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Abstract Studies during the last two decades have revealed
the involvement of epigenetic modifications in the develop-
ment of human cancer. It is now recognized that the interplay
of DNA methylation, posttranslational histone modification,
and non-coding RNAs can interact with genetic defects to drive
tumorigenesis. The early onset, reversibility, and dynamic na-
ture of such epigenetic modifications enable them to be devel-
oped as promising cancer biomarkers and preventive/
therapeutic targets. In addition to the recent approval of several
epigenetic therapies in the treatment of human cancer, emerging
studies have indicated that dietary phytochemicals might exert
cancer chemopreventive effects by targeting epigenetic mech-
anisms. In this review, we will present the current understand-
ing of the epigenetic alterations in carcinogenesis and highlight
the potential of targeting these mechanisms to treat/prevent
cancer. The latest findings, published in the past 3 years regard-
ing the effects of dietary phytochemicals in modulating epige-
netic mechanisms, will also be discussed.
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HIF-1
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Ataxia telangiectasia mutated
Benzo[a]pyrene

B cell lymphoma 2

CCA AT-enhancer-binding protein beta
Chemokine ligand 2

Cell division cycle 25 homolog A
cAMP-response element-binding protein 2
Colony stimulating factor 2
Chemokine (C—X—C motif) ligand 1
C—X~-C motif chemokine 10
G1/S-specific cyclin-D2

Diallyl disulfide

Death-associated protein kinase 1 DIM,
diindolylmethane

DNA methyltransferase

Epithelial cadherin
(—)-Epigallocatechin-3-gallate
Epithelial-to-mesenchymal transition
Estrogen receptor o

Enhancer of zeste homolog 2
Forkhead box protein O1
Glycosyltransferase 3

Pi-class glutathione S-transferase
Histone acetyltransferases

Histone deacetylase

Histone demethylases
Hypoxia-induced factor
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Histone methyltransferases

Heme oxygenase 1

Interleukin 8
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Methyl CpG binding protein 2
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Nrf2 Nuclear factor (erythroid-derived 2)-like 2

PCAF p300/CBP-associated factor

PEITC Phenethyl isothiocyanate

PRB Progesterone receptor B

PTEN Phosphatase and tensin homolog,
RASSF1A, Ras association domain-
containing protein 1

RUNX 3 Runt-related transcription factor 3

SAMD14 Sterile &« motif domain containing 14

SERPINBS Serpin peptidase inhibitor

SEN Sulforaphane

sFRP1 Secreted frizzled-related protein 1

Smad4 Mothers against decapentaplegic homolog
4

SMPD3 Sphingomyelin phosphodiesterase 3

SPARC Secreted protein acidic and rich in cysteine

TET Ten—eleven translocation

TIMP-3 Matrix metalloproteinase-3

TMSI1 Target of methylation induced silencing-1

TNFaip3 Tumor necrosis factor, alpha-induced pro-
tein 3

TPA 12-O-Tetradecanoylphorbol-13-acetate

UGTI1A1 UDP-Glucuronosyltransferase 1 family,
polypeptide Al

WIF-1 Whnt inhibitory factor 1

Introduction

Cancer is a disease involving dynamic changes in the genome.
The activation of oncogenes and the loss of function of tumor
suppressor genes due to genetic mutations have long been
considered the driving force of neoplasia [1]. However, the
important contribution of epigenetic events to the malignant
phenotype has been recognized with the help of significant
advancements in the field of cancer epigenetics [2]. The def-
inition of “epigenetic” has evolved over time from the impact
of chromatin structure on embryonic development to its im-
plication in a wide variety of biological processes [3]. Cur-
rently, the term “epigenetic” refers to the study of heritable
alterations in gene expression without changes in the primary
DNA sequence [4]. These heritable alterations are primarily
established and maintained through cell differentiation and
division, enabling the cells with the same genetic information
to have distinct identities. The major epigenetic mechanisms
for regulating these heritable gene alterations are the methyl-
ation of cytosine bases in DNA, covalent modifications of
histones, and posttranscriptional gene regulation by
microRNAs (miRNAs) [2]. The disruption of these epigenetic
modifications is associated with abnormalities of various sig-
naling pathways and can lead to the induction and mainte-
nance of many disease states, including cancer [5].
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It is now widely accepted that epigenetic abnormalities and
genetic alterations in cancer cells may interact at all stages to
initiate and promote cancer [6, 7¢¢]. In contrast to genetic
mutations, epigenetic modifications are potentially reversible.
For example, genes with repressed transcriptional activity by
epigenetic silencing can be reactivated through epigenetic in-
terventions because the genes themselves are still intact,
whereas genetic mutations are permanent. This fact may ex-
plain why increasing attention and effort had been focused on
the discovery and development of epigenetic-targeted thera-
peutics to treat cancer in recent years. To date, several small-
molecule epigenetic therapies targeting chromatin-modifying
enzymes have been developed and approved for cancer treat-
ment by the US Food and Drug Administration (FDA). These
drugs include DNA methyltransferase (DNMT) inhibitors
(azacitidine and decitabine) and histone deacetylase (HDAC)
inhibitors (vorinostat and romidepsin) [8¢]. A number of clin-
ical trials are also underway with these agents and many other
newly developed epigenetic agents in a variety of cancer
types. Moreover, the synergistic effects between epigenetic
drugs and conventional antitumor therapies are quite promis-
ing [9]. Other than these small-molecule agents, accumulating
evidence suggests that the epigenetic landscape is largely in-
fluenced by dietary and environmental factors [10]. With their
relatively low toxicity, feasible long exposure, and promising
effects observed in vitro and in vivo [11, 12], dietary phyto-
chemicals may become potential chemopreventive agents by
targeting epigenetic modifications.

In this review, we will discuss the current understanding of
the epigenetic mechanisms that occur during carcinogenesis
and highlight their potential roles in cancer chemoprevention.
Studies published in the past 3 years regarding the impact of
dietary chemopreventive phytochemicals in modulating epi-
genetic alterations will also be reviewed and discussed.

DNA Methylation

DNA methylation, the addition of a methyl group by DNMTs
to the cytosine bases located 5’ to a guanosine in a CpG dinu-
cleotide, is perhaps the most extensively investigated epige-
netic modification in mammals [13]. CpG dinucleotides are
not evenly distributed across the entire genome but are clus-
tered in short regions known as CpG islands that are 0.5-4 kb
in length [13]. These CpG islands are known to be preferen-
tially located in the proximal promoter end of approximately
60 % of genes in the genome and generally remain
unmethylated in normal cells [14, 15], allowing access to tran-
scription factors and chromatin-associated proteins for active
transcription. In cancer, however, CpG islands in promoter
regions become hypermethylated, and this event is believed
to cause inappropriate transcriptional silencing of numerous
tumor suppressors and other genes with important functions in
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carcinogenesis (Fig. 1) [16]. The recruitment of transcriptional
proteins to DNA is reduced by hypermethylated CpG islands,
thus resulting in gene silencing [17]. Alternatively, methylated
CpG islands provide binding sites for various methyl-binding
proteins (MBDs), such as MBD1-MBD4 and methyl CpG
binding protein 2 (MeCP2), which can mediate gene repres-
sion by interacting with HDACs [18]. Surprisingly, promoter
CpG island hypermethylation-mediated gene silencing is at
least as common as mutational alterations in the classic
tumor-suppressor genes in human cancer [19]. The list of
cancer-related genes that are inactivated by CpG hypermethy-
lation is ever growing with advances in techniques. Examples
of these genes include human mutL homolog 1 (\IMLH1), O°-
alkylguanine DNA alkyltransferase (MGMT) [20, 21],
pl6™K4a 115™K4b 195 23], B cell lymphoma (Bcl-2), and
death-associated protein kinase 1 (DAPK) [24, 25]. The stud-
ies conducted in our group demonstrated that nuclear factor
(erythroid-derived 2)-like 2 (Nrf2) expression is down-

regulated in TRAMP CI1 cells and JB6 P+ cells due to pro-
moter hypermethylation, and the expression of these genes
can be restored by reducing the promoter methylation status
with various phytochemical treatments [26-29, 30+]. This ef-
fect will be further reviewed in “Dietary Phytochemicals
Modulate Epigenetic Modifications.” Other than the hyperme-
thylation of promoter CpG islands, global DNA hypomethy-
lation in tumor cells compared with normal cells has been
reported repeatedly (Fig. 1) [31, 32]. Genome-wide hypome-
thylation is suggested to be associated with enhanced genomic
instability and can thereby facilitate tumor progression [33].
Thus, an imbalance of DNA methylation between genome-
wide hypomethylation and regional hypermethylation may
characterize human neoplasia [34].

The precise DNA methylation patterns in the mammalian
genome are known to be regulated by DNMTs (Fig. 1).
DNMT3a and DNMT3b act cooperatively to establish de
novo methylation independent of replication, whereas
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Fig. 1 Schematic representation showing epigenetic modifications of
tumor suppressor genes in normal and in cancer cell. CpG island of
promoter region remains hypomethylated to facilitate active
transcription of tumor suppressor genes in normal cells. In cancer cells,
however, promoter hypermethylation of tumor suppressor genes is
frequently detected. In addition, genome-wide hypomethylation in
cancer cells has been reported. The enzymes such as DNMT and TET
dynamically regulate the DNA methylation. Acetylation and methylation
on the histone tails influence the chromatin structure. For example, lysine
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DNMT]1 maintains methylation patterns during DNA replica-
tion by preferentially methylating hemimethylated DNA [35].
A fourth member, DNMT-3L, was first isolated in 2000 and
had been shown to facilitate DNA methylation by interacting
with DNMT3a and 3b [36, 37]. Given that the DNMT en-
zymes are modestly overexpressed in many types of tumor
cells and that the inhibition of DNMTs has been found to
reduce tumor formation in various mouse models [38, 39],
the search for and studies of DNMT inhibitors have become
extremely popular. Successful examples include FDA-
approved anticancer drugs, potent DNMT inhibitors under
clinical trials, and numerous dietary chemopreventive phyto-
chemicals that have been identified in preclinical models. Al-
though the enzymes that regulate DNA methylation have been
well characterized, those that mediate methyl group removal
are still elusive. A novel ten—eleven translocation (TET) en-
zyme family that is capable of modifying 5-methylcytosine to
5-hydroxymethylcytosine through oxidation has been discov-
ered in recent years (Fig. 1) [40, 41¢]. We anticipate many
more exciting discoveries regarding the mechanistic roles of
TET in the dynamic regulation of DNA methylation to en-
hance our understanding of DNA methylation in
tumorigenesis.

Histone Modification

The covalent modification of histone proteins also plays a
critical role in regulating gene expression, chromatin structure,
cellular identity, and, ultimately, carcinogenesis. Histone pro-
teins (H3, H4, H2A, H2B, and H1) are at the heart of chro-
matin structure and act as scaffolds to wrap ~146 bp of eu-
karyotic DNA into repeating nucleosomes, which are further
folded into compact chromatin fibers (~30 nm) [42]. The chro-
matin structure, which is closely involved in gene transcrip-
tion, replication, and repair, is regulated by the “histone code,”
known as the language of histone modification [43]. The two
distinct chromatin structures, namely, heterochromatin and
euchromatin, represent a tightly packed structure with re-
pressed gene transcription or a loosely packed structure with
active gene transcription, respectively (Fig. 1) [44]. While
highly conserved, specific residues such as lysine, arginine,
and serine, on the N-terminal tails of histones can undergo
extensive posttranslational modifications, including methyla-
tion, acetylation, phosphorylation, ubiquitination,
sumoylation, and ADP ribosylation [45].

Histone modifications can lead to either gene activation or
repression, depending on which residues are modified and
what types of modifications are involved. Usually, lysine acet-
ylation alters nucleosomal conformation by neutralizing the
positive charge, thereby increasing the accessibility of tran-
scriptional factors to chromatin and resulting in transcriptional
activation (Fig. 1) [46]. Histone acetylation is dynamically
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catalyzed by enzymes that add [histone acetyltransferases
(HATSs)] and remove [histone deacetyltransferases (HDACS)]
acetyl groups (Fig. 1). To date, 18 HDACs and 25 HATs
enzymes have been identified and classified into several fam-
ilies, and these enzymes are capable of controlling various
physiological functions [47¢¢]. The loss of acetyl groups in
H4-lysine 16 and the overexpression of certain HDACs (1,
2, and 6) have been demonstrated in a number of cancers
[48]. Notably, two HDAC inhibitors have already been ap-
proved by the FDA, and more novel inhibitors are currently
undergoing clinical investigations for the treatment of a broad
range of cancers [8¢]. It is exciting to note that some dietary
phytochemicals may be involved in chromatin remodeling by
targeting HDACs and HATSs, highlighting their potential in
cancer chemoprevention [49¢].

Unlike lysine acetylation, methylation at lysine residues
appears to activate or repress transcription depending upon
which residue is methylated and the degree of the methylation.
For example, methylated H3K4, H3K36, and H3K79 are gen-
erally associated with active genes in euchromatin, whereas
the methylation at H3K9, H3K27, and H4K20 leads to gene
repression (Fig. 1) [50]. Moreover, histone methylation has
been suggested to cooperate with DNA methylation. For ex-
ample, DNA methylation is associated with H3K9 methyla-
tion [51]. Histone methyltransferases (HMTs) and histone
demethylases (HDMs) dynamically regulate histone methyla-
tion (Fig. 1). In contrast to HATs, HMTs specifically target
certain lysine residues; for example, enhancer of zeste homo-
log 2 (EZH2) is primarily responsible for H3K27 methylation
[52]. Investigations in recent years have implicated hyperac-
tive EZH2 in the development of prostate and breast cancer
via its histone methylation-induced repression of tumor sup-
pressors [53], making this enzyme a promising chemothera-
peutic target.

MicroRNAs

MicroRNAs (miRNAs) are small non-coding RNAs approxi-
mately 22 nucleotides in length that are increasingly recog-
nized as important players in epigenetic gene regulation in
mammals. By specifically targeting mRNA degradation or
translation inhibition, miRNAs can bind and interfere with a
wide spectrum of transcripts and profoundly influence cancer-
related processes, such as proliferation, apoptosis, differentia-
tion, cell cycle, and migration (Fig. 1) [54]. Since the deregu-
lation of miRNA in cancer was first documented in 2002 [55],
the network of miRNAs identified in the cancer-related pro-
cesses, their tissue distributions, and their potential targets
have rapidly grown, elucidating their extensive roles in carci-
nogenesis and chemotherapy. For example, miR-155 and
miR-21 have been found to be overexpressed in many cancer
types [56, 57], and the attenuated expression of miR-let7 was
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observed in human lung cancers [58]. Interestingly, the ex-
pression of miRNAs can be controlled by epigenetic mecha-
nisms, such as DNA methylation and histone modifications.
Moreover, miRNAs can target key enzymes, such as DNMTs
and EZH2, which mediate epigenetic mechanisms, thereby
modulating the epigenetic landscape of cells (Fig. 1) [59].
Progress had been made in utilizing miRNAs in cancer prog-
nosis and therapy. Notably, the first miRNA mimic entered the
clinic for the treatment of liver cancer patients in 2013 [60]. In
addition, the interaction between dietary phytochemicals and
miRNAs has been investigated in cancer cells. Hence,
miRNAs might be a promising target for chemopreventive
dietary phytochemicals.

Dietary Phytochemicals Modulate Epigenetic
Modifications

Environmental and dietary factors can influence the patholog-
ical progression of diseases, including cancer. Some naturally
occurring phytochemicals that are common secondary metab-
olites in fruits and vegetables have been demonstrated to be
beneficial for human health through various actions, including
ameliorating oxidative stress, inducing detoxification en-
zymes, inhibiting nitrosamine formation, binding/diluting car-
cinogens in the digestive tract, altering hormone metabolism,
and modulating carcinogenic cellular and signaling events
[61]. Recently, accumulating research has demonstrated that
dietary phytochemicals can alter the epigenome and may help
to prevent and treat human cancer. Here, we review the most
recent studies regarding the epigenetic role of dietary phyto-
chemicals, including polyphenols [quercetin, apigenin, (—)-
epigallocatechin-3-gallate (EGCGQG), genistein, resveratrol,
and curcumin], organosulfur compounds [sulforaphane
(SFN), phenethyl isothiocyanate (PEITC), diallyl disulfide
(DADS)], and indoles [diindolylmethane (DIM)] in cancer
chemoprevention and therapy. We also discussed the latest
progress in the identification of chemopreventive phytochem-
icals from Chinese herbal medicine in modulating epigenetic
mechanisms. The epigenetic modifications regulated by phy-
tochemicals are summarized in Table 1.

Polyphenols

Quercetin, a flavonol with yellow color, is widely found in
fruits, vegetables, and grains. Quercetin was shown to inhibit
the recombinant prokaryotic SssI DNMT- and human
DNMT1-mediated DNA methylation [62]. Quercetin sup-
presses the growth of the human colon cancer cell line RKO
via demethylation of the p16INK4a gene promoter [63]. Quer-
cetin has been found to block the binding of the transactivators
cAMP-response element-binding protein 2 (CREB2), c-Jun,
CCAAT-enhancer-binding protein beta (C/EBPf3), and

nuclear factor kappa B (NF-kB) to the COX-2 promoter. In
addition, quercetin suppresses COX-2 expression in breast
cancer cells by attenuating p300/HAT-mediated signaling
[64]. Moreover, quercetin induces Fas ligand-related apopto-
sis through the activation of the c-Jun/AP-1 signaling path-
way, the induction of HAT, and the inhibition of HADC in
HL-60 cells [65]. Quercetin was also found to induce senes-
cence in glioma cells via the inhibition of HDACs [66]. A
quercetin-rich diet has been reported to influence miRNA ex-
pression in human lung cancer tissues, including the tumor
suppressor let-7 family and carcinogenesis-related miR-146,
miR-26, and miR-17 [67]. Quercetin also up-regulates miR-
142-3p, a negative regulator of heat shock protein 70, which is
related to the inhibition of the cell proliferation of pancreatic
ductal adenocarcinoma cells (MIA PaCa-2, Capan-1, and S2-
013) [68].

Apigenin is a yellow flavone compound in fruits and veg-
etables, especially in parsley, celery, and chamomile tea. In
our recent study, we found that apigenin effectively
demethylated the Nrf2 promoter, resulting in an increase in
the mRNA and protein expression of Nrf2 and the Nrf2 down-
stream target gene NAD[P]H:quinine oxidoreductase-1
(NQO1) in skin epidermal JB6 P+ cells. This effect was asso-
ciated with the reduced expression of epigenetic proteins, in-
cluding DNMT1, DNMT3a, DNMT3b, and some HDACs
[69]. Apigenin also induces growth arrest and apoptosis in
human prostate cancer cells through the up-regulation of glob-
al histone H3 and H4 acetylation and hyperacetylation of his-
tone H3 on the p21/wafl promoter in prostate cancer PC-3
and 22Rv1 cells. These effects may be caused by the inhibitive
effect of apigenin on HDAC enzyme activity and the expres-
sion of HDACI and HDAC3 [70]. The tumor suppressor
miR-138 is correlated with telomerase activity in many human
cancers, and apigenin-induced overexpression of miR-138 has
been demonstrated to powerfully induce apoptosis of human
malignant neuroblastoma in cell culture and animal models
[71].

(—)-Epigallocatechin-3-gallate (EGCQ) is one of the most
abundant catechins in tea leaves and has been identified as a
non-nucleoside DNMT inhibitor. The restoration of Wnt in-
hibitory factor 1 (WIF-1) expression by EGCG treatment, oc-
curring via the demethylation of the WIF-1 promoter, has been
found in lung cancer H460 and A549 cell lines [72]. A recent
study reported that EGCG treatment inhibits DNMT transcript
levels and the protein expression of DNMT1, HDACI, and
MeCP2, effectively reactivating genes silenced by promoter
methylation, such as estrogen receptor o« (ER), progesterone
receptor B (PRB), target of methylation-induced silencing-1
(TMST1), Cyclin D2 (G1/S-specific cyclin-D2), and MGMT in
MCF-7 cells [73]. EGCG treatment was found to reactivate
the tumor suppressor gene p16INK4a and Cip1/p21 by reduc-
ing DNA methylation and increasing histone acetylation in
human epidermoid carcinoma A431 cells [74]. EGCG may
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Table 1  Epigenetic modifications by phytochemicals
Category Phytochemicals Sources Structure Epigenetic modification(s) Effect(s) Citation
Quercetin Citrus fruits, ~~OH| Demethylated p16INK4a gene promoter, Suppressed the growth of colon cancer cells [63-68]
onion, HO o { “~on| inhibited p300/HAT activity and HDACs, and pancereatic ductal adenocarcinoma
parsley, | influenced miRNA expression (let-7, miR-146, cells, reduced COX-2 expression in breast
berries H 0 o miR-26, miR-17, miR-142-3p) cancer cells, induced apoptosis in human
leukemia HL-60 cells, induced senescence in
glioma cells
Apigenin Parsley, OH | Demethylated Nrf2 promoter, reduced the Activated Nrf2 pathway in skin epidermal [69-71]
celery, HO _~ 0O expression of DNMTs and HDACs, increased 1B6 P+ cells, induced growth arrest and
chamomile { _— J global acetylation of histone H3 and H4, apoptosis in human prostate cancer cells and
tea OH O induced the expression of miR-138 malignant neuroblastoma cells
-)- Tea leaves OH Demethylated WIF-1 promoter, inhibited the Restored the expression of WIF-1 in lung 72,73,
Epigallocatech @[OH expression of HDAC1, MeCP2, and DNMT1, cancer cells, reactivated ERa, PRB, TMS1, 75-77,
in-3-gallate increased acetylation level of H3K9/14, cyclin D2, and MGMT gene in MCF-7 cells, 74]
(EGCG) H4K5/12/16, decreased methylation level of reactivated p16INK4a and Cip1/p21 in A431
H3K9, decreased EZH2 localization and H3K27 cells, delayed breast cancer progression and
trimethylation enrichment, increased histone invasion, reduced proliferation rate and
% H3K9/18 acetylation, induced the expression of | anchorage-independent growth of lung
5 miR-210, suppressed the expression of p53- cancer cells
5 targeted miRNAs (miR-25, miR-92, miR-141,
z miR-200)
o Genistein Soy beans HO O Suppressed global DNA methylation, DNMT Increased expression of ATM, APC, PTEN, [78-80]
N I activity, and DNMT1 expression, induced and SERPINBS in breast cancer cells,
OH O o histone modifications (H3K9-me2, H3K9-me3, activated sFRP1, Smad4, inhibited
and H3K27-me3), down-regulated onco-miR- proliferation of prostate cancer cells,
1260b and miR-27a enhanced apoptosis of pancreatic cancer
cells
Resveratrol Blueberries, HO\@y Reduced DNA methylation of RASSF1A, Inhibited prostate cancer growth and [81-85]
cranberries, %1 | suppressed DNMT3b, increased the expression metastasis, promoted the apoptosis of
Grapes I of miR-129, -204, and -489, inhibited miR-21- pancreatic cancer cells
OH mediated pathway, acted as a HDAC inhibitor
Curcumin Turmeric N ‘i i o | ActasDNMT inhibitor, suppressed DNA Restored the expression of Nrf2 and Neurog [91, 92,
- KJ D kl | methylation in Nrf2 and Neurog 1 promoter, 1in TRAMP C1 and LnCap cells, restored the | 86, 94,
HO" OH | inhibited HDAC and HAT activity, increased expression of SOCS1 and SOCS3 in K562 and 87,93]
global level of H3K18ac and H4K16ac, induced HEL cells, inhibited cell proliferation of MCF-
miRNA-9-mediated Akt/FOXO1 pathway, up- 7 cells, induced apoptosis of SKOV3 cells,
regulated miR-181b suppressed the expression of CXCL1 and
CXCL2 in breast cancer cells
Sulforaphane Broccoli, 9 Suppressed DNA methylation in Nrf2 promoter Restored Nrf2 expression, reduced breast [96, 98,
9 (SFN) cabbage, Cog S by inhibiting DNMTs and HDACs, epigenetically | tumor growth, inhibited proliferation of 95, 30,
S brussels restored cyclin D2 expression, restored miR- LnCap cells, inhibited EMT process in human | 97]
S sprouts 140, up-regulated miR-200c bladder cancer 724 cells
g Phenethyl Cruciferous Demethylated GSTP1 promoter, modified the Reactivated GSTP1 in LnCap cells, reduced [101,
° isothiocyanate | vegetables s C. /\Q acetylation and methylation of H3, increased inflammation-related genes in SW480 cells, 100,
2 (PEITC) N the expression of miR-17, decreased the inhibited prostate cancer cell growth 99]
§ expression of PCAF
S D_iaIIy_I Garlic /\/5 s ANF Inhibited HDAC and increased the acetylation Enhanced apoptosis in human gastric cells [103,
=] disulfide of H4, up-regulated miR-200b and miR-22 and xenograft models. 102]
o (DADS)
3, 3- Broccoli, Q O Altered the DNA methylation of cancer- Exerted chemopreventive effects in prostate | [107,
Diindolylmeth | cabbage, ) i associated gene promoters such as Nrf2, tumorigenesis by up-regulating Nrf2, 106,
3 ane (DIM) brussels HN NH induced proteasome-mediated degradation of triggered cell cycle arrest and apoptosis in 105,
g sprouts HDACs, influenced miR-21-mediated Cdc25A HT29 cells, inhibited cell proliferation in 104,
£ degradation, up-regulated miR-let-7, down- MCF-7 and MDA-MB-468 cells, attenuated 29]
regulated the expression of EZH2 prostate cancer aggressiveness
Compound K Ginseng Demethylated RUNX3 promoter Reactivated RUNX3 and inhibited the [108]
proliferation of HT29 cells
Ginsenoside Ginseng Regulated a network of miRNAs such as miR- Inhibited the proliferation of human glioma [110,
Rh2 128 cells 109]
_E Z-Ligustilide Radix 7 Hypomethylated the Nrf2 promoter Restored Nrf2 expression in TRAMPC1 cells 28]
% (Lig) apge/ic_ae o
@ sinensis
E (Danggui) ©
E Tanshinone Salvia Q CHy Reduced the methylation of Nrf2 promoter, Blocked TPA-mediated JB6 transformation [111,
2 1A miltiorrhiza, o QA suppressed DNMTs and HDACs, inhibited the through restoration of Nrf2 signaling, 112]
2 (Danshen) ‘ o over-expressed miR-155 decreased inflammatory responses in LPS-
_E O induced macrophages
S HaC~ " CH,
Tanshinone | Salvia o 0 Reduced H3 acetylation levels in Aurora A Triggered cell cycle arrest in breast cancer [113]
miltiorrhiza, romoter cells
(Danshen) ;I :
HyC
Tanshindiols Salvia o P Potential EZH2 inhibitor Inhibited the growth of cancer cell lines [114]
miltiorrhiza, | wo Vo
(Danshen) HO—
Boswellic Boswellia Inhibited DNMT activity, induced genome-wide | Restored the expression of SAMD14 and [116,
acids serrata /@ demethylation, up-regulated tumor- SMPD3 in colon cancer cells, inhibited 115]
» !/l:<\ suppressive miRNAs such as let-7 and miR-200 growth of colon cancer xenografts in nude
> 8 Ny mice
§ E Ursolic acid Apples, H Influenced miR-21 pathway Suppressed proliferation of human glioma [117]
e g berries, (,Qg:%w cell line
2 = Thyme, ~LD T
5 & rosemary Ho™ y
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delay breast cancer progression and invasion via the induction
of matrix metalloproteinase-3 (TIMP-3) expression. The pro-
posed mechanism for this effect is that EGCG decreases
EZH?2 localization and H3K27 trimethylation enrichment at
the TIMP-3 promoter, with a concomitant increase in histone
H3K9/18 acetylation, in breast cancer cells [75]. EGCG also
induces the expression of miR-210, a major miRNA regulated
by hypoxia-induced factor (HIF)-1«, in lung cancer cells,
resulting in a reduced cell proliferation rate and anchorage-
independent growth [76]. EGCG can suppress the expression
of p53-targeting miRNAs, including miR-25, miR-92, miR-
141, and miR-200a, which are induced by the environmental
carcinogen benzo[a]pyrene (BaP) in multiple myeloma, a
common and deadly cancer of blood plasma cells [77].

Genistein, an isoflavone, is a major phytoestrogen com-
pound in soy beans (Glycine max). Genistein has been dem-
onstrated to suppress global DNA methylation, DNMT activ-
ity, and DNMT]1 expression. These effects lead to promoter
hypomethylation and increased mRNA expression of multiple
tumor suppressor genes, including ataxia telangiectasia mutat-
ed (ATM), adenomatous polyposis coli (APC), phosphatase
and tensin homolog (PTEN), and mammary serpin peptidase
inhibitor (SERPINBS), in human breast cancer MCF-7 and
MDA-MB-231 cells [78]. Genistein induces the expression
of two tumor suppressor genes, secreted frizzled-related pro-
tein 1 (sFRP1), and Smad4 (mothers against decapentaplegic
homolog 4), via the demethylation of their promoter regions
and histone modifications, such as H3K9-me2, H3K9-me3,
and H3K27-me3, in prostate cancer cells [79]. Genistein also
down-regulates onco-miRNA-1260b in prostate cancer cells,
resulting in the up-regulation of sFRP1 and Smad4 and the
inhibition of cell proliferation and invasion [79]. miR-27a
down-regulation by genistein leads to enhanced apoptosis
and reduced cell growth and invasion in pancreatic cancer
cells [80].

Resveratrol is a stilbenoid, a type of natural polyphenol,
and is found in blueberries, cranberries, and grapes. DNA
methylation of the tumor suppressor gene RASSF1A (Ras
association domain-containing protein 1) was reported to be
reduced by resveratrol intake (twice daily for 12 weeks) in the
breasts of women at high breast cancer risk [81]. Resveratrol
suppressed the increase in DNMT3b expression in estradiol-
induced mammary tumor tissue in female ACI rats, an effect
that may increase the expression of miRNA-129, miRNA-
204, and miRNA-489 [82]. The role of resveratrol as a HDAC
inhibitor has also been demonstrated in glioma cells and
human-derived hepatoblastoma cells [83]. Recent studies sug-
gested that resveratrol inhibits prostate cancer growth and me-
tastasis and promotes the apoptosis of pancreatic cancer cells
by inhibiting a miRNA-21-mediated pathway [84, 85].

Curcumin, a curcuminoid, is the primary component in the
most popular Indian spice, turmeric (Curcuma longa). Grow-
ing evidence shows that curcumin harbors DNA

demethylation potential in various cancer cell lines and might
be a DNMT inhibitor [86—89]. For example, studies conduct-
ed in our laboratory suggested that curcumin restored the ex-
pression of Nrf2 and Neurogenin-1 (Neurogl) in murine pros-
tate cancer Tramp C1 cells and human prostate cancer LnCap
cells, respectively, by suppressing DNA methylation in the
promoter region [86, 87]. The hypomethylation effect of some
novel synthetic curcumin analogs, such as EF31 and UBS109,
has also been described to activate silenced genes, including
p16, secreted protein acidic and rich in cysteine (SPARC), and
epithelial cadherin (E-cadherin), in pancreatic cancer
MiaPaCa-2 and PANC-1 cells [90]. Curcumin has also been
reported to modulate the activities of HDAC and HAT.
Curcumin restored the expression of SOCS1 and SOCS3,
suppressors of cytokine signaling, via the inhibition of HDAC
activity (especially HDACS), resulting in increased histone
acetylation in the SOCS1 and SOCS3 promoter regions of
the myeloproliferative neoplasm cell lines K562 and HEL
[91]. In breast tumor MCF-7 cells, the inhibitory effects of
curcumin in the activities of HAT have also been demonstrat-
ed, with increased global levels of acetylated H3K18 and
H4K16, potentially leading to the arrest of cell proliferation
[92]. Curcumin may also induce apoptosis of ovarian cancer
SKOV3 cells through inducing the miRNA-9-mediated Akt/
forkhead box protein O1 (FOXO1) pathway [93]. The up-
regulation of miRNA-181b by curcumin was found to sup-
press the expression of the pro-inflammatory cytokines che-
mokine (C—X—C motif) ligand 1 (CXCL1) and CXCL2, lead-
ing to the diminished proliferation and invasion of breast can-
cer cells [94].

Organosulfur Compounds

Sulforaphane (SFN) is a bioactive isothiocyanate, a group of
organosulfur compounds, which are abundant in cruciferous
vegetables, such as broccoli, cabbage, and brussels sprouts.
According to our recent studies, SFN suppresses DNA meth-
ylation of the Nrf2 promoter in mouse skin JB6 and prostate
Tramp C1 cells by down-regulating DNMTs and HDAC:s.
These effects may contribute to its preventive potentials
against TPA-induced skin transformation and prostate carci-
nogenesis, respectively [95¢, 30¢]. SFN has also been demon-
strated to exhibit antiproliferative effects on LnCaP prostate
cancer cells by epigenetically restoring the expression of cy-
clin D2 [96]. The restoration of miR-140 by SFN, accompa-
nied by the reduced expression of SOX9 and aldehyde dehy-
drogenases 1 (ALDH1), has been reported to result in de-
creased breast tumor growth in vivo [97]. SFN also inhibits
the epithelial-to-mesenchymal transition (EMT) process in
human bladder cancer T24 cells, and the up-regulation of
miRNA-200c by SFN may be one of the mechanisms under-
lying this effect [98].
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Phenethyl isothiocyanate (PEITC), another isothiocyanate,
exists in some cruciferous vegetables. PEITC has been report-
ed to be able to demethylate and reactivate pi-class glutathione
S-transferase (GSTP1). This protein is a frequently silenced
detoxifying enzyme that is highly associated with prostate
carcinogenesis through its regulation of the cross-talk between
DNA and chromatin in LNCaP cells [99]. PEITC was also
observed to modify the acetylation and methylation of histone
3 in human colon cancer SW480 cells, leading to the down-
regulation of some inflammation-related genes, such as che-
mokine ligand 2 (CCL2), CD40, C—X—C motif chemokine 10
(CXCL10), colony stimulating factor 2 (CSF2), interleukin 8
(IL-8), NF-kB, and tumor necrosis factor, alpha-induced pro-
tein 3 (TNFaip3) [100]. PEITC treatment significantly in-
creased the expression of miRNA-17 and decreased the ex-
pression of p300/CBP-associated factor (PCAF) in
dihydrotestosterone-stimulated LNCaP cells, which might
contribute to the inhibitory effect of PEITC against androgen
receptor (AR) transcriptional activity and cell growth in pros-
tate cancer [101]

Diallyl disulfide (DADS) is one of the principal sulfur
compounds in Allium vegetables, such as garlic (A/lium
sativum). DADS has been found to exhibit an inhibitory effect
on HDAC, resulting in hyperacetylation of histone 4 in the
breast cancer MCF-7 cell line [102]. In addition, DADS treat-
ment has been demonstrated to impair proliferation and en-
hance apoptosis in both human gastric cell lines and xenograft
models. This effect occurred through the Wnt-1 signaling
pathway and was mediated by the up-regulation of miRNA-
200b and miRNA-22 [103].

Indoles

3,3'-Diindolylmethane (DIM), an indole compound, is de-
rived from glucosinolate indole-3-carbinol (I3C) in crucifer-
ous vegetables, including broccoli, cabbage, cauliflower, and
brussels sprouts. In addition to SFN, DIM can alter the DNA
methylation status of many cancer-associated gene promoters
in normal PrECs as well as in the prostate cancer cell lines
LnCap and PC3 [104]. Similarly, DIM exerts its chemopre-
ventive effects in prostate tumorigenesis by epigenetically
demethylating the Nrf2 promoter and up-regulating the ex-
pression of Nrf2 and its downstream gene NQO1 [29]. The
proteasome-mediated degradation of class I HDACs
(HDACT1, HDAC2, HDAC3, and HDACS) induced by DIM
triggers cell cycle arrest and apoptosis in human colon cancer
HT-29 cells and in tumor xenografts [105]. DIM also inhibits
cell proliferation in human breast cancer MCF-7 (estrogen-
dependent) and MDA-MB-468 (estrogen receptor-negative,
p53 mutant) cells via miRNA-21-mediated Cdc25A (cell di-
vision cycle 25 homolog A) degradation [106]. A phase II
clinical study in patients prior to radical prostatectomy sug-
gested that formulated DIM intervention could attenuate
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prostate cancer aggressiveness via the up-regulation of
miRNA let-7 and down-regulation of EZH2 expression in
tissue specimens [107].

Phytochemicals from Traditional Chinese Herbal Medicine

During the last few decades, great progress had been made in
the identification of chemopreventive agents and anticancer
drugs in traditional Chinese herbal medicine. Recently, the po-
tential of the components from Chinese herbs to influence epi-
genetic mechanisms in cancer prevention have been recog-
nized. Ginseng is one of the most commonly used herbs in East
Asia. Compound K [20-O-f3-(D-glucopyranosyl)-20(S)-
protopanaxadiol], the main metabolite of ginseng saponin,
was found to inhibit the proliferation of human HT29 human
colon cancer cells by demethylating and reactivating runt-
related transcription factor 3 (RUNX 3), which is associated
with reduced DNMT]1 activity [108]. Ginsenoside Rh2 is an-
other biologically active triterpene saponin extracted from gin-
seng. The chemopreventive effect of Rh2 in inhibiting the pro-
liferation of human glioma cells had been demonstrated to in-
volve epigenetic modifications, such as the regulation of
miRNAs. Specifically, the up-regulation of miR-128 by the
treatment with Rh2 had been shown to trigger apoptosis-
related signaling [109]. Similarly, using miRNA microarray
analysis, An et al. [110] identified a network of miRNAs reg-
ulated by treatment with Rh2 in nonsmall cell lung cancer
AS549 cells, which may contribute to the antiproliferative effect
of Rh2. A research study from our group demonstrated that the
Chinese herb Radix angelicae sinensis (RAS; Danggui) and its
bioactive component Z-Ligustilide (Lig) are able to
hypomethylate the Nrf2 promoter, resulting in the restoration
of Nrf2 and downstream targets such as NQO1, heme oxygen-
ase 1 (HO-1), and UDP-glucuronosyltransferase 1 family, poly-
peptide Al (UGT1A1) in murine prostate cancer TRAMP C1
cells [28]. Another Chinese herb with great promise in altering
epigenetic mechanisms is Salvia miltiorrhiza, also known as
Danshen. We found that tanshinone IIA, one of the main active
components from Danshen, blocks TPA (12-0-
tetradecanoylphorbol-13-acetate)-mediated JB6 transformation
through epigenetic regulation of the Nrf2 signaling pathway
[111]. Treatment with tanshinone IIA reduced the methylation
of the Nrf2 promoter, elevated the expression of Nrf2 and
downstream targets, suppressed the protein levels of DNMT1,
DNMT3a, DNMT3b, and HDACS3, and inhibited HDAC ac-
tivity [111]. Another study showed that tanshinone IIA de-
creases inflammatory responses in LPS-induced macrophages
and inhibits the proliferation of inflammation-stimulated colon
cancer cells by inhibiting the overexpressed miR-155 in mac-
rophages [112]. Tanshinone I, another main component derived
from Danshen, has been shown to trigger cell cycle arrest in
several breast cancer cells by down-regulating Aurora A gene
expression via the reduction of H3 acetylation levels in the
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Aurora A promoter [113]. In addition to tanshinones, the pri-
mary components, minor components, including tanshindiols,
are currently under investigation for their potential antitumor
ability by targeting epigenetic modifications. Using molecular
docking and an enzyme kinetics approach, Woo et al. [114]
proposed that tanshindiols B and C are potential EZH2 inhib-
itors, resulting in the inhibition of the growth of several cancer
cell lines.

Other Dietary Phytochemicals

In addition to above-mentioned dietary phytochemicals, vari-
ous other natural compounds are currently under investigation
regarding their cancer chemopreventive potential through epi-
genetic modifications. Boswellic acids, a pentacyclic terpe-
noid derived from the plant Boswellia serrata, have long been
used as anti-inflammatory and cancer chemopreventive
agents. Recently, Shen et al. demonstrated that boswellic acids
inhibit DNMT activity and induce genome-wide demethyla-
tion, permitting the restoration of tumor suppressor genes,
such as sterile & motif domain containing 14 (SAMD14)
and sphingomyelin phosphodiesterase 3 (SMPD?3) in colorec-
tal cancer cells [115]. In addition to modulating DNA meth-
ylation, boswellic acids were found to significantly up-
regulate tumor-suppressive miRNAs, such as let-7 and miR-
200, and to modulate the expression of downstream targets in
several colon cancer cells and tumor xenografts in nude mice
[116]. Experimental evidence demonstrated that ursolic acid,
another naturally occurring pentacyclic triterpene, suppresses
proliferation and induces apoptosis in the human glioma cell
line U251 by mediating the miR-21 pathway [117]. A recent
study proposed that the antitumor activity of rosemary extracts
with high contents of phenolic diterpene carnosic acid and
carnosol might involve the up-regulation of glycosyltransfer-
ase 3 (GCNT3) and down-regulation of miR-15b in colon and
pancreatic cancer cells [118].

Conclusions and Perspectives

Great accomplishments have been made in recent years in
advancing our understanding of epigenetic alterations in the
development of cancer. These epigenetic abnormalities are
now believed to exist in all cancer types and drive tumor
progression along with genetic defects. The reversible and
dynamic nature of epigenetic modifications strongly encour-
aged clinicians and pharmaceutical industries to develop epi-
genetic biomarkers and therapeutic targets in cancer diagnosis
and treatment. However, the complexity of epigenetic path-
ways, including the interplay of the different epigenetic mech-
anisms in regulating gene transcription and the genetic muta-
tions in epigenetic regulators, need to be addressed before we
can fully apply our current understanding to the clinical field.

For example, histone modification enzymes such as HDACs
might be abnormally regulated by genetic or DNA methyla-
tion changes in cancer cells. Thus, further systematic studies
may facilitate the development of epigenetic research in
preventing and treating cancer.

The approval of several DNMT and HDAC inhibitors
for clinical use has opened up a new avenue in cancer
therapy. However, it could be reasonably argued that epi-
genetic interventions may be more effective in hematopoi-
etic malignancies than solid malignancies. Factors such as
the microenvironment, epigenetic landscape, drug expo-
sure, and drug metabolism appear to be largely different
in solid tumors than in hematopoietic malignances. How-
ever, more intensive studies regarding these cellular or
epigenetic differences are urgently needed to successfully
apply the concept of epigenetic therapy across a broader
spectrum. Furthermore, adverse effects and a lack of se-
lectivity have hindered the road towards effective epige-
netic therapies. Investigations should be conducted re-
garding whether a selective subset or large numbers of
genes will be influenced by the drugs or phytochemicals
that target epigenetic modifications. Additionally, based
on the crosstalk between genetic and epigenetic mecha-
nisms, combining conventional antitumor drugs with epi-
genetic therapies or dietary phytochemicals that target epi-
genetic mechanisms might be a promising strategy for
reducing toxicity and resistance.

Accumulating evidence indicates that some dietary phyto-
chemicals can modulate epigenetic mechanisms. Here, we
summarized and discussed the latest findings in the past
3 years. Together with numerous reports published more than
3 years ago, it is now clear that these natural compounds hold
great promise in cancer prevention via acting on a variety of
epigenetic targets. However, we should also notice that the
success of epigenetic interventions elicited by phytochemicals
was mostly limited in preclinical models. Thus, future studies
should be carefully designed on the translation of these natural
agents’ effects to prevent human malignancies in clinical set-
tings. Moreover, most phytochemicals have been reported to
influence a wide range of epigenetic regulators. Therefore,
understanding the global patterns of epigenetic modifications
that are induced by phytochemicals will help to optimize strat-
egies to prevent and treat cancer.

In summary, aberrant epigenetic modifications, such as
DNA methylation, histone modifications, and miRNA, add
another layer of complexity to the development of human
cancer. The identification of dietary phytochemicals that mod-
ulate epigenetic modifications offers promising benefits in the
management of human cancer.
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