10×, and
1/30× of the in vitro Ki value [46].

Based on the simulations, no significant interaction (>25%
change of AUC) is anticipated regardless of the assumptions
around the in vivo fm(CYP2C8) value of repaglinide (0.59 or
0.83). A sensitivity analysis revealed that a risk for an AUC
change of greater than 25% can only be expected in case that
the in vivo inhibitory potency of alectinib is considerably
higher than anticipated from in vitro data and the in vivo
fm(CYP2C8) of repaglinide is 0.83. This model-based assess-
ment for characterization of clinical DDI between alectinib
and CYP2C8 substrates was accepted in lieu of a clinical
DDI study with repaglinide and justified the product labeling
text BNo clinical meaningful effect on the exposure of …
repaglinide (sensitive CYP2C8 substrate) is expected follow-
ing co-administration with ALESENSA^ [43].

Table 2 Clinical drug-drug interactions with repaglinide as victim drug available in the University of Washington DDI database

Perpetrator AUC
change
(%)

Dose
(mg)

Ki (μmol/L) Mechanism Refs

CYP2C8a CYP3A4a OATP1B1/3b

Gemfibrozil + Itraconazole 1830 600 +100 Detailed below Detailed below Detailed below CYP2C8,
OATP1B1, and
CYP3A4

[39]

Gemfibrozil 443–726 300–900 36 (9.3–87) 171 (184–406) 36 (13–68) CYP2C8 (TDI)
and OATP1B1

[38, 93, 39,
94–96,
40]

Gemfibrozil-glucuronide KI = 29,
kinact = 0.071/min

n.r. 9.3–23

Clopidogrel 295–408 75–300 2.8–50 KI = 26, kinact = 0.053/min 4.0 CYP2C8 (TDI),
OATP1B1

[97]
Clopidogrel-acyl-glucuronide KI = 9.9,

kinact = 0.047
n.r. 11–34

Cyclosporine 143 100 n.r. 3.2 (0.3–37) 0.019–0.032 (after
pre-incubation)

OATP1B1,
(CYP3A4)

[98]

Teriflunomide 142 14–70 0.1 n.r. 7.1 CYP2C8, (OATP) [99]
Telithromycin 77 800 15 87 11–121 CYP3A4 [42]
Trimethoprim 63 160 8.5 n.r. n.r. CYP2C8 [41]
Clarithromycin 42 250 n.r. KI = 13.1 (0.85–37.4),

kinact = 0.058
(0.0192–0.14)

8.26 CYP3A4 (TDI),
OATP

[100]

Itraconazole 41 100 31 0.042 (0.0013–3.12) n.r. CYP3A4 [39]
Grapefruit juice 21 n/a n.r. TDI n.r. Intestinal

metabolism
[101]

Data in parenthesis represent the reported range

All data are available from https://www.druginteractioninfo.org [102]

n.r. not relevant, TDI time-dependent inhibition, n/a not applicable
aMicrosomal data
b Data from HEK, or MDCK-transfected cell lines or human hepatocytes
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Alectinib Efficacy Case Study—Translation of DDI
Effects Into Pharmacodynamic Effects: Relevance
and Contribution of a Major Active Metabolite
to Analysis and Interpretation of a Clinical DDI

Human metabolites are usually considered in terms of safety
when formed at greater than 10% of total drug-related systemic
exposure at steady state [47]. In terms of drug-drug interactions,
metabolites formed in vivo and reaching significant exposures
(e.g., ≥25% of parent drug exposure) have been recommended
to be characterized further in terms ofmetabolism, transport, and
for potential drug-drug interactions [48]. A metabolite may bind
to on- or off-target receptors and thus can be considered active
and contribute to intended and/or unintended effects [49–51].

Alectinib is metabolized by CYP3A4 and to a smaller ex-
tent by other enzymes to generate a number of metabolites
including a major metabolite M4 [52]. Population PK analysis
of the pivotal phase 2 studies showed that the geometric mean
M4 metabolite/parent (M/P) ratio in plasma was 0.4 with an
effective elimination half-life (t1/2) of approximately 33 and
31 h for alectinib and M4, respectively [53]. In vitro pharma-
cology studies demonstrated that both alectinib and M4 are
potent inhibitors of the target ALK with similar potency (IC50

of 1.9 and 1.2 nM, for alectinib and M4, respectively, in bio-
chemical assays) and exhibit similar plasma protein binding
(>99% protein bound) [52].

As both alectinib and M4 are substrates of CYP3A, dedi-
cated clinical pharmacology studies were undertaken to eval-
uate the effect of a strong CYP3A inhibitor (posaconazole)
and strong CYP3A inducer (rifampin) on the pharmacokinet-
ics of alectinib and M4 [44]. Notably, the results from the
clinical DDI study with posaconazole showed that its co-
administration increased alectinib exposure and decreased
M4 exposure while results from the rifampin DDI study

showed that its co-administration decreased alectinib expo-
sure and increased M4 exposure [44] (Fig. 2). As both
alectinib and M4 are similarly active against ALK and exhibit
similar protein binding, it is expected that both substances
contribute to overall alectinib efficacy and safety. Therefore,
to support clinical dosing recommendations in the presence of
CYP3A inhibitors and inducers, changes in the combined mo-
lar exposure of alectinib andM4 (i.e., molar sum of alectinib +
M4) were evaluated (Fig. 2). The minor effects seen on the
combined exposure supported the statement Bno dosage ad-
justment required with co-administered CYP3A inhibitors or
inducers^ in US prescribing information for Alecensa® [43].

The alectinib case represents an approach to the under-
standing of drug-drug interaction potential by utilization of
integrated non-clinical and clinical data of a parent molecule
and its major active metabolite. The knowledge of clinical
pharmacology attributes of both the parent and metabolite
enabled dosing recommendations based on the changes occur-
ring to both substances. To support this, characterization of
both alectinib and M4 was undertaken throughout the devel-
opment process from preclinical safety and drug metabolism/
pharmacokinetic testing through to clinical exposure-response
evaluation of alectinib [54, 55]. Indeed, clinical exposure-
response analyses evaluated the relationship between key ef-
ficacy and safety endpoints emerging from alectinib pivotal
studies and the combined exposure of alectinib and M4 [53].
Thus, while the changes seen in the alectinib exposure when
co-administered with posaconazole or rifampin may have po-
tentially warranted dosage adjustments, consideration of the
combined changes suggested that no dosage adjustments were
needed. This approach to consideration of parent and metab-
olite contributions to clinical DDI or exposure-response inter-
pretation has been successfully applied previously for other
small molecules with active metabolites (e.g., regorafenib,

Interacting Fold Change and 90% Confidence Interval

Posaconazole Alectinib Cmax

(Strong CYP3A4 AUCinf

inhibitor) M4 Cmax

AUCinf

Alectinib + M4 Cmax

AUCinf

Rifampicin Alectinib Cmax

(Strong CYP3A4 AUCinf

inducer) M4 Cmax

AUCinf

Alectinib + M4 Cmax

AUCinf

Dose Recommendation for Alectinib

No dose adjustment

No dose adjustment

0.0 0.5 1.0 1.5 2.0 2.5
Change Relative to Alectinib Alone

Fig. 2 Forrest plot of the drug-drug interaction potential between alectinib and the potent CYP3A inhibitor, posaconazole, or the potent CYP3A inducer,
rifampin [48]
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ezetimibe, ruxolitinib, dabrafenib, and sunitinib) [56–61].
Cumulatively, the alectinib case illustrates the relevance and
contribution of a major active metabolite to clinical DDI anal-
yses and interpretation.

Current Frontiers in DDI Prediction From In Vitro

Enhanced DDI Predictions From Time-Dependent
Inhibition Measurements Using Human Hepatocytes
Suspended in Full Plasma

Preclinical prediction of CYP inhibition-mediated DDIs has
been performed conventionally using the well-characterized
and intensively studied human liver microsomal (HLM) assay,
which shows high detection sensitivity and low likelihood of
false-negative predictions [62]. An in vitro assay using human
hepatocytes (hHEPs) suspended in whole human plasma
(plasma hHEPs) has been reported to give more accurate pre-
diction of the extent of clinical relevant effect due to CYP
inhibition [63–66]. Advantages of assessing DDI in human
hepatocytes supplemented with 100% plasma include (1) in-
herent accounting for plasma protein and microsomal/
hepatocyte binding of a drug, (2) compound is available to
enzyme in its native environment within the cell, i.e., more a
physiologically relevant condition, (3) metabolism of the
compound by both CYP and non-CYP pathways is possible,
and (4) transporter-mediated uptake into hepatocytes may
occur.

An elegant study recently published by Mao et al. [67••]
compared side-by-side DDI prediction due to CYP3A inhibi-
tion from the plasma hHEP assay with three other assays: (a)
HLM, (b) plated hHEPs, and (c) hHEPs suspended in
Dulbecco’s modified Eagle’s medium (DMEM) for 12
marketed drugs (10 protein kinase inhibitors and 2 prototypi-
cal CYP3A time-dependent inhibitors). Kinetic parameters
were generated for the apparent reversible inhibition constant
(Ki,app) and/or TDI (KI,app and kinact) and directly used for
quantitative prediction of the fold-increase in midazolam
AUC0–inf (AUCR) following co-administration with CYP3A
inhibitors based on a static mechanistic model and the total
average systemic plasma concentration without correction for
free drug fraction (fu). The result from this study demonstrated
that the plasma hHEP assay offered a clear enhancement of
DDI prediction (95% accuracy) with no false-negative or
false-positive outcomes. The accuracies for the other three
assays were 58, 84, and 74% for HLM, plated hHEPs, and
DMEM hHEPs, respectively.

In this study [67••], a number of drugs were shown to give
both reversible inhibition and TDI for CYP3A in the HLM
assay (for example erlotinib, nilotinib, and pazopanib) but
interestingly, these drugs were not inhibitory in the plasma
HEP assay. While the clinical data confirmed low DDI due

to CYP3A inhibition for these drugs as predicted by the plas-
ma HEP assay, a more complete mechanistic understanding
for the discrepancy between the two systems would be helpful
when considering the differential sensitivities of the test sys-
tems. The traditional HLM TDI assay is robust, sensitive, and
backed by a substantial body of published data [12, 68, 69]
which can be used to rank and to some extent to predict CYP-
mediated DDI during the discovery stage. It is however sug-
gested to consider using the plasma hHEP TDI assay for an
enhanced assessment of the potential DDI during the candi-
date selection and early stages of drug development as a de-
risking approach for TDI-positive candidate compounds.

Challenges of DDI Prediction in Cases of Metabolism
by BUnusual^ CYP Enzymes or Non-CYP Enzymes

Despite advances in in vitro enzymology technologies, there
continues to be much to learn about enzymes which, while
unimportant in the metabolism of drugs in general, are key
contributors to the metabolism of particular drug compounds.
For example, the SGLT2 inhibitor tofogliflozin is metabolized
by CYPs 2C18, 4A11, and 4F3B [70], and the multiple scle-
rosis drug fingolimod is metabolized by CYP4F enzymes
[71]. These enzymes are usually regarded as Bminor^ CYP
isoforms and would not routinely be included in enzyme phe-
notyping screens [10•, 72]. This raises the question of how
one is to know that an important pathway is Bmissed^ in initial
in vitro assessments. Due to the availability of well-
characterized and selective inhibitors for CYP isoforms, it
may be apparent should the activities of routinely tested
CYP enzymes not account for the majority of metabolism
in vitro. In such cases, additional in vitro work using
recombinantly expressed enzymes and (semi-)selective CYP
inhibitors may be performed to try to obtain more clarity on
enzyme contributions to metabolism, although this may prove
challenging. DDI risks could then be addressed through
screening of potential co-medicant substances either as inhib-
itors of the involved metabolic enzyme or, more empirically,
as inhibitors of turnover of the drug in development itself. Due
to a lack of system information (enzyme expression and ac-
tivity levels, polymorphism status, effect of disease, ontoge-
ny), it is unlikely that special population or polymorphism risk
assessments can be made at this time.

The situation is even more challenging when Bunusual^
non-CYP enzymes are involved. In one recent example, an
investigational trace amine-associated receptor antagonist
RO5263397 was found to be principally cleared by
UGT2B10 [73••]. At the time of compound selection,
UGT2B10 was not considered an important enzyme in drug
metabolism and was not commercially available for testing,
and no selective inhibitors were characterized [74–77]. Co-
administration with potent UGT2B10 inhibitors could poten-
tiallymimic the UGT2B10 poormetabolizer phenotype which
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resulted in a 136-fold higher AUC for one individual after a
single 10 mg dose in a phase I clinical study [73••].

Such cases also provide substantial learning opportunities.
As a result of this observation, a new splice site polymorphism
was identified (prevalent in individuals of African origin but
almost absent in Caucasians). This is relevant for clearance of
other UGT2B10 substrates [78, 79]. In addition, increased un-
derstanding of the enzyme system and in vitro tools to assess
UGT2B10 contribution to metabolism have been developed
which can be rapidly employed in the future. In this way,
UGT2B10 illustrates the process by which an enzyme not
previously considered in drug metabolism testing progresses
from being an Bessentially uncharacterized^ to a Blargely
characterized^ metabolic enzyme system [80, 81]. A similar
experience had been reported by Wang et al. for a Merck de-
velopment compound MK-7246 which is cleared by polymor-
phic UGT2B17 [82]. It is likely that such learning experiences
will be repeated as drug development continues to move into
areas of novel chemical space in pursuit of new drug targets
and further examples are discovered where previously little
studied enzymes are important for individual drug clearance.

Future Prospects for DDI Prediction

To date, most in vitro systems used in DDI prediction have
employed short timescale incubations to generate mechanistic
parameters which can then be used to build up long-term
model predictions of DDIs in vivo. Short timescale incuba-
tions cannot however address issues such as enzyme inactiva-
tion by highly metabolically stable compounds or the inter-
play of enzyme inactivation and induction which will drive
the effective steady-state change in metabolic enzyme capac-
ity. Although the sensitivity of short-term plated human hepa-
tocytes to inhibition and induction has been demonstrated
[83], such systems are unlikely to reflect steady-state condi-
tions due to the transient nature of the cell cultures used. The
advent of long-term hepatocyte culture systems may allow
effective in vitro pharmacokinetic assessments to be made
which will better reflect the clinical situation. The potential
of long-term hepatocyte cultures has initially been demon-
strated for clearance assessment of metabolically stable com-
pounds [84–87••]. Their application to more sophisticated
ADME assessments, such as induction [88], the effect of ac-
tive uptake on apparent induction potency [89•], metabolism
profiling/cross-species comparison [90], and to a limited ex-
tent for drug-drug interactions [85] have also been demon-
strated. New long-term hepatocyte systems may therefore of-
fer a completely new opportunity to simultaneously study
multiple processes involved in drug-drug interactions which
were not previously possible in vitro, especially for highly
metabolically stable compounds. The development of long-
term hepatocyte systems may also be seen as a first step in

the direction of functional in vitro test systems with cells from
multiple organs such as the liver, intestine, kidney, skin, and
brain [91, 92], within a single test system (Bchip^). When
validated, data from the new experimental systems will quick-
ly be incorporated into PBPK-based modeling tools further
enhancing prediction of clinical DDIs.

Conclusions

This review has drawn upon personal experiences and recent
literature reports to highlight achievements and ongoing chal-
lenges in the rapidly developing areas of metabolic DDI as-
sessment, prediction, interpretation, and drug product label-
ing. Examples have been shown of how a model-based ap-
proach to understanding DDIs has progressed from data inte-
gration (bitopertin) to being accepted for interpolative
(ibrutinib) and increasingly extrapolative DDI predictions
(eliglustat and alectinib). Scientific confidence in and regula-
tory acceptance of PBPKmodeling have increased with grow-
ing knowledge of DDIs, availability and robustness of in vitro
test systems, and experience in DDI prediction. Predictions
from well-executed analyses using validated models have en-
abled explicit dosing recommendations in product labels for
clinical DDIs based on PBPK modeling in lieu of dedicated
clinical DDI studies. Modeling approaches may indeed offer
the only way to explore some potential DDIs where clinical
investigation is unfeasible due to ethical considerations or the
inability to recruit suitable study subjects.

The impact of characterizing major active metabolites dur-
ing drug development has also been exemplified in the case of
alectinib. This has been shown to be critical in the interpreta-
tion of clinical DDIs where exposure changes occur to both
the parent and an active metabolite and are relevant to clinical
efficacy and safety. Understanding the pharmacological, phar-
macokinetic, and disposition properties of a metabolite using
in vitro and in vivo studies can allow for estimation of its
contribution in clinical DDI interpretation and subsequently
its potential impact on clinical efficacy and safety in support of
appropriate dosing recommendations.

A sometimes underemphasized factor affecting DDI pre-
dictions is the availability of good quality clinical DDI data
with which can be used for validation purposes. This is espe-
cially the case for drugs predominantly metabolized by
Bunusual^ CYP enzymes or non-CYP enzymes. Examples
where CYP4F enzymes or UGT2B10 catalyze drug clearance
have been discussed. We can expect that the continued devel-
opment of experimental techniques and the increases in
knowledge of enzymology and DDI will be reflected in in-
creased DDI prediction confidence for such drugs.

Use of a whole plasma human hepatocyte TDI assay has
shown to improve in vitro-in vivo extrapolation. Further TDI
assay developments are anticipated using long-term
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hepatocyte culture systems and other Borgans on a chip^ tech-
nologies. These offer the promise of in vitro systems where an
integrated assessment of enzyme inhibition, inactivation, and
induction can be made. The ability to use the same modeling
approaches to understand such Bin vitro pharmacokinetics/
DDI^ experiments and then directly transfer this understand-
ing to the human DDI situation may allow a further step for-
ward in DDI prediction to be made in the near future.
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