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ABSTRACT

Introduction: EVI1 (MECOM)-positive acute
myeloid leukemia (AML) cells have shown
in vitro sensitivity to all-trans-retinoic acid
(ATRA) by inducing differentiation, cell death,
and decreased leukemic engraftment.

Methods: In this pilot study, we investigated
the response to ATRA in 13 high-risk AML
patients with overexpression of EVII.

Results: Seven of the 13 patients (53.8%)
achieved complete remission (CR), and
response can be combined with a decreased of
the leukemia stem cell pool.

Conclusion: These primary results tend to
confirm in vitro results and suggest that
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addition of ATRA might be of benefit in the
treatment of patients with EVI1-positive AML.
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INTRODUCTION

Acute myeloid leukemia (AML) is the predomi-
nant acute leukemia among adults, character-
ized by an accumulation of malignant
immature myeloid precursors. It represents a
heterogeneous group of diseases with different
responses to treatment, which can be separated
by genetic abnormalities [1]. The MECOM locus
in chromosome band 3q26.2 gives rise to two
major mRNA and protein species, EVI] and
MDS1/EVI1, of which the former has been
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characterized for more extensively. The eco-
tropic viral integration site 1 (EVII) gene is a
proto-oncogene that encodes a zinc-finger
DNA-binding protein previously detected in
some AML and myelodysplastic syndromes
(MDS) [2, 3], but not in normal marrow and
cord blood cells. Enhanced expression of EVII is
associated with a very poor disease outcome
[4, 5], despite allogeneic hematopoietic stem
cell transplantation [6]. Experimental studies
suggest EVI1 blocks cellular differentiation by
binding to GATA-1 or other specific DNA
sequences controlling gene expression, and may
be involved in the pathogenesis of some AMLs
[7]. EVI1 influences transcription regulation in
response to the myeloid differentiation induc-
ing agent, all-trans-retinoic acid (ATRA) [8]. The
EVI1 gene is consistently expressed in acute
promyelocytic leukemia (APL) cells either con-
stitutively or after ATRA therapy [9]. ATRA reg-
ulates EVII1 expression in blood cells [8].

ATRA is the paradigm of treatment in APL
[10]. In addition to allowing transcriptomic
activity downstream of retinoid receptor alpha
(RARa), ATRA allows its degradation and acts on
the pool of leukemic stem cells (LSCs) [11].
Because treatment of APL patients with ATRA is
very successful, it has been hypothesize that
ATRA might also be effective in treatment of
other AML subtypes. Several clinical trials have
already evaluated the combination of
chemotherapy with ATRA in non-APL AMLs.
Large randomized trials failed to observe an
advantage to adding ATRA to induction
chemotherapy [12-16]. Conversely, the ULM
Study Group demonstrated an advantage to
receiving ATRA with induction chemotherapy
[17], and explorative subgroup analyses
revealed better survival for genetic low-risk
patients according to European LeukemiaNet
(ELN) recommendations [18].

Several recent studies have shown that ATRA
may efficiently drive leukemic cells into differ-
entiation and/or apoptosis in a subset of AML
patients with an NPM1 mutation [19], a FLT3-
ITD [20, 21], and/or an IDH-1 mutation [22].
Furthermore, it was recently demonstrated that
enhanced expression of EVII in HL60 cells
increased the response to ATRA, that the pro-
tein GDF1S5 is part of the ATRA-induced cell

cycle block [8], and that the in vitro part of the
EVII1-positive cases are sensitive to ATRA by
inducing differentiation and cell death and
decreasing leukemic engraftment [23].

Here, we retrospectively reviewed the
response to ATRA of 13 high-risk AML patients
with overexpression of EVII. Our results
showed that responses can be obtained and
suggest that addition of ATRA to leukemia
treatment might increase complete response
(CR) rates or prevent relapses in EVII-positive
AML patients.

METHODS

Between February 2016 and January 2017, 13
consecutive patients with high-risk AML pre-
senting EVI1 abnormalities were treated by
ATRA. High-risk AML patients were defined
either as AML patients in front-line therapy
considered unfit for intensive chemotherapy, or
as relapsed/refractory AML patients unfit for
intensive treatment and/or who relapsed after
allogeneic stem cell transplantation (ASCT) or
after treatment for secondary AML. ATRA was
given at 45mg/m?/day for two consecutive
weeks each month and was administered ini-
tially either alone (3 patients) or combined with
low-dose cytarabine (20 mg/day for 10 consec-
utive days with cycles of 28 days) (1 patient),
azacitidine (75 mg/m?/day for 7 consecutive
days with cycles of 28 days) (4 patients), gem-
tuzumab ozogamicin (3 mg/m?/day on days 1,
4, and 7) (1 patient), or 6-mercaptopurine
(50-100 mg/day) in association with low-dose
methotrexate (10-15 mg/week) (4 patients),
according to patient situation. Combination
therapy was decided according to patient
physical condition and patient past therapeutic
history. Informed consent was obtained from all
patients. The study was approved by the review
board protocol of the Hospices Civils de Lyon
and conducted in accordance with the Decla-
ration of Helsinki.

Results for cytogenetic analysis were avail-
able in 12 patients and were classified according
to the ELN recommendations [1]. RNA isolation
and EVI1 real-time quantitative polymerase
chain reaction (RQ-PCR) conditions for study of
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EVI1 overexpression were considered as previ-
ously recommended [4]. The 3926 amplified cell
line SKOV3 overexpressing EVI1 served as a
calibrator for quantification. Only standard
curves established by serial dilutions of SKOV3
cDNA aliquots with correlation coefficients lar-
ger than 0.9 were taken into account. Equal
amplification efficiencies of target and reference
genes in both EVI1 samples and SKOV3 at dif-
ferent cDNA concentrations were considered.
The relative EVII expression was calculated
using the delta-delta CT method. EVII expres-
sion levels were dichotomized based on a cut-off
of 0.1 relative to SKOV3. In all patients, no
other molecular abnormalities were detected
among biological markers systematically inves-
tigated at the time of diagnosis or relapse
(NPM1, FLT3-ITD, FLT3-TKD, IDH1/2).

Response to therapy was evaluated by bone
marrow (BM) aspirates. In responding patients,
cytological analysis was completed by minimal
residual disease (MRD) monitoring using mul-
tiparametric flow cytometry immunopheno-
typing and/or molecular biology as previously
described [24]. Descriptive statistics were used
to characterize patients and their disease.

RESULTS

Patient characteristics at the time inclusion are
reported in Table 1. Their outcomes are sum-
marized in Table 2. The median age was 65 years
(range 49-81). Three of the 13 patients were
newly diagnosed. All other patients had previ-
ously received one line (8 patients) or two lines
of treatment including anthracycline plus
cytarabine-based intensive chemotherapy (8
patients) eventually followed by ASCT (2
patients), or low-intensity therapy with cycles
of hypomethylating agents (2 patients). Most of
the patients presented with morphological signs
of cytologic dysplasia, of which five had sec-
ondary AML. At the time of inclusion, Eastern
Cooperative Oncology Group (ECOG) perfor-
mance status (PS) was > 2 in six patients.
Regarding cytogenetics, five patients displayed a
normal karyotype, while seven had unfavor-
able-risk cytogenetics and one had cytogenetic
failure.

Six patients did not achieve CR (Fig. 1a). Five
(#1, #3, #8, #9, #10) died within 5 months fol-
lowing treatment initiation (median 3 months;
range 1-5). One (#12) is still alive after 1.5 year
with sequences of treatment (patient decision)
using ATRA alone and then ATRA plus azaciti-
dine. Among those six non-responding
patients, three died before any evaluation could
be performed, but three were evaluated for
response: two patients (#3 and #12) showed
decreased bone marrow blast infiltration after
5 months and 3 months of treatment, respec-
tively, and one patient (#1) showed a decreased
peripheral blast percentage, from 63 to 18%,
after 1 month of therapy.

Seven patients achieved CR (Fig. 1b). Almost
all of them had an initial low bone marrow
leukemic burden (median 10%; range 5-55%).
Patient #2, who maintained for a while a low
minimal residual disease (MRD) on ATRA plus
gemtuzumab ozogamicin and then ATRA alone,
achieved, after a frank relapse, a cytological CR
with four cycles of ATRA plus azacitidine.
Patient #4 achieved CR after four cycles of ATRA
plus low-dose cytarabine, while three patients
(#5, #6, #13) obtained CR after 2-6 cycles on
ATRA plus azacitidine, and one patient (#7)
after 2 months on ATRA plus 6-mercaptopurine
and methotrexate. Molecular remission was
achieved in two patients (#4, #5) after treatment
for 11 months and 6 months, respectively. At
the time of analysis, four patients (#6, #7, #11,
#13) had relapsed, two of which after stopping
treatment because of major cutaneous rash (#7)
or by patient decision (#13). Three patients (#2,
#4, #5) are still in continuous CR, although
treatment was stopped in two of them.

Overall, treatment was well tolerated. Toxi-
city attributed to ATRA only included cuta-
neous rash (grade 3) in one patient (#7) and
cutaneous and mucosal dryness (grade 2) in
another patient (#2).

Multicolor/multidimensional flow cytome-
try was used to characterize the different leu-
kemia compartments and evaluate the
importance of the immature CD34"CD38™ cell
population compared to the more mature
CD34*"CD38'°" and CD34*CD38" leukemic cell
subpopulations. Although the LSC population
is neither uniform nor static within individual
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Table 1 Patient characteristics at the time of inclusion

Patient Age/sex/ AML subtype Cytogenetics Prior therapy
PS
#1 79y/F/2  Undifferentiated with Failure None
myelofibrosis
#2 67y/M/1  AML-1 with multilineage Normal Ist line: IC + conso
dysplasia 2nd line: IC + ASCT
#3 52y/M/1  Secondary AML (NHL) Inv(3), — 7, +Y Ist line: IC 4 conso
#4 46y/M/1  AML-0 Normal Ist line: IC + salvage
#5 48y/F/2  Secondary AML (MDS) with Failure Ist line: IC + ASCT
myelofibrosis
#6 60y/M/0  AML-0 Normal Ist line: IC 4+ conso + maint
(ATRA, 6 MP, MTX)
#7 73y/M/1 AML-2 Ist line: LD-AraC
2nd line: anti-Bcl2
#3 65y/M/3  Secondary AML (polycythemia Inv(3), Abn 12 Ist line: guadecitabine
vera)
#9 44y/F/2  Secondary AML Complex Ist line: IC 4+ conso
#10 81ly/M/2 AML-5 del(3), del(5), del(7), — 4, None
- 11, - 17
#11 70y/F/1  Secondary AML (CMML) Normal Ist line: IC + conso
(molecular relapse)
#12 62y/M/1  Secondary AML (MDS) Normal Ist line: azacitidine
#13 68y/M/2  Undifferentiated with atypical Inv(3), 7q” None

mast cell component

6MP 6-mercaptopurine, AML acute myeloid leukemia, ASCT allogeneic stem cell transplantation, ATRA all-trans-retinoic
acid, CMML chronic myelomonocytic leukemia, conso consolidations, F female, IC intensive chemotherapy, LD-AraC low-
dose cytarabine, NHL non-Hodgkin lymphoma, M male, maint maintenance, MDS myelodysplastic syndrome, MTX

methotrexate, Pt patient, PS performance status, y years

patients, the CD34"CD38~ cell population,
which certainly remains enriched in leukemia
cells with self-renewal capacities, decreased sig-
nificantly in patients responding to ATRA
therapy (Fig. 2).

DISCUSSION

Enhanced expression of EVI1 (MECOM) occurs
in approximately 10% of AML patients and is

associated with a very poor disease outcome.
Here we show that, despite treatments and
patient heterogeneity, a substantial part of
EVI1-positive AML patients can respond to
ATRA therapy. These first clinical results tend to
confirm the potential efficacy of ATRA-based
therapy with an induction of differentiation
and a significant reduction of survival previ-
ously described in leukemic cells from patients
with EVII overexpression [23]. In mice models,
ATRA treatment was also associated with less
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Table 2 Patient outcomes

Pt Treatment Response to therapy (0N

#1 ATRA + 6MP + MTX No CR 3 months

#2° ATRA + GO | MRD 30 months+
ATRA No CR
ATRA + azacitidine CR with MRD-neg

#3 ATRA + azacitidine No CR 6 months

#4° ATRA + LD-AraC CR 27 months+
Then ATRA as maintenance CR with MRD-neg

#5 ATRA + azacitidine CR with MRD-neg 18 months+

#6 ATRA + azacitidine CR with MRD-neg 14 months+

#7 ATRA + 6MP + MTX CR 17 months

#8 ATRA + 6MP + MTX No CR 1 month

#9 ATRA No CR 3 months

#10 ATRA + 6MP + MTX No CR 1 month

#11° ATRA CR 22 months+
ATRA + azacitidine CR

#12¢ ATRA No CR 18 months-+
ATRA + azacitidine No CR

#13¢ ATRA + azacitidine CR 12 months
ATRA + azacitidine No CR

6-MP 6-mercaptopurine, ATRA all-trans-retinoic acid, CR complete remission, GO gemtuzumab ozogamicin, LD-AraC
low-dose cytarabine, MRD minimal residual disease, MRD-neg MRD-negative, MTX methotrexate, OS overall survival

® Patient #2 received a combination of ATRA with GO followed by ATRA alone (45 mg/m?/day for two consecutive
weeks each month), while in morphological CR, because of persistence of MRD positivicy. MRD (determined by flow
cytometry) significantly decreased after 2 months of treatment. ATRA alone was resumed 6 months later after MRD
increased again, followed by treatment with combination ATRA plus azacitidine after morphological relapse. This com-
bination allowed CR achievement after four cycles then molecular remission after 13 cycles

b Patient #4 achieved morphological CR with the ATRA plus LD-AraC combination. He then received ATRA alone
(45 mg/m*/day for two consecutive weeks each month) as maintenance therapy and achieved molecular remission (de-
termined by flow cytometry)

¢ Patient #11 achieved morphological remission after 3 months of treatment with ATRA alone. After relapse, she received
ATRA plus azacitidine and achieved a new morphological CR after four cycles

4 Patient #12 failed to achieve response with ATRA alone and then after combining ATRA with azacitidine

¢ Patient #13 achieved morphological CR after two cycles of ATRA plus azacitidine then decided to stop the treatment.
After relapse, the combination ATRA plus azacitidine did not allow CR achievement

leukemic engraftment suggesting a decreased and has been shown to reinforce the ATRA
clonogenic capacity with a direct effect of ATRA response in the majority of AML cases [8]. In the
on LSCs overexpressing EVI1 [23]. EVII is able present study, we showed that ATRA alone or
to modulate the ATRA response of several genes, combined with various other treatments could
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«Fig. 1 Evolution on ATRA therapy in patients who did
not achieve CR (a) and in patients who achieved CR (b).
6MP 6-mercaptopurine, AE adverse event, A7aC low-dose
cytarabine, ATRA all-trans-retinoic acid, Aza azacitidine,
BM bone marrow, chemo chemotherapy, Chim chimerism,
CR morphological complete remission, flow flow cytom-
etry, GO gemtuzumab ozogamicin, GvH graft-versus-host
reaction, MRD minimal residual disease, MTX methotrex-
ate, neg negative, PeglFN peginterferon, PB peripheral
blood, PD patient decision, Pt patient

have a beneficial effect in AML patients with
overexpression of EVI1. CR and even molecular
remission were obtained in patients with unfa-
vorable prognostic factors (age, comorbidities,
unfavorable cytogenetics, prior therapeutic
lines). All patients were considered high-risk
and primary unfit for intensive chemotherapy
or secondary unfit after having received one or
two lines of intensive or low-intensity therapy.
These complete responses were mainly obtained

in patients with a low leukemic burden. Only
one patient with initially more than 50% of
bone marrow blasts achieved CR. However,
most of responses were short. This could be
likely attributed to a suboptimal therapy, poor
treatment compliance in a generally frail
patient population and/or to a lost treatment
efficacy after repeated treatment administra-
tions. Overexpression of EVII is associated with
a poor prognosis in AML probably due to its
important role in the maintenance of LSCs [25].
Because of their quiescent state LSCs are not
targeted by any antimitotic chemotherapy, and
are at the origin of relapses conferring a poor
outcome [26]. Targeting LSCs remains a main
challenge in the treatment of AML. In APL, the
association of ATRA with arsenic trioxide has
demonstrated an LSC pool exhaustion [27] and
is thereby able to cure most of the patients [28].
In our study, multiparameter flow cytometry
analysis tended to show a diminution of the
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Fig. 2 Strategy used for gating the blast cell population
and CD34"CD38 cell subpopulations [red: immature
CD45°"/SSC blast cells; blue: CD34" cells, green:
lymphocytes, blue cyan: monocytes, violet: granulocytes,
black: CD45™ cells (erythroblasts)]; CD34" cells were
then separated into different stem cell fractions based on
their CD38 antigen expression: a first cell population

expressing a large amount of the CD34 antigen and lack of

CD38 (CD347CD387) (yellow), a second cell population

characterized by a large amount of CD34 anti%cn and by a
low density of CD38 antigen (CD34"CD38"°") (green),
and a third cell population characterized by a high density
of CD38 antigen and of CD34 antigen (CD347CD38™)
(blue). Blast cell morphology and immunostaining in
patient #7 before ATRA introduction (55% of bone
marrow blasts) (a), and after 2 months of ATRA therapy
(< 5% blasts on bone marrow smears and MRD at 6%
detected by flow cytometry) (b)
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LSC pool, indicating that ATRA might act by
targeting LSCs. Although no morphological cell
differentiation was observed under ATRA ther-
apy, response to therapy was accompanied in
immunostaining by a massive expression of
CD38, which is known as a regulator of induced
cell differentiation and growth arrest [29].
However, complementary treatment strategies
are required to improve ATRA responsiveness in
EVI1-positive AML. Recently, a combined effect
of ATRA and bromodomain inhibitor JQ1 has
been demonstrated on non-APL AML cells with
a synergistic growth inhibition resulting from
differentiation or apoptosis [30]. Similarly,
inhibition of the SUMO pathway appeared as a
promising strategy to sensitize patients with
non-APL AML to retinoids [31], and the com-
bination of ATRA with the anti-CD38 daratu-
mumab to increase cytotoxicity among AML
blasts in vitro and overall survival in murine
engraftment models of AML [32]. Preliminary
studies have suggested that the epigenetic and
transcriptional state of leukemia cells determi-
nes their susceptibility to ATRA [33]. LSCs are in
a different epigenetic state than the total bulk of
the AML. Inhibitors of epigenetic-modifying
enzymes might sensitize AML cells to ATRA
therapy by driving these LSCs to maturity [34].
Hypermethylation of the promoter RARo is
common in AML and causes a decrease in its
expression [35]. EVII-positive AML patients
have been shown with a distinct methylation
profile [36] and downregulation of EVII results
in epigenetic alterations [37]. Therefore, the
association of ATRA and demethylating agents
seems logical and could be synergistic in the
AML with overexpression of EVII.

Although promising, results of our retro-
spective study should be interpreted with cau-
tion. There are first several important
limitations mainly due to the small number of
patients and the heterogeneity of combination
therapies. Secondly, some drugs used in com-
bination with ATRA have previously been
shown to be effective in controlling AML for
variable periods of time, even in high-risk
patients, and their potential relative contribu-
tion to transitory favorable results cannot be
firmly eliminated.

CONCLUSIONS

Although our study showed important limita-
tions, it brings major information confirming in
humans a prior in vitro study that demon-
strated a potential effect of ATRA in AML dis-
playing EVI1 abnormalities [23]. Combination
treatments may likely up-regulate ATRA activity
resulting in increased overall survival. In this
setting, we are currently testing this approach in
a phase 3 randomized study comparing ATRA
plus azacitidine versus azacitidine alone in AML
patients with EVII overexpression unfit for
intensive chemotherapy. Combination of ATRA
with ‘3 + 7’ chemotherapy could also be pro-
posed for patients with EVI1 overexpression
considered fit for intensive treatment.
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