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Background: Structure profiling experiments provide single-nucleotide information on RNA structure. Recent
advances in chemistry combined with application of high-throughput sequencing have enabled structure profiling at
transcriptome scale and in living cells, creating unprecedented opportunities for RNA biology. Propelled by these
experimental advances, massive data with ever-increasing diversity and complexity have been generated, which give
rise to new challenges in interpreting and analyzing these data.
Results: We review current practices in analysis of structure profiling data with emphasis on comparative and
integrative analysis as well as highlight emerging questions. Comparative analysis has revealed structural patterns
across transcriptomes and has become an integral component of recent profiling studies. Additionally, profiling data
can be integrated into traditional structure prediction algorithms to improve prediction accuracy.
Conclusions: To keep pace with experimental developments, methods to facilitate, enhance and refine such analyses
are needed. Parallel advances in analysis methodology will complement profiling technologies and help them reach
their full potential.

Keywords: RNA structure profiling; high-throughput sequencing; RNA secondary structure prediction; chemical structure
probing; SHAPE-Seq

INTRODUCTION

RNAs are known to play essential roles in diverse cellular
functions, extending well beyond the transfer of informa-
tion from genes to proteins [1,2]. For example, small non-
coding RNAs such as microRNAs and small interfering
RNAs have regulatory roles in gene expression [3]. Long
non-coding RNAs are also widely found in various
regulatory roles at both transcriptional and post-transcrip-
tional levels [4]. RNA function is closely linked with its
ability to fold into and convert between specific complex
structures. In fact, determining structure has become a

crucial step in understanding RNA function [5]. Accurate
and high-resolution structure models have been tradition-
ally obtained using comparative sequence analysis or
experimental techniques, such as X-ray crystallography
and nuclear magnetic resonance (NMR) [6]. However,
these methods require considerable manual labor and
suffer technological limitations, which have precluded
their use beyond a small scale [7]. Computational
structure prediction from sequence information is a
broadly applicable alternative that has been widely used
[8,9], but reported structures often suffer from poor
accuracy.
Structure profiling (SP), also known as structure

probing or chemical probing, refers to a family of
experiments that characterize RNA structure [10,11]. In
these experiments, local structural characteristics are
gleaned using structure-sensitive reagents that modify
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RNAs at nucleotide level. Well-studied reagents include
dimethyl sulfate (DMS) [12], kethoxal [13], hydroxyl
radicals [14], diethyl pyrocarbonate (DEPC) [15], CMCT
[16], lead (II) [17,18], nucleases [19] and SHAPE
(selective 2′-hydroxyl acylation analyzed by primer
extension) [20]. Until very recently, limitations of probing
reagents as well as sequencing and informatics challenges
restricted SP to select few RNAs studied individually and
primarily under in vitro conditions. The newest genera-
tion of SP experiments utilizes high-throughput sequen-
cing techniques, which provide unprecedented
multiplexing capacity in a cost-effective and automated
manner. These advances have been used to study RNAs of
varying lengths in vitro and in vivo, and more recently at
transcriptome scale [21–42]. Despite shared principles,
experiments differ in the information they extract and in
the statistical properties of their measurements. Experi-
mental protocols for SP and their biological applications
have been reviewed previously; see, for example [11,43–
46].
Sequencing readouts from SP experiments are analyzed

to extract structural parameters of interest for each
nucleotide, in terms of its reactivity to the probing
reagent. Nucleotide-level reactivity estimates are subse-
quently used to answer biological questions of interest,
which may entail further analysis and interpretation. In
this article, we focus on approaches to using reactivity
data for comparative and integrative analysis— a central
theme in recent studies. Comparative analysis of SP data
has revealed structural patterns across different levels,
ranging from low-resolution transcriptome level to high-
resolution nucleotide level. Each level may warrant
specialized analysis methods. Note that even at the
same level, the ideal approach could possibly differ
depending on the context and questions asked. We discuss
three different contexts where technical, biological and
systematic replicates of SP data are available. In addition
to comparative analysis, we also review current progress
in data-directed structure prediction, which is the most
straightforward application of SP data in structural RNA
biology. Unlike X-ray crystallography and NMR, in
which RNA structure is explicitly modeled, SP does not
directly reveal the pairing state of a nucleotide nor its
pairing partner. However, it can complement structure
prediction algorithms to enhance their performance
[47,48].
This review is organized as follows. We begin with a

discussion of shared principles of SP experiments and
devote the bulk of the article to their data interpretation
and analysis. We review current practices and principles
in reactivity calculation. We then discuss recent
approaches and emerging questions in comparative and
integrative analysis, followed by discussion of quality
control in large-scale SP datasets. Next, we review

algorithms for secondary structure prediction and efforts
to leverage SP data to improve their performance. Recent
progress in public repositories, analysis tools and
visualization platforms is also described.

OVERVIEW OF STRUCTURE PROFILING
EXPERIMENTS

The general goal of an SP experiment is to obtain
nucleotide-resolution structural characteristics of all
RNAs in a sample [49]. Structural characteristics in the
vicinity of a nucleotide are reflected in local stereo-
chemical properties such as nucleotide dynamics, solvent
accessibility and electrostatic environment [11,50]. In
particular, pairing state of a nucleotide is known to be
correlated with these stereochemical properties [51]. SP
experiments utilize reagents that are sensitive to local
stereochemistry [11]. These reagents react with nucleo-
tides such that the reactivity to any particular nucleotide
depends on its local stereochemistry, which in turn is
affected by its pairing state. SP experiments aim to
measure the sequence of reactivities corresponding to
nucleotides of each transcript. High and low reactivities
are indicative of unpaired and paired nucleotides,
respectively [52]. Hence, it is understood that the
sequence of nucleotide reactivities, henceforth called
reactivity profile, is a representation of a transcript’s
structure [53].
Most sequencing-based SP techniques share a common

workflow (Figure 1) [43,44]. To start with, a sample of
RNAs is allowed to react with a structure-sensitive
reagent, resulting in chemical modifications of nucleo-
tides. The degree of modification at each nucleotide is
detected by reverse transcription (RT), which either stops
or proceeds but introduces a mutation at modified
nucleotides. The resulting cDNA library is sequenced
and reads are mapped to target RNA sequences. Then, RT
stops or mutations are counted for each nucleotide. To
measure background noise in RT stops or mutations,
parallel to the experiment, a control assay is similarly
performed wherein the RNAs are not treated with
reagents. This control assay also yields a stop or mutation
count summary for each nucleotide. Counts from
experiment and control assays are then combined to
obtain reactivity profiles for all RNAs in the sample.
Despite these shared principles, measured reactivities

are influenced by numerous intertwined factors that all
impact the variability of readouts [54]. In fact, it has been
found that single nucleotide variants can lead to
substantially different reactivity profiles [55,56] and that
identical sequences can have different reactivity profiles
under different conditions [40,57,58]. Comparison of
reactivity profiles reveals that quantitative differences
persist even in the absence of structural differences
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between RNAs from one sample to another [54,59].
Listed below are factors that influence reactivity profiles.
Technical factors. Numerous technical factors add to

variability in observed profiles. First, chemical reactions

involved in SP occur in presence of limited quantities of
reagents/transcripts. Concentrations of reagents are often
controlled deliberately to limiting amounts to achieve
desirable reaction kinetics [11]. In addition, many RNAs

Figure 1. Overview of structure-profiling experiments. RNA sample of interest (at the top) is probed with a structure-sensitive

reagent, which introduces a modification (red pins) preferentially at unpaired nucleotides. Degree of modification is read via reverse
transcription and sequencing. Next, the readouts are mapped to reference sequences and normalized reactivities are calculated
from counts summary of mapped reads. Reactivity profiles of probed RNAs are used in diverse downstream applications, some of

which are listed.
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of interest are present in limited quantities [28]. As such,
the reactions feature inherent stochasticity [54,60].
Secondly, these reactions are sensitive to stereochemistry
and solvent conditions [11,61]. Nevertheless, they often
occur in complex and dynamic solution environments.
For example, RNAs often feature a dynamic ensemble of
co-existing structures in vivo interacting with proteins and
other biomolecules [62–64]. However, SP captures only
the aggregate profile for all these structures, combining
influences from intermolecular interactions [65]. In
addition, cDNA library preparation involves numerous
steps such as adapter ligation, reverse transcription and
PCR, which also give rise to stochasticities. Finally,
readouts from sequencing machines are also affected by
stochasticities [54,66,67]. These factors collectively
contribute to variance in reactivity profiles. In fact, they
contribute to variance in any other parameter of interest
that is estimated from data, e.g., Gini index of counts/
reactivities [26,40,68]. Variance contribution of technical
factors to any parameter of interest can be estimated by
performing multiple replicates, called as technical
replicates of experiment-control study, starting from
biologically indistinguishable RNA samples. We refer to
variance in estimates observed purely due to said
technical factors as technical variation [69–71].
Biological factors. RNAs with significant structural

diversity have been subjects of recent studies. For
example, non-coding RNAs (ncRNA) are known to be
highly structured, while mRNAs are thought to have a
lesser degree of structure. Moreover, within an RNA,
structure could significantly vary from one region to
another. For example, mRNAs are believed to be less
structured in protein coding regions than in untranslated
regions [40]. Additionally, RNA structure is sensitive to
factors such as solvent conditions, ligand and salt
concentrations, temperature variations and interactions
with proteins [61]. Should any of these factors differ
between studies, detectable differences in the estimated
reactivities may be observed. For example, reactivity
profiles for the same transcript have been found to differ
between in vitro and in vivo conditions [40,68,72]. We
refer to variance of an estimate observed purely due to
biological factors as biological variation. Additionally, it
is to be noted that biological variation might be caused by
differences in RNA-protein interactions besides structural
differences [73]. Proteins can cover certain stretches of
nucleotides, thereby influencing their reactivities to
certain reagents. Two RNA samples known to have
come from different biological sources are called
biological replicates [69–71]. These contain information
about biological differences between the samples.
Systematic factors. For biologically identical RNAs,

reactivity measurements obtained in one experiment can
differ from the profiles obtained through a different

experimental protocol [53,74]. Technical replicates do not
capture these variations, as they do not differ in protocol
steps. Yet, such variations do not originate due to
biological factors but rather can be attributed to
discrepancies in key steps. For example, many current
methods differ in choice of probing reagent. In fact, a
variety of reagents are available, such as DMS, kethoxal,
hydroxyl radical, 1M7, NMIA, NAI and NAI-N3, but
each has its pros and cons [11,22,40,75]. These reagents
differ in their stereochemical characteristics and reaction
mechanisms. Consequently, reactivity profiles may reflect
these differences. In addition, many reagents do not probe
all nucleotides as well as feature biases that cause
different reactivities, depending on nucleotide type,
even in the absence of structural differences [11]. Besides
choice of probing reagent, protocols often differ in
priming method, modification detection approach (e.g.,
stop/mutation), ligation strategy, enrichment scheme,
sequencing mode (single/paired-ended), and reactivity
estimation method among others. These are a few
noteworthy steps having equally plausible alternatives.
Many of these steps contribute to biases, which interplay
with other steps to result in miscellaneous effects on
parameter estimates [54]. Nevertheless, biologically
identical RNAs can be studied using different protocols
to obtain detailed and comprehensive insights [74]. We
refer to experiments involving SP of biologically
indistinguishable samples using different protocols as
systematic replicates and variances originating due to
differences in protocols as systematic variation.

ESTIMATION OF STRUCTURAL PROFILE

As mentioned earlier, sequenced reads from both
experiment and control assays are summarized as count
of stops or mutations for each nucleotide. However, per-
nucleotide counts are not directly comparable because
they can differ in magnitude due to a variety of factors.
The number of reads mapped to a transcript, also known
as its coverage, varies between transcripts due to dramatic
differences in their relative abundances, which often
range over five orders of magnitude [28,76]. Additionally,
priming or ligation biases contribute to sequence-specific
variations in counts within the same transcript
[22,54,59,77,78]. Counts may also differ due to back-
ground noise in RT stops and mutations. In fact, for the
same nucleotide between experiment and control, counts
may not be comparable due to difference in sequencing
depths. For these reasons, counts are processed into
normalized reactivities, which are assumed to be
comparable across transcripts and replicates.
Reactivity estimation methods differ between studies

but share the following conceptual framework (see Figure
1). First, counts are adjusted to account for variations in
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coverage, yielding two detection rates per nucleotide
— one for experiment and one for control. Second,
comparison of detection rates yields an estimate of the
degree of modification, or raw reactivity. Third, raw
reactivities are normalized to ensure that values for all
transcripts and replicates thereof span the same interval.
Detection rates. Detection rates are calculated to

account for variations in coverage. Notably, variations
in coverage exist at all levels. For example, substantial
coverage differences have been noted between rRNAs
and many mRNAs [28]. Significant differences in cover-
age also exist from one transcript to another within the
same functional class. Additionally, within a transcript,
coverage can be considered on regional basis (e.g.,
coverage of the 5′ untranslated region or the coding
region, or 3′ end, etc.), sequence basis (e.g., more
coverage in GC rich regions due to priming bias), or
per-nucleotide basis. In general, coverage differences can
be noticed at all levels of organization. Analysis methods
in various studies differ in the level of detail at which they
account for coverage variations. Many studies consider
coverage variations between transcripts as significant
while assuming uniformity of coverage within each
transcript. Higher coverages for a transcript may be a
result of its over-abundance in the sample or of priming
biases among other factors. In such cases, counts
corresponding to nucleotides of the transcript may be
assumed to be proportionally higher. Hence, several
studies adjust counts by their mean to account for
coverage bias [28,30,31,35,36,55]. Additionally, Ding et
al. [28] take the logarithm of counts to make count
distribution symmetric. Others note that there could be
local biases within the transcripts. For example, Rouskin
et al. [26] adjust counts for each nucleotide by maximum
counts in a local window. In fact, several studies
[22,25,40,60,79,80] have accounted for nucleotide-level
coverage variations. Through these adjustments, detection
rates are estimated for both experiment and control.
Raw reactivities. Detections in control are attributed to

noise in RT while detections in experiment arise from
noise in RT as well as from modifications at nucleotides.
Hence, it is expected that at any nucleotide, detection rate
will be higher in experiment. One core assumption is that
structure-sensitive modifications contribute additively to
a background level of detection rates. Reactivities are
therefore often calculated by subtracting detection rate in
control from that in experiment [22,28,40,60,80]. Alter-
natively, reactivities have been estimated as odds ratio of
experiment to control detection rates [35]. To control the
range of reactivities, others take the logarithm of the odds
ratio [30,31,36,55,81]. Occasionally, detection rates in
experiment are found to be less than their counterparts in
control. In such cases, a basal reactivity value of 0 (if
subtracting detection rates) or 1 (if taking ratio) is

assigned. This is done because the detection rate due to
noise is often very low and if detection rates remain
comparable or lower in the presence of modifications, it
indicates negligible degree of modification.
Normalized reactivities. Profiles from different pro-

tocols could span disjoint intervals even for the same
RNA. In fact, for different RNAs in the same experiment,
profiles could span disjoint intervals because of biological
variation. Raw reactivities are not considered comparable
in absolute magnitude. Hence, all profiles are normalized
such that the average reactivity of approximately 10% of
the most reactive nucleotides is 1, excluding few
unusually reactive nucleotides that are considered outliers
[47]. Outliers can originate in datasets due to a variety of
reasons, such as excessive degradation or over-modifica-
tion at certain nucleotides, or over-representation of
certain fragments due to various inherent biases in
protocols. In fact, such hyper-reactive sites often appear
in datasets [51,82].
Accordingly, most current approaches to normalization

begin with identification of outliers in reactivity estimates
[83]. This is done by either box plot analysis whereby
reactivities greater than 1.5 times the interquartile range
are deemed outliers [47,82], or by assuming that
reactivities beyond a certain percentile are outliers [47].
Outliers are either ignored [47] in the process of
calculating normalization constant or winsorized
[21,26,36]. To estimate a normalizing constant, one
approach is to take the mean of values greater than a
certain percentile after removing outliers. For example,
2%–8% method assumes that the top 2% of reactivities
are outliers and normalizes with mean of the next 8% of
highest reactivities [47]. The winsorization approach aims
to scale reactivities such that they range from 0 to 1 for all
transcripts. Hence, after winsorization, the highest
reactivity is chosen as the normalizing constant
[21,26,36].
In the majority of analysis methods, the above work-

flow is preceded by conventional read alignment and
counting routines. Recently, these pre-processing steps
were integrated with reactivity estimation, such that
counting and estimation are resolved simultaneously [79].
This is especially attractive in situations where multi-
mapping reads (that is, reads which align to multiple sites
in a transcriptome) abound, e.g., in studies of splicing
isoforms. While common remedies discard such reads or
allocate them uniformly among plausible alignment sites,
Li et al. [79] expand on prior modeling and statistical
inference work in RNA-Seq [84,85] and in SHAPE-Seq
analyses [80] to address this issue. Another extension of
the said statistical modeling work on SHAPE-Seq has
been recently published by Selega et al. [81]. This method
scores significance of modification levels from stop
counts and nucleotide-level coverages under an assump-
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tion that modification states do not randomly switch, i.e.,
significantly reactive/unreactive nucleotides tend to
appear in continuous stretches. The assumption is
enforced using a Hidden Markov Model with transition
probabilities based on empirically derived expected
lengths of reactive and unreactive contiguous stretches
in a training dataset.

COMPARATIVE ANALYSIS

Before the advent of high-throughput sequencing, prob-
ing was mostly applied to select highly structured
ncRNAs under in vitro conditions. Recent advances
have dramatically expanded the scope of SP and diverse
RNAs can now be studied in biologically relevant
conditions. In fact, applications of SP to numerous
transcripts and transcriptomes have revealed novel
insights [2,44]. Most such applications feature compara-
tive analysis. Several recent examples of such analysis
can be noted: i) Spitale et al. [40] compared mRNA
profiles and identified conserved patterns around transla-
tion start sites. ii) Protein-RNA interactions were studied
in viral RNA and mammalian ncRNAs and mRNAs by
comparing reactivity profiles under different conditions
[40,58,86,87], finding that interactions modulate reactiv-
ities significantly. iii) Comparison of mRNA coding
regions revealed a three-nucleotide periodicity pattern in
reactivities [28,30,40]. iv) Significant structural altera-
tions have been identified in single-nucleotide variants
[55,88]. v) Comparisons of entire transcriptomes at
different temperatures identified structure-altering
responses [26,89,90]. vi) Prevalence of specific nonca-
nonical structure motifs has been found to differ between
in vitro and in vivo conditions [68]. Interestingly, these
studies involve comparisons at different levels such as
structure at the level of regions within a transcript, at the
transcript level, within functional classes, or at transcrip-
tome level. In this section, we review recent approaches
and emerging questions in addressing these challenges.
Notably, SP collects data at nucleotide level, but

structural dynamics most often involve at least a few
nucleotides or even entire functional domains. For
example, many of the studies mentioned above seek
signals that span protein-binding sites, codons and well-
defined local structure motifs. Indeed, it is rare for a
biological study to home in on isolated single-nucleotide
reactivity changes. For this reason, comparative studies
must also bridge between the resolution of measurements
and that of sought-after effects. This is typically
accomplished by integrating nucleotide information for
scoping differential structural effects at various levels of
lower resolution and/or by inspecting data-directed
secondary structure predictions for detectable changes at
that level [40,53,56,91].

Comparing technical replicates

Agreement between technical replicates indicates high
quality of data. Technical replicates can be compared at
the level of transcripts or at the level of nucleotides.
Transcript-level comparison. In high-throughput

experiments or when profiling long transcripts, agreement
between replicates of a transcript is commonly evaluated
as Pearson correlation coefficient (PCC) for reactivity
profiles. Transcripts with low PCC are filtered out for
biological purposes, as their replicates do not agree. For
each pair of profiles, PCC quantifies agreement in a single
number that is invariant to scaling. However, PCC has its
limitations as a measure of agreement [92–94].
First, PCC is sensitive to outliers [92]. PCC is based on

the sample means of reactivities in the profiles that are
being compared. Sample means are known to be sensitive
to outliers, leading to similar sensitivity of PCC. Indeed,
PCC is affected by both magnitude of outliers and the
overall proportion of reactivities that is outlier. Hence,
PCC is to be used with caution, especially for
transcriptome-wide data, as outliers have indeed been
routinely noted in experiments [47,59]. In our experience,
we have found that a common practice in handling
missing information often leads to outliers in reactivities.
Specifically, while estimating reactivity profiles, poorly
covered sites have a bias towards an apparent zero
reactivity. This bias considerably adds to the proportion of
outliers at the lower extreme of zero reactivity. However,
most studies do not filter outliers while calculating PCC.
Hence, PCC may be misleading in evaluating replicate
agreement. Second, PCC does not quantify agreement at
nucleotide level but rather summarizes it across a
transcript. Third, PCC only evaluates correlation between
two profiles and is unaffected by magnitude differences of
nucleotide-level values. Nevertheless, to gauge signifi-
cance of biological variation found in a study, it is
important to first quantify technical variation. Since
biological variation of interest is often manifested at
nucleotide resolution, it is also desirable to quantify
technical variation at that resolution.
Nucleotide-level comparison. At nucleotide level,

replicates have been traditionally compared by taking
mean and standard deviation of reactivities. In the absence
of replicates, theoretical formulas and computational
methods have been developed to evaluate technical
variation at each nucleotide [22,59]. However, due to
challenges in visualizing technical variation, most such
nucleotide-level evaluations have been restricted to one or
few transcripts. Recently, Choudhary et al. [59] proposed
a method to quantify and visualize technical variation at
nucleotide resolution for large-scale data, based on the
classical signal-to-noise ratio (SNR) measure. For each
nucleotide, SNR is defined as the ratio of sample mean to
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standard deviation of reactivities in all replicates. SNR is
high when replicates are in strong quantitative agreement
at a nucleotide and low otherwise. Nucleotide SNR values
within a transcript could be visualized as box plot to glean
overall agreement among multiple replicates from a single
plot. Additionally, mean of SNR was proposed as a
single-number or point summary for a transcript’s overall
data quality. Mean SNR per transcript was found to
correlate well with PCC and transcript coverage in diverse
datasets.
Open questions. Nucleotide-resolution comparison of

reactivities requires normalization strategies to render
values in different replicates comparable. Clearly, the
strategies described in the Section of “Estimation of
Structural Profile” require optimizing two criteria: one for
identifying outliers and another for selecting reactivities
that will be used to estimate a normalizing constant.
However, the proportion of outliers in a dataset could vary
considerably depending on the length of transcripts
involved, the protocol used and the experiment’s quality.
Indeed, different labs and even same labs have made
different choices of normalization steps when analyzing
different datasets, although the general principle has been
to eliminate outliers and scale reactivities such that they
range approximately from 0 to 2 [39]. These strategies
have been adopted based on experience with SP data
before high-throughput technologies were introduced
[47] or through validations with secondary structure
prediction [82]. Hence, the field may benefit from a
universal approach to normalization, which is assuring
enough to dispense with the need for routine optimization
of the normalization step. It is also worth noting that
before SP became high-throughput, most of the RNAs
that were chemically probed were highly structured
rRNAs or short functional ncRNAs. Heuristic guidelines
formulated based on such a specialized subset may not be
ideally suited to all transcripts— in particular to long and
less structurally constrained mRNAs. Furthermore, vali-
dation based on structure prediction itself involves
parameter optimization and modeling assumptions, as
reviewed in later sections. Given the recent advances in
SP, methods of normalization warrant a revisit and
possibly even generalization or standardization.

Comparing biological replicates

Comparison of reactivities from different biological
replicates could potentially identify significant biological
variation. If technical variation is high, statistically
significant biological results might not be obtained from
the data. To estimate significance of biological variation,
it has to be examined in comparison with technical
variation [69–71]. Recently, several studies have reported
biological variation at all levels. At transcriptome level,

differences in overall structural characteristics have been
reported under different conditions and between different
strains [26,40]. At transcript-to-transcript level, rRNAs
have been described as being more structured than
mRNAs. At a finer level, while differences in reactivities
can be observed at nucleotide level, biological variation is
commonly assumed to span a stretch of nucleotides [86].
In particular, within transcripts, biological variation has
been described between regions, where significant
differences in structure have been noted between UTRs
and coding regions of mRNAs. Here, we review the
methods used to measure biological variation.
Transcriptome-level comparison. Current normal-

ization methods, as described in the Section of “Estima-
tion of Structural Profile”, generally scale the reactivities
such that they range from 0 to approximately 2 [39].
However, this does not ensure that reactivities within
different transcripts are directly comparable. For example,
although mRNAs are widely understood to be less
structured than rRNAs [40], current normalization
methods scale reactivities for both these classes of RNA
such that they span a similar interval. Hence, comparing
absolute values of reactivities on a transcriptome scale
might be misleading. Differences in lengths of transcripts
within the same functional class exacerbate the challenges
in comparing profiles due to the need for reliable
alignment. To facilitate nucleotide-level comparison of
reactivities in case of differences in lengths, particularly
for mRNAs, transcripts are often aligned by their start/
stop codon, where arbitrary lengths (about 40–100 nt) are
chosen upstream and downstream of the start/stop codon
in all transcripts to be compared [28,30,36,40,89].
However, functional elements in UTRs differ in sequence
and distance from the start/stop codon, thus presenting an
additional challenge to direct comparisons.
Besides direct nucleotide-level comparison, another

approach has been utilized, which is invariant to current
normalization methods (due to properties as listed below)
as well as applicable to transcripts of different lengths. At
the transcriptome level, it has been found that RNAs are,
in general, less structured in vivo than they are in vitro
[40]. This conclusion was obtained by examining
distributions of Gini indices for reactivity profiles. Gini
index is a measure of inequality in a distribution [95]. It
has two notable properties: i) It is a measure of inequality
that is high if there is substantial gap in values across the
nucleotides. Such high gaps (or inequalities) in distribu-
tion of counts and reactivities are expected in case of
structured RNAs. Hence, Gini index can serve to
quantitatively describe the overall degree of structure in
a transcript. ii) It is invariant to scaling, i.e., Gini index
does not change as long as the relative magnitudes of
quantities remain the same. As current normalization
methods essentially scale reactivity profiles linearly,
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scaling invariance is a significant merit of Gini index, as it
obviates the need for optimizing normalization prior to
conducting comparisons.
Transcript-level comparison. Structural similarities

are often correlated with sequence and/or functional
similarity [96]. Thus, in presence of known sequence and/
or functional similarities, it may be reasonable to assume
that reactivity profiles should span the same interval.
Current normalization schemes do scale reactivity profiles
such that they span the same interval from 0 to
approximately 2 [39]. Hence, for cases with sequence
and/or functional similarity, reactivity profiles have been
compared by taking difference of normalized reactivities
[23,40,58,86]. Additionally, based on models specific to
the context, p-values can be calculated to characterize the
significance of observed differences. Other approaches to
establish statistical significance have also been used. For
example, Smola et al. [86] used a modified version of a Z-
factor test [97] instead of p-values to screen for sites with
statistically significant differential reactivities. Z-factor is
a screening coefficient that identifies nucleotides with
biological variation substantially greater than technical
variation. Recently, Choudhary et al. [59] have used a
signal-to-noise ratio measure to quantify magnitudes of
biological and technical variation. Besides these methods,
comparability of profiles under conditions of sequence
and/or functional similarity has been assumed when
summarizing reactivity profiles for multiple RNAs via
their mean. For example, mean of reactivities has been
used to capture general characteristics of mRNA structure
around the translation start site [26,28].
Regional comparison. Reactivity profiles often feature

significant variations across the length of a transcript,
indicating presence of structured and unstructured regions
[28,40]. Several methods have been utilized to scan
transcript regions for structural properties, which differ
primarily in the structural characteristic they scan for. For
example, Gini index has been applied to regions within a
transcript [26,40] to identify those with high inequalities
in counts/reactivities across nucleotides. Whereas Spitale
et al. [40] applied Gini index to designated regions, such
as UTRs and coding regions of mRNAs, Rouskin et al.
[26] used it to scan rolling windows containing 50 probed
nucleotides. Other studies scanned transcripts to identify
regions with higher or lower reactivities. Reactivity level
in a region can provide an idea about the number of base
pairs in that region. To this end, the median of reactivities
in a region has been used as a robust summary of regional
structural characteristics [39,53,98]. Standard statistical
tests such as Wilcoxon rank sum test have been used to
evaluate statistical significance of differences between
centers of reactivity distributions for two regions [36].
Additionally, Siegfried et al. [39] utilized Shannon
entropy estimates to quantify a region’s structural

properties. Entropy estimates were derived from base-
pairing probabilities output by a data-directed ensemble-
based secondary structure prediction algorithm (see the
Section of “Secondary Structure Prediction”). Entropies
are expected to be low in regions that either have well-
defined structures or are predominantly single-stranded;
they are expected to be high otherwise.
Open questions. Comparative analysis of SP data is in

its nascent phase, and several issues are yet to be
addressed. To date, the field has resorted to point
summaries of structure (e.g., Gini index of counts).
While statistical properties of a reactivity profile in one
region/transcript have been compared with those of
another, there is no consensus on the statistical property
of reactivities that captures a desired structural property.
Consequently, multiple metrics for quantifying regional
structure have prevailed thus far. For example, measures
of inequality and of non-uniformity in reactivities have
both been used to characterize a high degree of structure
or folding stability. At the transcriptome level, Gini index
has been applied as a point summary of a transcript’s
structure. However, there are several drawbacks to this
index. One major issue is that it is highly influenced by
outliers [99], which again underscores the importance of
robust outlier detection. Another issue is that two
transcripts could have vastly different reactivity profiles
but the same Gini index, thus making it difficult to use it
as a comparative feature. For example, consider two
transcripts with the following compositions: (a) 50% of
nucleotides with zero reactivity and 50% with equal and
high reactivity (or more generally, 50% have high
reactivity and 50% have low reactivity) and (b) 25% of
nucleotides with reactivity 0.11 and 75% with reactivity 1
(or more generally, 75% have high reactivity and 25%
have low reactivity). Despite their differences, both
profiles result in a Gini index of 0.5.

Comparing systematic replicates

Reactivity profiles estimated from systematic replicates
may provide more comprehensive insights into structure.
For example, collecting and comparing information from
multiple probing reagents has traditionally served as
means of increasing confidence in structural inference
from data [100]. Whereas such approach had been limited
in applicability due to cost and labor constraints, as
experiments have now become more accessible to the
community, it appears to be gaining popularity
[74,81,100–103]. To date, comparisons of systematic
replicates have been mostly performed semi-quantita-
tively or via PCC [33,53]. While PCC only informs us of
agreement of data, it is often desirable to merge data from
systematic replicates. For example, data from systematic
replicates could improve the accuracy of data-directed
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structure prediction if fused appropriately [103], such that
correlations and systematic deviations are well character-
ized and accounted for. However, systematic replicates
often derive from differing statistical distributions [53].
Therefore, besides scaling, systematic replicates might
need more intricate normalization routines to ensure their
comparable statistical properties. For this purpose, Wu et
al. [104] used quantile normalization to transform
reactivities in different datasets such that they follow
the same distribution. Because the data throughput
bottleneck has only recently been eliminated, much is
yet to be done to address these emerging needs. Ensuring
quantitative comparability and optimal integration of
profiles from systematic replicates remains an open
challenge.

SCREENING DATA FOR QUALITY

Since its days of inception, SP has moved towards large-
scale transcriptome-wide and in vivo experiments.
Despite significant advances, data quality remains non-
uniform across the transcriptome. Data quality is
primarily governed by coverage and by signal-over-
background level [22,54,59]. Most studies filter out poor-
quality data and draw biological insights from high-
quality data subsets. Simple criteria based on a transcript’s
coverage per unit length have been utilized to screen for
high-quality components of a dataset. Several groups
have considered coverage per unit length ≥1 as
acceptable criterion for quality [26,28,34,36], whereas
others have opted for nucleotide-level coverage
[22,39,40]. Several conditions have been used to optimize
these criteria. For example, Smola et al. recommend
nucleotide-level coverage above approximately 2,000 for
high confidence in reactivity estimates [22]. This choice
was guided by a desire to ensure high accuracy of data-
directed structure prediction [39]. Spitale et al., on the
other hand, optimized their criterion for high coverage
such that transcripts meeting this criterion achieve high
PCC between replicates [40]. Choudhary et al. [59]
approached this from an experimental design perspective
[54]. Building upon prior work on modeling SP
experiments [60], they introduced a Coverage Quality
Index (CQI), which quantifies the “goodness” of each
nucleotide’s coverage. Given an acceptable level of
variation in reactivities, a coverage level is computed
for each nucleotide, which ensures (at a desired level of
confidence, such as 95%) that variation is within
admissible range. CQI is the ratio of the desired coverage
of a nucleotide to its observed coverage. CQI< 1 is
indicative of good quality while CQI> 1 is indicative of
unacceptable quality. CQI calculations and other nucleo-
tide-resolution quality measures, such as SNR, along with
their visualizations from nucleotide to transcriptome

level, are implemented in SEQualyzer— a quality
assessment tool specialized to SP data (see Figure 2 for
an example) [105]. Standardized methods for evaluating
data quality as well as screening for high-quality
components are essential to the maturation of this field.

SECONDARY STRUCTURE PREDICTION

Computational RNA structure prediction has been studied
for several decades. Here, we focus on secondary
structure prediction; readers are referred to [106] for a
recent review on three-dimensional structure modeling.
Typically, computational secondary structure prediction
methods fall into three major categories: free energy
minimization, ensemble-based prediction and compara-
tive sequence analysis. It is worth noting that most
existing methods do not allow pseudo-knots in predicted
structures, as it will render the problem computationally
intractable. Several solutions were developed, albeit with
additional constraints on the type of considered pseudo-
knots [107–115].

Free energy minimization

The most widely used method for structure prediction
from a single sequence aims to find the structure with
minimum free energy (MFE). This method relies on the
second law of thermodynamics, which states that the
MFE structure is the most thermodynamically stable and
the most prevalent in living cells. Free energy of a
structure can be calculated based on a set of nearest-
neighbor thermodynamic model (NNTM) parameters,
which are obtained using optical melting experiments
[116–118].
At the core of MFE prediction is a dynamic program-

ming algorithm put forth in [119,120] and first proposed
in [119,121] in the context of maximizing the number of
predicted base pairs. It was subsequently extended by
incorporating free energies of different structure motifs
[122,123]. This algorithm has been implemented in
popular software packages such as UNAFold [124],
RNAstructure [125] and ViennaRNA [126]. For algo-
rithmic details on various MFE prediction algorithms,
readers are referred to the comprehensive reviews in
[9,127–131].
While MFE predictions have been well studied and

widely used, they often suffer from low prediction
accuracies when utilizing sequence information alone,
especially for long RNAs [132]. One possible reason is
that the assumption that RNA folds into the MFE
structure may not always hold [47]. On the other hand,
RNA can interact with other biomolecules in the cell,
stabilizing specific non-MFE conformations. In addition,
the existing sets of NNTM parameters are neither perfect
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nor complete, although they have been improved over the
years. The free energy of some structure motifs, such as
multi-branch loops, are still not well understood and are
thus obtained using simplified models [118].
In addition to the MFE structure, many programs have

the option to also report a set of suboptimal structures.
This is also a computational solution to the imperfect
situation mentioned above. Such information is valuable
for many downstream analysis applications. For example,
one could generate energy dot plots from optimal and
suboptimal structures, which could then be used to find
frequent structure motifs [133].

Ensemble-based predictions

Prediction of suboptimal structures is complementary to

the MFE structure. However, it is worth pointing out that
suboptimal structures could be quite different than the
MFE structure, even when the differences between their
free energies are very small. Take the aspartic acid tRNA
in yeast as an example (Figure 3). The energies of the
predicted MFE structure and its closest suboptimal
structure differ by 0.1 ( – 28 vs. – 27.9), but their
sensitivities differ quite a lot (76.2% vs. 33.3%); see the
Subsection of “Performance Measures” for a formal
definition of sensitivity. Furthermore, MFE predictions
are highly sensitive in the sense that a minor change in
NNTM parameters or experimental conditions might lead
to a switch between the MFE and suboptimal structures;
see, for example [135], for a discussion on ribosomal 30S
subunit structure revealed in [136].
A natural extension of suboptimal structures is to

Figure 2. Quality screening with SEQualyzer. Bars represent per-nucleotide SNR and black lines represent rolling mean of per-
nucleotide SNR for windows of 20 nt. SEQualyzer estimates SNR via bootstrap as described by Choudhary et al. [59]. Examination
of quality profiles reveals that signal quality is good for entire RNA except a short region from nucleotides 35‒53 where it is poor in all

replicates. For illustration purpose, we used data for P4 –P6 domain of Tetrahymena group I intron ribozyme from Loughrey et al.
[33].
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consider all possible structures. This can be accomplished
by computing a partition function, which models the
contribution of all structures weighted by their Boltzmann
probabilities [62,137,138]. For a given sequence, the
partition function, Q, can be calculated as

Q=
X

k

e –ΔGk=RT

where ΔGk is the free energy of the k-th possible
secondary structure, R is the gas constant and T is

Figure 3. Comparison betweenMFE secondary structure and one of the suboptimal secondary structures for tRNA (asp),
yeast. (A) Reference (accepted) structure. (B) MFE structure. (C) Suboptimal structure. (D) Circular plot comparing the MFE

structure in B to the reference structure in A. (E) Circular plot comparing the suboptimal structure in (C) to the reference structure in
(A). Structures are predicted using the Fold program in RNAstructure package [125] with default parameters. Plots (A), (B) and (C)
are prepared with VARNA [134]. Circular plots (D) and (E) are prepared with the CircleCompare program in RNAstructure. In (D) and

(E), base pairs are indicated by lines. Pairs present in both the predicted and reference structures are in green; pairs which are
present only in the predicted structure are in red; and pairs which are present only in the reference structure are in black.
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temperature. Furthermore, the probability of a base pair
formed by nucleotides i and j can be calculated as

pij=

X
kij
e
–ΔGkij

=RT

Q

where the sum considers all structures that include base
pair i-j.
Several algorithms that utilize the statistical nature of

partition function calculations have been proposed for
structure predictions. The Sfold program samples a user-
specified number of structures from the Boltzmann
ensemble. It then computes a centroid structure based
on base-pair distances between structures [139]. Another
type of approach predicts a secondary structure by
maximizing the expected base-pair accuracy (MEA).
Briefly, MEA seeks a structure that maximizes the sum (or
weighted sum) of base-paired and single-stranded nucleo-
tide probabilities. This objective function is inspired by an
observation that base pairs with high pairing probabilities
are more likely to be present in the known reference
structure [137]. MEA was first proposed in CONTRA-
fold, which learns a probabilistic model’s parameters
from a set of known structures, based on conditional log-
linear models [140]. Later, Lu et al. implemented another
MEA approach that directly depends on base pairing
probabilities derived from a partition function of the given
sequence [141]. Related work that considers pseudo-
expected accuracy is reported in [142].
It is most common for prediction algorithms to report a

single optimal structure. However, some RNAs are
known to have multiple functional structures in living
cells. The function of these RNAs not only depends on
these conformations but also on their ability to inter-
convert [143]. For example, riboswitches can adopt
different structures upon binding a small molecule as a
means of controlling gene expression [5,144]. In
riboSNitches, single nucleotide polymorphisms (as ana-
logous to binding of a small molecule in riboswitches)
alter the structure of an RNA, which in turn regulates gene
expression [88]. In such systems, analysis of structural
ensembles would be a natural choice compared to MFE
prediction.

Comparative sequence analysis

The structures of many RNAs, such as tRNAs and
rRNAs, are usually highly conserved, despite possible
discrepancies in their primary sequences [145]. Compara-
tive sequence analysis aims to find a consensus structure
from a set of homologous sequences [7,9,146]. This
approach is highly accurate and has been widely used to
study the structures of several RNAs, e.g., rRNAs [147].

Overall, three approaches currently exist to implement
comparative analysis.
Align then fold aligns sequences first and then predicts

the consensus structure [110,148,149]. Two of the widely
used programs in this category are RNAalifold [150] and
Pfold [151]. RNAalifold aims to find the minimum energy
structure that is formed by a set of aligned sequences. It
also supports the computation of partition function and
the centroid structure, which is the structure with
minimum base pair distance to other structures in the
ensemble. Here, distance is defined based on base-pairing
probabilities. Pfold uses a stochastic context-free gram-
mar (SCFG) [152,153] to combine an evolutionary model
of sequences with a probabilistic model for secondary
structures.
Fold and align simultaneously aligns and folds input

sequences [154–157]. This idea was first proposed by
Sankoff [154] and utilizes a dynamic programming
approach. The Sankoff algorithm has time complexity
of Oðn3mÞ for m sequences with maximum length n, and
thus it is computationally expensive to apply to large
inputs. By posing extra restrictions on the problem,
several variations of the Sankoff algorithm with feasible
complexity have been developed [156,158–160].
Fold then align predicts a structure from each input

sequence, followed by alignment of structures. This
method is particularly useful in scenarios where input
sequences are not sufficiently conserved for direct
alignment. Representatives of this method are reported
in [161,162].
Although comparative sequence analysis is highly

accurate, it has been successfully applied only to a limited
number of RNAs with rich phylogenetic information
available. This is because, analogous to many phyloge-
netic studies, high accuracy can only be achieved when
input sequences are sufficiently divergent to contain
enough co-variation information. At the same time,
sequences need to be sufficiently similar in order to be
aligned properly; otherwise it becomes infeasible to find a
good consensus [47].

Performance measures

The accuracy of a predicted structure can be measured by
comparing it to the known reference structure, where the
latter is typically obtained through crystallography
experiments or comparative sequence analysis [146].
Sensitivity and positive predictive value (PPV) are the
two most commonly used metrics for this purpose.
Sensitivity is the fraction of base pairs in the reference
structure that are correctly predicted, while PPV is the
fraction of correctly predicted base pairs in the predicted
structure. Matthews correlation coefficient (MCC) is
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another widely used metric that combines sensitivity and
PPV. Some studies approximate it by the geometric mean
of sensitivity and PPV [146]. For partition-function-based
predictions, one can measure the reliability of a prediction
by calculating ensemble diversity and positional entropy,
as proposed in [48].
When comparing different prediction algorithms,

studies often use a benchmark dataset with multiple
RNAs and compare their average performances. It is
pointed out in [135] that this simple metric is not
informative enough, as it is heavily biased by perfor-
mances of short RNAs. To resolve this issue, this
study proposed to use a “sequence-length-weighted
average” (SLW-average) to replace the plain average.
Intuitively, the SLW-average takes sequence length into
consideration when averaging the performances of multi-
ple RNAs.

DATA-DIRECTED SECONDARY STRUC-
TURE PREDICTION

In this section, we review data-directed prediction
methods. While most methods seek a single optimal
structure, they differ in their interpretation of SP data and/
or in how they integrate it with computation.

Pseudoenergy-based approaches

The idea of converting SHAPE data into a pseudoenergy
term was first proposed by Deigan et al. [82]. Serving as
ad hoc energy modifications, pseudoenergies are incor-
porated into MFE predictions to find the structure that
minimizes the sum of NNTM free energy and pseudoe-
nergy. For a given reactivity α, its pseudoenergy is
calculated using a linear-log formula, m logð1þ αÞþ b,
where m and b are parameters determined from a training
set of RNAs with known reference structures using grid
search. Note that optimal values of m and b may differ
quite noticeably between different data sets [33,163], as
they depend on the statistical properties of the data as well
as on its dynamic range. This method was first
implemented in the RNAstructure package [125] and
was recently included in the ViennaRNA package [48]. It
is also integrated into a recent data analysis pipeline for
transcriptome-wide SP experiments [164].
Deigan et al.’s approach has been widely used by the

community and proved to significantly improve predic-
tions for many RNAs [28,48,165,166]. For example, it
has been included in RNAalifold program within the new
version of the ViennaRNA package [48,167], which
predicts the MFE structure and centroid structure given a
set of aligned sequences. As another example, this
approach is at the core of the experimental 3S technique
for secondary structure determination of long non-coding

RNAs [168]. 3S, also called shotgun SHAPE, is moti-
vated by the observation that traditional thermodynamic-
based prediction algorithms often have limited accuracy.
It probes an entire RNA along with its shorter overlapping
segments. By comparing reactivity profiles of short
segments with that of the entire RNA, modular sub-
domains are identified, whose structures are then
predicted using Deigan et al.’s approach. However, it is
worth mentioning that this linear-log model was not
designed with biological assumptions in mind but rather
in a data-driven manner [131,169]. Initially developed
and optimized for SHAPE chemistry data, it is unknown
how well this model fits other and newer types of SP
data. In fact, Deng et al. showed, using mock-probe
simulations, that Deigan et al.’s approach can give
relatively poor performance when input data deviate
from its assumed model [135]. To alleviate this problem
and thereby provide broader applicability, several other
methods have been developed. Most methods follow
the “training and prediction” paradigm, where a model is
first trained on SP data with known reference structures.
The trained model is then used to direct structure
prediction on new data. In an earlier work, pseudoener-
gies are derived from the log-likelihood ratio of a
nucleotide being paired versus unpaired, given its
reactivity [74]. Benchmarked on DMS data, this work
uses two gamma distributions to model paired and
unpaired likelihoods separately.
Motivated by the log-likelihood ratio approach in [74],

the RME program converts reactivities into posterior
probabilities before deriving pseudoenergies from them
[104]. Pseudoenergies are then used to direct partition
function calculation and to further obtain an MEA
structure, in contrast to the MFE structure in [74,82].
Note that in RME, SP data are not only involved in the
initial calculation of partition function but also in the post-
calibration of base pairing probabilities, both in the form
of posterior probabilities.
Interestingly, in [52], Eddy pointed out that Deigan et

al.’s model actually signifies a base-pairing likelihood
ratio. Furthermore, he proposed a principled and broadly
applicable framework that directly derives from statistical
modeling of SP data. Under the assumption that
reactivities are only dependent on structural contexts
(e.g., paired, unpaired, stacked, helix-end), the pseudoe-
nergy of a reactivity for a given structural context can be
derived from its likelihood. This framework has been
implemented and extended in the RNAprob package for
MFE prediction [135]. RNAprob investigates two
different resolutions of structure context: a low resolution
distinguishes between paired and unpaired nucleotides
while a higher resolution further divides paired nucleo-
tides into stacked and helix-end, resulting in three
structure contexts. In RNAprob, pseudoenergies are
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applied once to each nucleotide, regardless of its
structural context. In contrast, they are applied to every
nearest-neighbor stack in [74,82,104]. Consequently,
pseudoenergies are applied 0, 1 and 2 times for each
unpaired, helix-end and stacked nucleotide, respectively.
Note that RNAprob is implemented within the program-
ming infrastructure of RNAstructure package [125], while
providing enhanced applicability.
Similar to RNAprob, RNAsc includes pseudoenergies

for all nucleotides, featuring two structure contexts
(paired and unpaired) [170]. Unlike the aforementioned
likelihood- and posterior-based pseudoenergy derivation,
RNAsc first converts each reactivity i into pi, the
probability of being unpaired. A pseudoenergy is then
computed for each of the two structural contexts as
βjxi – pij, where β is a user-specified scaling factor and
xi=0 and 1 for unpaired and paired nucleotides,
respectively.
RNApbfold extends the idea of pseudoenergy into

perturbations in the context of the partition function,
without explicitly converting SP data into ad hoc
pseudoenergies [171]. Specifically, it aims to find a
perturbation vector that minimizes the discrepancy
between predictions and SP data. This perturbation vector
applies only when SP data disagree with the thermo-
dynamic model predictions.

Non-pseudoenergy-based approaches

While pseudoenergy-based approaches have attracted
much attention in recent years, alternative data-directed
prediction approaches have gained much progress.
SeqFold adopts the “sample and select” strategy [172].
It first samples a set of structures from the entire structure
ensemble of a given sequence, which are then clustered
using Sfold [63]. Subsequently, one of the clusters is
selected based on the distance of each sampled structure
to the input structure profile, from which a consensus
structure is further computed. The accuracy of this
approach is largely determined by its ability to sample
the “correct” structure. Since the number of possible
structures is huge, there is no guarantee that the correct
structure will be sampled. Ideas of sample and select were
previously introduced in [65].
PPfold 3.0 extends the Pfold package [151] by

combining phylogeny with SP data [173]. It uses i) a
stochastic context-free grammars (SCFGs) to model
structures; ii) a phylogeny model to compute the
likelihood of input alignments; and iii) a probabilistic
model to include SP data. In a more recent work,
ProbFold combines SCFGs with probabilistic graphical
models [174]. While SCFGs give prior knowledge over
structures as in PPfold 3.0, the probabilistic graphical
models account for sequence and SP data.

The above data-directed structure prediction methods
all utilize SP data from a single experiment. The mutate-
and-map (M2) strategy developed by the Das lab provides
two-dimensional SP data [175]. For a sequence of length
N, M2 performs N+ 1 SP experiments: one for the wild
type and others for each of the N point-mutated
sequences. M2 is based on the assumption that mutation
of a single nucleotide may result in local or global
structural changes, which in turn result in reactivity
changes. M2 data can be converted into Z-scores and then
plugged into RNAstructure package as extra energy
bonus for MFE structure prediction. Recently, M2 data
have been used to predict multiple functional structures as
well as their relative abundances in the REEFFIT
algorithm [143].

Information content of SP data

The addition of SP data to better predict RNA structure
proved to be successful on a variety of RNAs. A natural
question that arises is: do all reactivities contribute
equally to drive structure prediction? This question was
recently addressed in the context of SHAPE data [135].
Instead of evaluating the relative contribution (informa-
tion content) of each single reactivity in a SHAPE profile,
reactivities are divided into five equally populated subsets
(a.k.a quintiles). The information content of each quintile
is then quantified using a combination of leave-one-in and
leave-one-out analyses. In the leave-one-in analysis, only
a selected quintile is used to direct structure prediction,
whereas in the leave-one-out analysis, all quintiles except
for a selected one are used. Benchmarked on a set of 23
RNAs with known reference structures, this study showed
that the top 20% reactivities are the major driving force in
structure prediction, followed by the lowest 20%. In
contrast, middle-range reactivities are less informative
and have marginal contribution to improving prediction.
Furthermore, the study showed, by a thought experiment,
that middle-range reactivities are key to further improving
predictions (Figure 4). Briefly, this experiment is done by
inputting perfect information (0 and 1.6 for paired and
unpaired nucleotides, respectively in [135]) to a selected
quintile, while leaving reactivities in all other quintiles
unchanged. Note that while it remains unknown if the
conclusions reported above hold for other types of SP
data, these analytical methods are readily applicable to
any type of data.
Understanding information content of SP data provides

us with practical guidelines to data-directed predictions.
For example, one may choose to be selective and use
reactivities that are most informative while ignoring
reactivities that are ambiguous. In addition, such insights
facilitate new models with better discriminative power,
which can potentially reduce the number of less
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informative reactivities and in turn improve structure
prediction.

Open questions

Structure prediction has been greatly advanced by the
rapid development of SP technologies. Studies have
shown that data-directed predictions often lead to better
performance. However, it is worth noting that the extent
of improvement in prediction accuracy varies substan-
tially among RNAs and appears to be sequence
dependent. It sometimes can have minor or even negative
effects on resulting predictions [135,176]. On the other
hand, regardless of the availability of various strategies to
incorporate SP data, to date, no method universally
outperforms all others [135]. As such, further improve-
ment is desired and can be possibly approached from the
following angles: i) Pseudoenergy-based methods have
solid performance in practice. We anticipate that perfor-
mances may be improved with pseudoenergy derivation
models that are more biologically and statistically mean-
ingful. ii) As in [172–174], pseudoenergies are not the
only way to integrate data and computation. Hence, it will
be interesting to explore alternative strategies for model-
ing SP data. iii) The recent development of novel
transcriptome-wide methods to probe RNA structures
experimentally presents us with massive data of unpre-

cedented complexity and diversity. These data, when
judiciously combined, have the potential to lead to better
performances. However, integrating information from
multiple data sources within current algorithms is
challenging due to their complex statistical dependencies.
A first attempt in this direction is reported in [103].
Availability of new probabilistic methods, such as
RNAprob and ProbFold, will certainly propel efforts in
this direction.

SOFTWARE INFRASTRUCTURE

The rapid development of SP has generated massive
amounts of diverse data. As for many other sequencing-
based studies, tools for data sharing and analysis are two
major needs. Here, we review recent progress towards
addressing these needs.

Databases and visualization tools

Structure Surfer [177], RNAex [178] and FoldAtlas [179]
are three recent tools for data sharing, which support
experiments such as DMS-Seq [26], structure-Seq [28],
icSHAPE [40], PARS [55] and ds/ssRNA-Seq [180]. In
addition, they provide a set of useful inspection and
visualization tools. Specifically, Structure Surfer allows to
visually compare different data sets, while RNAex and
FoldAtlas support visualization of predicted secondary
structures. RNAex also supports annotated RNA editing,
RNA modifications and SNP sites in predicted structures.
A recent tool, SEQualyzer, specialized to SP data quality
screening, is reported in [105].

Data preprocessing

Data analysis usually entails five major steps: i) Data
cleaning removes adapters, PCR duplicates or other
undesired sequences. ii) Read alignment maps reads to a
reference set of transcripts. iii) Count summarization at
nucleotide level. iv) Reactivity calculation. v) Data-
directed secondary structure prediction. Steps ii), iii) and
vi) are routinely featured in all platforms, while steps i)
and v) are supported by a subset of tools.
Specialized analysis pipelines adjoin most recent SP

protocols. Spats processes reads from SHAPE-Seq
experiments [33], implementing a model-based max-
imum-likelihood estimation approach to calculate reac-
tivities [60,80,181]. ShapeMapper and SuperFold are two
distinct analysis pipelines for SHAPE-MaP experiments
[39]. ShapeMapper converts raw sequencing reads into
mutational profiles, which are then used as input to
SuperFold for secondary structure prediction. They also
facilitate de novo identification of well-defined and stable
structure regions. Other specialized pipelines include

Figure 4. Information content of SHAPE data. Two
data-directed structure prediction methods, Deigan et

al.’s approach [82] and RNAprob [135], are tested on a

set of 23 RNAs, as used in [135]. For RNAprob, the
variant with two structure contexts and empirical
decoder is used. Bars represent SLW-average MCC
values of quintiles with perfect information. Upper

dashed lines represent the performance with the entire
struture profile set to perfect information. Solid lines
indicate the performance with the original struture profile

data and the bottom dashed line corresponds to the no-
SHAPE control.
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Mod-Seeker [35], MAPseeker [38] and icSHAPE [40].
Tools designed with broader applicability in mind

include StructureFold [164], RSF [182] and PROBer [79].
Deployed as part of the Galaxy platform [183],
StructureFold supports conversion of reads into reactiv-
ities and structure prediction, each of which is available as
a separate module. It implements a reactivity calculation
method proposed in [28]. Another modular pipeline,
RNA Structure Framework (RSF), supports similar
functionality as well as data cleaning. Additionally, it
offers flexibility in choosing from a number of reactivity
calculation methods [26,28] and normalization strategies
(2%–8%, 90% winsorizing and box plot). In contrast to
the former two, PROBer is a closed-box solution that
implements the statistical model-based approach of Li et
al. (see the Section of “Estimation of Structural Profile”).
PROBer is also unique in that it is applicable to a wider
range of diverse experiments. In particular, it encom-
passes a number of recent non-SP techniques that share
the following common workflow with SP: i) Chemical
modification of nucleotides encodes a signal of interest. ii)
The signal is detected via RT termination. iii) The cDNA
products of RT are sequenced and mapped to estimate
modification intensities per nucleotide. Examples of
biological signals that can be studied under this frame-
work include protein-RNA interactions [184,185], post-
transcriptional RNA modifications [186–192] and sites of
noncanonical RNA structure motifs such as G-quadru-
plexes [42]. Such unified view not only lends itself to
shared analysis pipelines but also alludes to plausible
commonalities in downstream comparative and integra-
tive analysis challenges. Methods that approach these
emerging challenges from a broader perspective may
reach and serve a wider research community.

CONCLUSION

We reviewed current practices and emerging questions in
comparative and integrative analysis of SP data. How-
ever, there are other emerging applications that we have
not touched upon, which are timely as they directly
leverage the new wealth of information. For example,
SHAPE-based alignment has been recently shown to have
comparable accuracy to traditional sequence-based align-
ment [167]. Alignment can be further improved when
combining sequence information with SHAPE data. In
addition, SP data-directed partition function can be used
to calculate Shannon entropy, which in turn is useful in
discovering well-defined RNA structures [39]. These and
additional timely applications are described in a recent
review [53]. Another exciting direction is the emergence
of a new class of RNA structure experiments, which
identify long-range and inter-molecular base-pairing
interactions [193–198]. Integrating this type of informa-

tion with SP data and with structure prediction algorithms
is likely to pose newer challenges and spur dedicated
methods development.
The advent of SP techniques has greatly expanded our

capacity to understand structures of various RNAs and to
deduce their functional roles. Propelled by these
advances, we are standing in an era of large-scale data
with increasing diversity and complexity, which in turn
poses significant challenges in data interpretation and
analysis. To maximize the potential of these datasets,
there is a need to develop methods for accurate data
interpretation, leveraging intrinsic statistical properties of
an SP protocol. Additionally, there is a need to better suit
methodology for comparative analysis to discover
biological patterns of interest as well as methodology
for characterizing SP information content to better utilize
data within structure prediction algorithms.
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