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Abstract Colorectal cancer is the third major cause of cancer-
related mortality in both men and women worldwide. The ben-
eficial role of n-3 polyunsaturated fatty acids (PUFA) in
preventing colon cancer is substantiated by experimental, epide-
miological, and clinical data. From amechanistic perspective, n-
3 PUFA are pleiotropic and multifaceted with respect to their
molecular mechanisms of action. For example, this class of di-
etary lipid uniquely modulates membrane and nuclear receptors,
sensors/ion channels, andmembrane structure/cytoskeletal func-
tion thereby regulating signaling processes that influence pat-
terns of gene expression and cell phenotype. In addition, n-3
PUFA can synergize with other potential chemoprotective
agents known to reprogram the chromatin landscape, such as
the fermentable fiber product, butyrate. Nutri-epigenomics is an
emerging field of research that is focused on the interaction
between nutrition and epigenetics. Epigenetics refers to a
group of heterogeneous processes that regulate transcription
without changing the DNA coding sequence, ranging from
DNA methylation to histone tail modifications and transcrip-
tion factor activity. One implication of the nutri-epigenome
is that it may be possible to reprogram epigenetic marks

that are associated with increased disease risk by nutritional
or lifestyle interventions. This review will focus on the
nutri-epigenomic role of n-3 PUFA, particularly DHA, as
well as the combinatorial effects of n-3 PUFA and ferment-
able fiber in relation to colon cancer.
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Introduction

Over the past 25 years, hundreds of published papers have
described the effects of polyunsaturated fatty acids (PUFA)
on normal and cancer cell types, including differences between
n-6 and n-3 PUFAwith respect to their mechanisms of action
[1–3, 4•]. From this body of work, there is now mounting
evidence that n-3 PUFA, namely, docosahexaenoic acid
(DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3)
found in fish and algal oils exert anti-inflammatory properties
in the colon, enhance the efficacy of chemotherapeutic drugs,
suppress chronic inflammatory biomarkers associated with
obesity/diabetes, and reduce colon cancer risk [5–10]. The ac-
tions of n-3 PUFA appear to involve multiple mechanisms that
link the cell membrane, cytosol, and the nucleus [4•, 11]. For
example, n-3 PUFAmodulate membrane and nuclear receptors
and sensors/ion channels thereby regulating signaling process-
es that influence patterns of gene expression. These effects
appear to be mediated, in part, via the incorporation of n-3
PUFA into cell membranes [4•, 12]. Moreover, these changes
in membrane composition can affect membrane order, the for-
mation of lipid rafts, and intracellular signaling processes [2].

With respect to the cell nucleus, nutri-epigenomics is an
emerging field of research that is focused on the interaction
between nutrition and the epigenome. Epigenetics refers to a
group of heterogeneous processes that regulate transcription
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without changing the DNA coding sequence. These changes
include not only covalent histone modifications, principally
acetylation and methylation of lysine residues, but also phos-
phorylation and ubiquitination, DNA methylation, transcrip-
tional machinery, and noncoding RNA activities [13–15]. Epi-
genetic marks can exhibit plasticity throughout the life course,
albeit to varying degrees, and can bemodified by environmen-
tal factors including diet [16]. One implication of the interac-
tion between the diet and the epigenome is that it may be
possible to reprogram epigenetic marks that are associated
with increased disease risk by nutritional or lifestyle interven-
tions. This review will focus on the nutri-epigenomic role of
n-3 PUFA, particularly DHA, in relation to colon cancer.

Direct n-3 PUFA Interaction With Nuclear Receptors

DHA and EPA and their oxidative metabolites have been
shown to interact with specific ligand-dependent nuclear re-
ceptors including CAR, HNF4A, PPARG, PXR, and RXRA

(Fig. 1) [17]. In this fashion, n-3 PUFA regulate the function of
nuclear receptors and their impact on transcriptional processes.
For example, DHA-bound PPARG can be transported to the
nucleus where it controls energy balance by regulating fatty
acid homeostasis in part via enhancing the expression of genes
associated with membrane-bound fatty acid transporting pro-
teins and β-oxidation of fatty acids in peroxisomes and mito-
chondria [18]. Interestingly, impaired expression and function
of PPARG is associated with inflammatory bowel diseases
(IBD) and colon cancer [19, 20]. RXRA, which is implicated
in cancer chemoprevention, also preferentially binds to n-3
PUFA in colonocytes [21]. Activation of PPARG as well as
heterodimers formed with RXR play an important role in the
antitumor effects of n-3 PUFAs [19].

LXRs are transcriptional regulators of cholesterol metabo-
lism that control cholesterol uptake into cells, catabolism, and
efflux [22]. This is noteworthy because cholesterol can control
cell proliferation, and disruptions in cholesterol metabolism
have been associated with the development of colon cancer
[23–25]. LXRs also function by heterodimerizing with RXRA

Fig. 1 Epigenetic effects of n-3 PUFA in the colon, intestinal genes that
are up- or downregulated by n-3 PUFA at the mRNA and protein levels.
Red font represents gene upregulation, and blue font indicates gene

downregulation. Epigenetic levels of regulation in the nucleus are
underlined Nuclear genes are grouped by classification
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and binding to direct repeats with four nucleotide spacers (DR4
elements), termed LXR response elements (LXREs), in the
promoter regions of target genes [22]. Interestingly, n-3 PUFA
activated LXRα blocks proliferation of human colorectal can-
cer cells and slows the growth of xenograft tumors inmice [26].

PXR (NR1I2) has been shown to regulate the expression of
genes involved in the oxidation, conjugation, and the transport
of xenobiotics and promotes the metabolism, elimination, and
detoxification of chemotherapeutic agents [27]. The transcrip-
tion of PXR increases in the presence of n-3 PUFA [28]. This
is noteworthy because PXR can suppress the proliferation and
tumorigenicity of colon cancer cells [29]. CAR (NR1I3) is
likewise transcriptionally increased by n-3 PUFAs in epitheli-
al colorectal adenocarcinoma cells and similarly regulates
genes involved in xenobiotic detoxification and energy ho-
meostasis [28].

HNF4Amaintains epithelial cell function and normal colon
physiology via regulation of the balance between proliferation
and differentiation, immune function, ion transport, epithelial
barrier function, and oxidative stress [30, 31]. P1-, but not P2-
HNF4A, expression is lost in colorectal carcinomas in
humans, and it is predicted that treatments that increase nucle-
ar P1-HNF4α protein levels, such as n-3 PUFA, could help
slow colon cancer progression [32, 33].

Indirect DHA Regulation of Transcription Factors

Since the original description of dietary fat as a regulator of
gene expression over a decade ago, many transcription factors
have been identified as prospective indirect targets for n-3
PUFA regulation. For example, DHA can increase the activity
of CREBBP, EP300, and MYC and decrease the activity of
NF-kB (NFKB1) and STAT3 [17]. However, DHA does not
directly bind to this class of transcription factors. With respect
to colon cancer, DHA exhibits a protective suppressive effect
against hyperactivated STAT3 and may reestablish the equi-
librium between STAT3 and PPARG [34]. The ability to de-
crease STAT3 activity may be associated with the ability of n-
3 PUFA ligands to trigger PPARG-RXR heterodimers to lo-
calize at their cognate PPAR response elements (PPREs) and
exchange corepressors for coactivators such as cyclic AMP
response element binding protein (CREB) and p300 [20].

The cytotoxic effects of DHA are also associated with sig-
naling pathways involving lipid metabolism and endoplasmic
reticulum (ER) stress. DHA induced depletion of free choles-
terol in the ER can lead to ER stress, resulting in the growth
arrest/apoptosis of metastatic tumor cells [35]. It has been
suggested that these alterations in the sterol content of the
ER by DHA mediate growth reduction partly by downregu-
lating nuclear SREBP, an important manager of lipid homeo-
stasis and cell growth regulation [36]. Induction of ER stress
mediators by DHA also promotes expression of the kinase

PERK, which in turn promotes translation of transcription
factors ATF3, 4, and 6 [35]. Furthermore, an elevation in
PERK activity can increase levels of ER protein GADD34
(PPP1R15A) and the proapoptotic transcription factor DDIT3
(CHOP) along with its downstream target TRIB3 [37]. The
experimental details associated with differentially expressed
target genes are described in Table 1.

Colon adenocarcinomas exhibit defective expression of the
adenomatous polyposis coli (APC) gene, which is a critical reg-
ulator of the Wnt signaling pathway. This and other develop-
mental pathways play an important role in both genetic (familial)
and sporadic epithelial cancers [38]. From a chemoprevention
perspective, in vivo studies demonstrate that fish oil-derived n-3
PUFA suppress the formation of intestinal tumors in mice and
humans with a defective APC allele [39, 40]. The downstream
APC signaling oncogene,MYC, is an important regulator of cell
proliferation, and the lack of MYC expression is associated with
a reduced number of intestinal adenomas [41]. Interestingly,
patients with an amplified MYC gene and wild type p53 have
a greater response to anticancer therapies [42]. In colon cancer
cells, DHA increases the level of MYC, which is believed to
induce a chemoprotective, proapoptotic phenotype [43].

NF-kB activity can be inhibited by DHA [44]. This is rel-
evant because NF-kB mediates signaling pathways that con-
trol the transcriptional activation of genes important for the
regulation of many cellular processes and is aberrantly acti-
vated in many types of cancer [45, 46]. n-3 PUFA treatment
inhibits the expression and activity of NF-kB in many cell
types; however, the exact mechanism is not fully understood
[37]. This has implications in chronic disease management
because the DHA-mediated decrease in NF-kB activity has
been shown to sensitize tumor cells to gamma-irradiation
and promote the induction of apoptosis [19].

DHA-mediated Modulation of Apoptosis Regulatory
Pathways

It has been demonstrated that DHA contributes to the down-
regulation of BCL2, a well-known antiapoptotic molecule
[47], which can block lipid peroxidation and thus apoptosis
induction. Additionally, DHA induces caspase-dependent ap-
optosis in colon adenocarcinoma cells and adenoma cells [48].
There is also evidence of upregulation of CASP4 and CASP7
[35] along with increased activation of the intrinsic apoptotic
pathway as demonstrated by CASP9 and Bid cleavage [48].
CASP4 activation may also be linked to augmented expres-
sion of ER resident factor ERdj5 and downregulation of
antiapoptotic GRP78 [49]. The major involvement of the in-
trinsic apoptotic pathway following DHA treatment is through
increased expression and activation of BAX and BAK [37],
depolarization of the mitochondrial membrane, and the sub-
sequent release of cytochrome c and Smac/Diablo into the
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cytosol [50]. Once these factors are released from mitochon-
dria, apoptosis is accelerated [51]. These findings have been
confirmed both in vitro [52] as well as in vivo [53].

n-3 PUFA can also act as efficient modulators of both the
level and activity of endogenous caspase inhibitors. For ex-
ample, DHA and EPA decrease XIAP (an X-linked inhibitor
of apoptosis protein) at both the protein and mRNA levels,
which may in part explain their antineoplastic effects [50].
High XIAP expression correlates with poor clinical outcome
and resistance to chemotherapy and radiotherapy in different
colon cancer cell lines [50]. DHA also downregulates
mRNA and protein levels of two other inhibitors of apo-
ptosis, survivin (BIRC5), and livin (BIRC7) in cancer cells
[37]. Furthermore, the immediate and dramatic downregu-
lation of FLIP (CFLAR), a potent inhibitor of caspase-8
(CASP8) activation, appears to be linked to the induction
of apoptosis in colon cancer cells following DHA and
EPA supplementation [50].

DHA can inhibit the expression of antioxidant enzymes or
deplete cells of antioxidants [54]. It has also been suggested
that DHA may have anti-inflammatory/proapoptotic effects in
colon cancer cell lines by inhibiting the expression and activity
of a key rate-limiting cyclooxygenase enzyme, COX-2 [55].
This is noteworthy because COX-2 is often overexpressed in
colon tumors and is able to confer a pro-inflammatory niche,
which contributes to epithelial cell resistance to apoptosis [56,
57]. Activation of NF-kB and the PPAR-BCL2 feedback loop
may control the life-death continuum in colon cells and has
been associated with the expression of COX-2 [56].
Chemoprotective suppression of the activation of NF-kB by
DHA reduces the production of pro-proliferative eicosanoids
produced by COX-2 [58]. Moreover, DHA may suppress tu-
mor cell growth directly by inhibition of the COX-2 derived
metabolite, PGE2, which stimulates cell proliferation and sup-
presses apoptosis [57]. However, it is possible that DHA may
also act via mechanisms independent of COX-2 inhibition [59]
because suppression of tumor growth also occurs in cell lines
that do not express COX at the protein level. Moreover, the
growth of these cells in culture and in nude mice is not affected
by overexpression of COX-1 or COX-2 [60]. Additional
DHA-dependent proapoptotic mechanisms impacting colon
adenocarcinomas include the upregulation of several growth
arrest DNA-damage-inducible proteins such as GADD445A
and GADD45B, likely through the stimulation of p38
MAPK phosphorylation [37].

Modulation of Cytokines and Growth Factors

Cytokines, including IL1β, IL2, IL4, IFNγ, and TNFα in-
crease in the early stages of carcinogenesis. n-3 PUFA sup-
pression of NF-kB activity is at least partly responsible for the
reduction in cytokine levels, including IL2, IL4, IFNγ, TNFα,T
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IL6, and IL1β [61, 62]. These cytokines (IL1β, TGFβ,
TNFα, and IL6) further regulate transcription factor, e.g.,
HNF4A, function through modulation of proteosomal degra-
dation, DNA binding affinity, transcriptional activity, and co-
factor interaction [63•]. Thus, n-3 PUFA cytokine regulatory
control can extend to ion transport, epithelial barrier function,
and oxidative stress via effects on this transcription factor.

The protective role of n-3 PUFA can also be attributed to an
increase in the expression of TGFβ through inhibition of the
Akt pathway in intestinal epithelial cells [64] and fat-1 trans-
genic mice [65]. This is noteworthy because the reduction of
TGFβ expression increases chemical-induced colon carcino-
genesis [66]. Furthermore, both EPA and DHA decrease the
growth of colon tumors by reducing VEGF and TNFα expres-
sion through inhibition of ERK1/2 phosphorylation and
hypoxia-induced factor HIF1α protein expression [67].

Effects of DHA on the Cell Cycle

There is some evidence that DHA has a selective dose-
dependent growth inhibitory effect on colon cancer but not
normal colonic cells [68]. Several key genes involved in the
regulation of both the G1 and G2 phases of the cell cycle are
affected by DHA treatment in colon cancer. Generally, mole-
cules involved in cell cycle progression, such as Cdc25c,
Cdc25b, Cdc20, CDK1, CDK2, and cyclins D, A, and B, are
downregulated [37] by DHA incubation as compared to con-
trol. In comparison, genes involved in cell cycle arrest such as
cyclin-dependent kinase inhibitors (CDKN1A, CDKN1B,
CDKN1C, CDKN2A) and stratifin are upregulated by DHA
[69]. Some studies additionally show that activated PXR in-
hibits the proliferation and tumorigenicity of colon cancer cells
by targeting the cell cycle at the G(0)/G(1) cell phase via mod-
ulation of the p21 (WAF1/CIP1) and E2F/Rb signaling path-
ways [29]. In addition, in some cell contexts, DHA induces cell
cycle arrest and downregulates the nuclear form of sterol regu-
latory element-binding proteins (SREBP1 and 2) in colon can-
cer cell lines, indicating a possible relationship between distur-
bances in lipid homeostasis and cell cycle arrest [35, 36, 43].
While a large number of mechanisms are linked to DHA anti-
proliferative effects in cancer, several reports have focused on
whether p53 protein plays a role in DHA-induced growth inhi-
bition. DHA inhibits the growth of p53-wildtype colon cell
lines as well as of those with inactivating p53 mutations; thus,
its action does not seem to be dependent on p53 status [43].

Optimal Chemoprevention: Interaction of DHAWith
Butyrate

It has been proposed by us and others that n-3 PUFA and
butyrate (fiber fermentation product) interact in the colon to

profoundly suppress colon cancer [70–72]. Interaction of die-
tary fiber-derived compounds in the colonic lumen can have a
substantial impact on the metabolism and kinetics of the colon
epithelial cell population and suppress inflammation and neo-
plasia [73–75]. For example, butyrate, a four-carbon short-
chain fatty acid, is produced during anaerobic fermentation
of dietary fiber by endogenous bacteria present in the colon.
This agent has pleiotropic effects in the colon [76, 77]. It acts as
a principal energy source and a survival factor for normal colon
cells, whereas it exerts antiproliferative and differentiation- and
apoptosis-inducing effects in cancer cells [78]. In addition to the
regulation of basic cytokinetic processes, butyrate has also been
shown to affect cell adhesion, morphology, invasiveness, metas-
tasis, oxidative metabolism, angiogenesis, and the activity of
different enzymes and transcription factors. These effects are
linked in part to butyrate’s function as a histone deacetylase
inhibitor, which mechanistically links it to gene expression [79].

Studies published by our group describe the protective ef-
fects of fish oil containing DHA, compared to corn oil and its
interaction with fiber using rat and mouse model colon carci-
nogenesis models [2, 6]. These data demonstrate that the com-
bination of n-3 PUFA and butyrate (fermentable fiber) treat-
ment maximally enhances cell cycle arrest, by inhibiting ex-
pression of cell cycle genes (Table 1), shifting the balance
between differentiation and apoptosis depending on the cell
transformation status of the model [75, 80, 81]. These findings
demonstrate that dietary n-3 PUFA and fermentable fiber can
act synergistically to protect against colon carcinogenesis pri-
marily by enhancing the deletion of DNA-damaged cells [57,
71, 72, 82, 83].

Temporal gene expression profiles from exfoliated rat
colonocytes have revealed at the cancer initiation stage that
fish oil plus fermentable fiber (FO/F) downregulates the ex-
pression of genes involved with cell adhesion and enhances
apoptosis compared to the non-chemoprotective control of
corn oil plus cellulose (CO/C) [80]. In addition, at the cancer
progression stage, the expression of genes involved in cell
cycle promotion is downregulated while DNA mismatch re-
pair genes, MGMT and PMS2, are upregulated. FO/F also
increases apoptosis and the expression of genes that promote
apoptosis at the tumor stage [80]. The chemoprotective gene
profiles at the tumor stage include the upregulation of the
proapoptotic inhibitor of DNA binding ID3 and tumor sup-
pressors BRMS1 and RBBP6, downregulation of
antiapoptotic genes HGF and TMMEM23, and downregula-
tion of cytokine signaling, IL23A and receptor IL6RA [80].
Signal transduction-related genes such as MAPK, DUPD1
and PPP1R7, and calcium signaling receptor SLC8A1 were
also downregulated [80]. In addition, the chemotherapeutic
effect of the FO/F dietary extends to translational activation
of the xenobiotic metabolizing phase I enzyme EPHX2 and
tumor suppressor retinoblastoma-associated protein RB1.
These novel findings demonstrate that the effects of the
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chemotherapeutic (FO/F) diet on epithelial cell gene expres-
sion can be monitored noninvasively throughout the tumori-
genic process by analysis of exfoliated colonocytes.

Combinatorial Effects of n-3 PUFA and Fermentable
Fiber on Non-Coding microRNAs

High throughput microRNA (miRNA) profiling studies have
linked aberrant expression of miRNAs to the development of
colon cancer [84, 85]. Dysregulation of miRNA editing has
been linked to aberrant epidermal growth factor receptor
(EGFR) signaling, which interacts with argonaute 2
(AGO2), thereby perturbing miRNA processing from precur-
sor to mature miRNAs [86, 87]. The fact that DHA antago-
nizes EGFR in cancer cells by increasing receptor internaliza-
tion and degradation [88] implicates a potential regulatory
molecular mechanism involving fish oil and miRNAs. Further
study is needed to validate this epigenetic mechanism of
action.

Recently, the effects of colon carcinogen and the combina-
tion of dietary fish oil and fermentable fiber (pectin) on rodent
microRNA expression during the early stages of colon tumor-
igenesis have been examined [11, 89]. miRNAs modulated by
fish oil in colon cancer in both human and rodent models have
also been reported [11, 89, 90•]. Specific miRNAs influenced
by fish oil treatment or the highly chemoprotective combina-
tion of fish oil and pectin diet are summarized with respect to
their validated mRNA target genes in Table 1. miR-18a, miR-
27b, miR-30c, miR-93, miR-141, miR-200c, and miR-497
were increased by fish oil feeding, while miR-21 was de-
creased compared to control diet [91]. This is noteworthy
because miR-21 is a well-known “oncogenic” miRNA, and
its validated targets PDCD4 and PTEN are known tumor sup-
pressor genes [92–94]. In comparison, miR-19b, miR-26b,
and miR-203 were increased by fish oil and pectin combina-
tion feeding compared to control diet (corn oil plus cellulose
diet) [11]. This is noteworthy because their validated targets,
HIPK3, ARID4B, ARPC3, LEF1, RUNX1, CXCL12,
TRP63, and ZFP281, are known to promote tumorigenesis.

Conclusion

n-3 PUFA are an ideal colon cancer chemotherapeutic because
(1) they are toxicologically innocuous and free of safety prob-
lems intrinsic to drugs administered over long periods of time,
(2) they are relatively inexpensive, and (3) they provide addi-
tional health benefits, such as reduction in mortality [40, 95,
96]. In addition, the ingestion of n-3 PUFAwith other agents
such as fermentable fiber and curcumin may improve their
efficacy in colon cancer prevention/therapy [97–99].

From an epigenetic perspective, there is still much to be
discovered in terms of the effects of n-3 PUFA in the colon at
the chromatin state level. From a chemoprevention perspec-
tive, not only can dietary choices modify the epigenome but
also intimate knowledge of the mechanisms involved could
help tailor nutritional intervention to specific individuals.
Along these lines, recent work has begun to focus on n-3
PUFA effects on DNA methylation with respect to colon can-
cer risk [100•, 101]. Although a substantial body of work
exists regarding the effects of n-3 PUFA on cytokines and
the resolution of chronic inflammation, studies addressing
the specifics of these effects in terms of colon cancer cells
are limited [61, 62, 64, 67]. In the future, personalized chemo-
prevention will be based on individual nutritional require-
ments and susceptibility to disease, including anatomical con-
siderations such as differences in proximal versus distal co-
lonic tumorigenesis [15, 102].

As discussed in this review, the breadth of n-3 PUFA ef-
fects on epigenetic regulation in colon cancer is wide and
complex. As described in Table 1 and furthermore illustrated
in Fig. 1, a wide array of potential pathways, molecular inter-
actions, and mechanisms are modulated by n-3 PUFA. An
interesting future frontier will be the pursuit of epigenetic
molecular complexes targeted by chemoprotective n-3 PUFA
in combination with fiber.
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