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Background: Restricted Boltzmann machines (RBMs) are endowed with the universal power of modeling (binary)
joint distributions. Meanwhile, as a result of their confining network structure, training RBMs confronts less
difficulties when dealing with approximation and inference issues. But little work has been developed to fully exploit
the capacity of these models to analyze cancer data, e.g., cancer genomic, transcriptomic, proteomic and epigenomic
data. On the other hand, in the cancer data analysis task, the number of features/predictors is usually much larger
than the sample size, which is known as the “p � N” problem and is also ubiquitous in other bioinformatics and
computational biology fields. The “p � N” problem puts the bias-variance trade-off in a more crucial place when
designing statistical learning methods. However, to date, few RBMmodels have been particularly designed to address
this issue.
Methods: We propose a novel RBMs model, called elastic restricted Boltzmann machines (eRBMs), which incorporates
the elastic regularization term into the likelihood function, to balance the model complexity and sensitivity. Facilitated
by the classic contrastive divergence (CD) algorithm, we develop the elastic contrastive divergence (eCD) algorithm
which can train eRBMs efficiently.
Results: We obtain several theoretical results on the rationality and properties of our model. We further evaluate the
power of our model based on a challenging task — predicting dichotomized survival time using the molecular
profiling of tumors. The test results show that the prediction performance of eRBMs is much superior to that of the
state-of-the-art methods.
Conclusions: The proposed eRBMs are capable of dealing with the “p � N” problems and have superior modeling
performance over traditional methods. Our novel model is a promising method for future cancer data analysis.
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INTRODUCTION

In the past decade, with the advent of high-throughput
sequencing techniques, comprehensive efforts have been
made to collect molecular profiling (e.g., genomic,
transcriptomic, epigenomic and proteomic) data of
tumor samples. The availability of these large amounts
of cancer molecular profiles facilitates extensive cancer
disease studies and further novel biological discoveries, in
which appropriate computational and statistical tools are

needed to perform the data analysis task [1‒3], e.g.,
exploring data features (co-expression genes) and influ-
ential elements (genes or mRNAs), integrating various
data types and predicting certain biological responses
(survival time or cancer subtypes) we are interested in.
However, it is not straightforward to apply extant

machine learning methods for the cancer data analysis,
mainly due to the specific properties of cancer molecular
profiles: unlike other data analysis tasks, such as image
classification and automatic speech recognition, the
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dimension of cancer data features greatly outnumbers the
sample size. For example, a typical cancer genomic
dataset downloaded from The Cancer Genome Atlas
(TCGA) [4] contains only hundreds (denoted by N) of
samples, but each sample contains more than 10k
(denoted by p) measurements of genomic profiling, such
as gene expression and copy number variation. This well-
known “p � N” problem [5,6] requires the designed
model to be able to address the bias-variance trade-off
issue [5] effectively: on one hand, as the feature
dimension p is large, the model should be equipped
with enough potential/complexity for discovering com-
plicated statistical characteristics across input features; on
the other hand, we need the model to perform well in
sensitivity/generalization since the observed sample size
N is extremely limited compared with p, which will lead
to overfitting easily. In statistics and machine learning
fields, one popular principle to address the “p � N”

problem is variable selection [7], also referred to as
feature selection, which integrates additional penalty/
regularization terms into the original objective function,
and performs estimation as well as selects pivotal features
simultaneously. LASSO [8] and its descendant the elastic
net [9] are two of the most classic methods realizing
feature selection. Nevertheless, most of these models are
linear in nature and lack the ability to model complicated
statistical characteristics, especially when p is large.
Restricted Boltzmann machines (RBMs) [10] have

been widely studied and used in the machine learning
fields. For example, they are commonly the fundamental
building blocks of the deep learning frameworks [11‒14],
like deep belief networks (DBNs) [12] and deep
Boltzmann machines (DBMs) [15]. In particular, RBMs
have been proven to own the universal potential of
approximating discrete distributions [16]. In addition,
Hinton’s training algorithm, i.e., the contrastive diver-
gence (CD) algorithm [17], can be used to train RBMs
efficiently. Both these aspects make the RBM an ideal
candidate for modeling complex statistical characteristics
of the input data. In fact, based on the original RBMs,
various modifications have been made in different
applications, for instance, Gaussian RBMs are proposed
to model images [10], replicated softmax model are used
to model word distributions and extract latent topics in
documents [18], RBMs can also be made to perform
collaborative filtering tasks [19]. Note that in the
bioinformatics field, Wang and Zeng proposed an RBM-
liked model to predict drug-target interactions effectively
[20]. Though RBMs have been applied successfully in
numerous applications, for the cancer data analysis, it is
far from making use of RBMs directly, mainly due to the
aforementioned “p � N” problem.
The overall goal of this study is to solve the above

problems, i.e., to fully exploit the modeling power of

RBMs in the “p � N” scenario, to analyze high-
dimensional cancer data, which fills the gap between the
model complexity and sensitivity. More specifically, we
develop a new RBMs model, called elastic restricted
Boltzmann machines (eRBMs), which extends the tradi-
tional RBMs model by adding an elastic regularization
term to the likelihood function. Under the maximum
likelihood estimation (MLE), our eRBMs can be trained
using the standard CD method efficiently, with only a few
modifications. We have also derived several theoretical
conclusions to demonstrate that the regularized optimiza-
tion problem of eRBMs own nice properties that satisfy
our complexity-vs-generalization demand. To evaluate
the power of our model empirically, we further perform a
challenging task, i.e., to predict dichotomized survival
time using the molecular profiling of tumors. Test results
show that the prediction performance of eRBMs are much
superior to the state-of-the-art methods.

RESULTS

Elastic restricted Boltzmann machines

We proposed a novel model to solve the “p � N”

problem, which is to solve the following optimization
problem,

minimize
W

–
1

jSjlnLðSÞ þ l1kWk1 þ l2kWk22, (1)

where l1 and l2 are two fixed coefficients measuring the
contributions of corresponding regularization terms,
kWk1:=Σijjwijj,   kWk22:=Σijw

2
ij and S is the training

set and wij is the weight associated with edge. Let α=l2
=ðl1 þ l2Þ , then the above problem is further equivalent
to the problem

minimize
W

–
1

jSjln LðSÞ

subject to ð1 – αÞkWk1 þ αkWk22£t   for some t,

(2)

where we call the function ð1 – αÞkWk1 þ αkWk22 the
elastic regularization term, which is a convex combina-
tion of the l1- and l2-norms. The corresponding
regularization technique is referred to as the elastic
regularization, and the resulting RBMs with Problem (2)
is called the elastic restricted Boltzmann machines
(eRBMs). Note that when α ¼ 0, Problem (2) degenerates
to Problem (15), while when α¼ 1, Problem (2) loses its l1
regularization term and is called the weight decay
method in neural networks [21]. In this paper, we
only consider α 2 [0,1Þ. Also note that the elastic
regularization term is strictly convex as the l2
regularization is considered, i.e., α > 0. More detailed
derivation of our model are given in Section of Materials
and Methods.
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Theoretical analysis

To characterize the effects of the elastic regularization
term of Problem (1) (or equivalently Problem (2)), here
we provide several theoretical results on both the extreme
situation in which several visible variables are exactly
positively correlated, namely, they are identical, as well as
the general case. Note that in this paper, we can only
consider the local minima of Problem (1) because of its
non-convexity. For brevity, we denote the objective
function of Problem (1) as

OðWÞ :¼ LðWÞ þ RðWÞ;
where

LðWÞ=–
1

S
ln  LðSÞ,RðWÞ=l1kWk1 þ l2kWk22:

Furthermore, let us denote a local minimizer of Problem

(1) in the neighbourhood U as W

, which means that 8W

2 U , we have OðWÞ³O W

� �

:

Lemma 1. Assume that for the training examples, Vi = Vj,
where i, j2{1,…, m}. Then we have the following
conclusions:

ðiÞ  If   l1, l2 > 0, then  ŵik=ŵjk , 8k 2 f1, :::, ng:

ðiiÞ  If   l2 ¼ 0, then   ŵikŵjk³0, 8k 2 f1, :::, ng:

For fixed k, W
 �

is another minimizer of Problem (1),
where

ŵ�
gh ¼

ŵgh 8h 2 f1, :::, ng, if   g≠i, j,

ŵgh if   g=i  or  g=j, but   h≠k,

sðŵik þ ŵjkÞ if   g=i  and   h=k,

ð1 – sÞ ŵik þ ŵjkÞ if   g=j  and   h=k,
�

8>>>>><
>>>>>:

for js – ŵik=ðŵik þ ŵjkÞj is small enough.
Proof. (i) First, let us fix l1, l2 > 0. If ŵik≠ŵjk for

some k, let us consider another weight vector W
 �

as
follows:

ŵ�
gh ¼

ŵgh 8h 2 f1, :::, ng, if   g≠i, j,

ŵgh if   g=i  or  g=j, but  h≠k,

ð1 – εÞŵik þ εŵjk if   g=i  and   h=k,

εŵik þ ð1 – εÞŵjk if   g=j  and   h=k,

8>>>>><
>>>>>:

where ε<1 is small enough such that for some δ > 0,

B W


,εjŵik – ŵjkj þ δ  � � U
�

. Here the open ball B(x0, r)

is defined by Bðx0, rÞ :¼ fx : jx – x0j<r, x 2 ℝm�ng.
Hence, W

 �
is also located in the neighbourhood U. Since

Vi = Vj , it is evident that L(W

) = L(W

 �
). However, since

l1, l2 > 0, the elastic regularization term R(W) is strictly

convex, which yields R(W
 �

)<R(W

). Here comes a

contradiction.
(ii) As l2=0 and the regularization term R(W)

degenerates to the l1 penalty, it is not strictly convex
now. Suppose that ŵikŵjk<0 for some k, consider the

same W
 �

as that in (i). Without loss of generality, we
assume that ŵik > 0 and ŵjk<0, and at the same time, we
set ε to be small enough (without contradicting the
constraints in (i)) such that ε<1=2,  ð1 – εÞŵik þ εŵjk > 0
while εŵikþð1 – εÞŵjk<0. Thus, we have jð1 – εÞ
ŵik þ εŵjk j þ jεŵik þ ð1 – εÞŵjk j
=ð1 – 2εÞ ŵik – ŵjkÞ<jŵijj

� þ jŵjk j, which yields R(W
 �

)

<R(W

) contradicting to the assumption. The case of

ŵik<0 and ŵjk > 0 can be discussed in the same manner.
Since we have validated that ŵik and ŵjk cannot own

the reverse signs, we have R(W
 �

) = R(W

), and further

O(W
 �

) = O(W

). After replacing the above ε by s, we note

that s shall satisfy that d W

;W
 �� �

=js – ŵik= ŵik þ ŵjkÞj
�

is small enough to make W
 � 2 U . ,

Lemma 1. provides us with nice properties of the eRBMs.
First, it guarantees the same weight solutions for two
exactly correlated variables. Though empirical data rarely
get this extreme correlations, Lemma 1 presents the
potential of the eRBMs to model variable correlations
explicitly, which satisfies our requirement discussed in
Section of Elastic Regularization. In addition, without the
l2 regularization, the problem (1) may have infinite
solutions around some local minimum, which makes it
less stable. Note that this is a concrete illustration of the
regularization technique to solve the ill-posed problem.
Let us consider the Pearson’s correlation coefficient

defined by

�X ,Y=
covðX ,Y Þ
�X�Y

=
EððX –�X ÞðY –�Y ÞÞ

�X�Y
, (3)

where cov denotes the covariance, � is the standard
deviation, and � represents the mean. For the reverse
direction, we have the following lemma.

Lemma 2. Suppose that in an RBM, for the visible
variables Vi and Vj, their weights are equal to each other,
i.e., wik=wjk ,8k 2 f1, :::, ng, then their Pearson’s
correlation coefficient equals to 1.
Proof. Since the weights of Vi and Vj are equal to each

other, we can treat them as the identical variable. Thus
based on the definition of Pearson’s correlation coeffi-
cient, the conclusion of this lemma follows after simple
computations, which are omitted here. ,

The complexity of the RBMs model lies in that the
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same distribution may have various model configurations,
which implies that though two visible variables are
correlated, their weights can be vastly distinct. However,
this ill-posed problem can be solved by our eRBMs model
perfectly. In fact, we have the following somewhat anti-
intuitive theorem.

Theorem 1. For the solutions of eRBMs, we have Vi = Vj ,
i, j2{1, ..., m} if and only if wik=wjk ,8k 2 f1, :::, ng .
Proof. This is a direct result of Lemma 1 and Lemma 2. ,

Next, we consider the general case, in which the
assumption of two identical variables is dropped. We have
the following general result that correlates/bounds the
difference between the parameter paths of variables to/by
their correlations quantitatively.

Theorem 2. Suppose that the regularization coefficients

l1, l2 are both positive in the eRBMs, and let W


be a
local minimizer of Problem (1). Assume that the empirical
distribution q(v) and the model distribution p(v) fit well, i.
e., there is a constant C >0 such that p(v)/ q(v) <C,
8v 2 f0,1gm. Also assume that ŵikŵjk > 0 for some
k 2 f1, :::, mg. Following [9], we define

Dl1, l2
ði, j, kÞ :¼ jŵikðl1, l2Þ – ŵjkðl1, l2Þj:

Then Dl1, l2
ði, j, kÞ is bounded above by the empirical

correlation of variables Vi and Vj. Precisely, we have

Dl1, l2
ði, j, kÞ=OðPeðυi≠υjÞÞ, (4)

where we use P and Pe to denote the model and empirical
probabilities, respectively.

Proof. First, under the distribution regularity assumption,
we claim that the probabilities PðVi≠VjÞ and PeðVi≠VjÞ
also fit well. Indeed, for PðVi ¼ 0, Vj=1Þ=PeðVi ¼ 0,
Vj=1Þ, we have

PðVi=0, Vj=1Þ
PeðVi=0, Vj=1Þ=

P
:::, vi=0, vj=1, ::: pðvÞP
:::, vi=0, vj=1, ::: qðvÞ

=
X pðvÞP

:::, vi=0, vj=1, ::: pðvÞ

£
X

:::, vi=0, vj=1, :::

pðvÞ
qðvÞ

£2m – 2C:
As for PðVi ¼ 1, Vj=0Þ=PeðVi ¼ 1, Vj=0Þ, we can get
the same upper bound after similar calculations.
Since ŵikŵjk > 0 , we have sgn ŵikgf = sgn ŵjkg

�
.

According to the assumption, the local minimizer W


satisfies
∂OðWÞ
∂wgh

j
W=W

=0,  if   ŵgh≠0:

Thus we have

∂LðWÞ
∂wik

j
W=W

 þ l1sgn ŵikg þ 2l2ŵik=0,f (5)

∂LðWÞ
∂wjk

j
W=W

 þ l1sgn ŵjkg þ 2l2ŵjk=0:
�

(6)

Subtracting Equation (5) from Equation (6) yields

ŵik – ŵjk=
1

2l2

∂LðWÞ
∂wjk

j
W=W

 –
∂LðWÞ
∂wik

j
W=W



�  �: (7)

Furthermore, according to Equation (12) below, the above
equation can be written as

wik – ŵjk=
1

2l2jSj
ððEpðhjvÞqðvÞÞ[VjHk ] –Epðv;hÞ[Vj Hk ]Þ

– ðEpðhjvÞqðvÞÞ[ViHk ] –Epðv;hÞ[Vi Hk ]:

Next follows several computations,

Dl1,l2
ði, j, kÞ=jŵik – ŵjk j

¼ 1

2l2jSj
$jEpðhjvÞqðvÞ[ðVi –VjÞHk ] –Epðv;hÞ[ðVi –VjÞHk ]j

=
1

2l2jSj
$jðPð1j1,0ÞPeð1,0Þ –Pð1j0,1ÞPeð0, 1ÞÞ

– ðPð1j1, 0ÞPð1, 0Þ –Pð1j0, 1ÞPð0, 1ÞÞj

£
1

2l2jSj
$ðjPeð1, 0Þ –Pð1, 0Þj þ jPeð0, 1Þ –Pð0, 1ÞjÞ

£
1

2l2jSj
$ðPeð1, 0Þ þ Pð1, 0Þ þ Peð0, 1Þ þ Pð0, 1ÞÞ

£
1

2l2jSj
$ PeðVi≠VjÞ 2þ Pð1, 0Þ

Peð1, 0Þ
þ Pð0, 1Þ

Peð0, 1Þ
� �� �

£
1þ 2m – 2C

l2jSj
PeðVi≠VjÞ,

where Pðx3jx1,x2Þ, Pðx1, x2Þ and Peðx1, x2Þ are short
for PðHk=x3jVi=x1,Vj=x2Þ, PðVi=x1,Vj=x2Þ and Pe

ðVi=x1,Vj=x2Þ, respectively, x1, x2, x3 2 f0,1g, and
PeðvÞ represents qðvÞ. This completes the proof . ,

From Theorem 2, we find that if l1 and l2 vary, the
quantity Dl1, l2ði, j, kÞ describes the difference between
parameter paths of variables Vi and Vj. Note that Equation
(4) bounds Dl1, l2 with the empirical probability
PeðVi≠VjÞ=1 –PeðVi=VjÞ, which represents the positive
correlation between binary variables Vi and Vj. If Vi and
Vj are highly positively correlated, i.e., PeðVi≠VjÞ is
almost 0, their weight difference can be guaranteed to be
particularly small. Note that for the negative correlation
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where PeðVi≠VjÞ is almost 1, if we replace Vi by 1 –Vi and
perform the similar discussions, the same conclusion
follows. Theorem 2 presents the very nice property that in
the general situation, the correlated variables can obtain
similar weights in eRBMs, which increases the model
flexibility as well as the generalization. We finally note
that all the above analysis and conclusions of eRBMs are
also valid for the elastic version of ClassRBMs (i.e.,
considering the elastic regularization in the generative
objective of ClassRBMs), since the two base models are
the same in nature.

Tests on simulated data

We first evaluated the performance of our eRBMs model
on simulated data. Here, we describe the procedure of the
data generation. We first set a “true model”Mtrue that was
an RBM with sparse weights, and used this “true model”
to generate the simulated data. In Mtrue, we set the
numbers of hidden and visible variables to be 250 and
500, respectively. We also set b and c to be 0, and
generated the 250 � 500 weight matrixW, in which each
element followed the normal distribution Nð0, 0:1Þ. After
that, we randomly picked a weight element to be 0 with
probability 0.5. Based on this Mtrue, we generated 10
training dataDtrain and 1,000 test dataDtest by running the
Gibbs sampling (1,000 iterations for each sample). Here
we used a small training set to construct a “p � N” case
(500� 10), and generated a large test dataset to evaluate

the model performance sufficiently.
Here we tested 25 different combinations of the

coefficients of l1 and l2 regularization terms, i.e., (l1, l2)
2 {0.1, 0.01, 0.001, 0.0001, 0} � {0.1, 0.01, 0.001,
0.0001, 0}. The eRBMs were trained using the eCD
algorithm (see Algorithm 1). We evaluated the influence
of l1 and l2 depending on the following procedure: after
training an eRBM, another 1,000 samples Dlearn were
generated based on this learned RBMMlearn (still via the
Gibbs sampling). If Mlearn captured the statistical
characteristics of Mtrue, samples Dlearn and Dtest should
be “close” enough. Since we have derived the eRBMs
model according to the correlations between different
input dimensions, here we computed the correlation
coefficient matrices Rtest and Rlearn for Dtest and Dlearn,
respectively, in which Rij=�Vi,Vj represents the Pearson’s
correlation coefficient (see Equation (3)) between vari-
ables Vi and Vj given corresponding samples. To quantify
the difference between Rtest and Rlearn, we adopted the
two-norm of the matrix, i.e., the maximum singular value
of the matrix. Precisely speaking, we computed the
correlation coefficient difference (CCD) ΔR :¼ kRtest –
Rlearnk2 for each (l1, l2)-configuration, where the small
ΔR implied similar statistical characteristics of sample sets
Dtest and Dlearn. Selected results are presented in Table 1
and the complete test results are provided in Appendix A.
Table 1 presents the CCDs of four (l1, l2)-configura-

tions, including the traditional RBMs without any
regularization. We found that the smallest CCD (in all

Algorithm 1 (k-step elastic contrastive divergence)

Input: eRBMs with initialized parameters W, b and c, training set S.

Output: Gradient approximations Δwij
, Δbi

and Δcj for i = 1, ..., m, j = 1, ..., n.

1: for v∈S do

2: v(0)←v

3: for t = 0, ..., k – 1 do

4: for j = 1, ..., n do

5: Sample hðtÞj � pðhjjvðtÞ Þ
6: end for

7: for i = 1, ..., m, do

8: Sample υðtþ1Þ
i � pðυijhðtÞ Þ

9: end for

10: end for

11: for i = 1, ..., m, j = 1, ..., n do

12: Δwij
←Δwij

þ pðHj=1jvð0ÞÞυið0Þ – pðHj=1jvðkÞÞυiðkÞ – l1sgnfwijg – l2wij

13: Δbi←Δbi þ υð0Þi – υðkÞi

14: Δcj←Δcj þ pðHj=1jvð0ÞÞ – pðHj=1jvðkÞÞ
15: end for

16: end for
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25 (l1, l2)-configurations) was obtained when l1 =
0.0001 and l2 = 0.01. Though the CCDs of configurations
of (0, 0.01) (weight decay case) and (0.0001, 0) (losing
the l2-regularization) were still smaller than that of the
traditional RBMs, not appropriately regularized RBMs
lacked the ability to fully capture the statistical character-
istics of the true distribution described by the “true
model”. These observations established the necessity of
our eRBMs model, namely, the combination of l1- and l2-
regularization endows the eRBMs with more power to
unravel the objective distributions in the “p � N” case.
Note that we have confronted the issue of selecting the
best (l1, l2)-configuration (also known as model selec-
tion) from the candidate set, which yields the most proper
regularization. Indeed, certain (l1, l2)-configurations
(e.g., (0.1, 0) and (0.01, 0.01), see Table A1 for details)
may lead to worse performance than the unregularized
one. In the unsupervised case, such as the test here, we
can choose some objective functions (e.g., the CCD)
measuring the modeling performance to select the best
(l1, l2). In the supervised case, such as the test in the next
section, corresponding classification or regression accu-
racy can be used based on the cross-validation procedure.
More detailed discussions on model selection are given in
Section of Model Selection.

Predicting dichotomized survival time

Predicting dichotomized survival time is the first step
towards exploiting the clinical utility of the collected
molecular profiling of human tumor in TCGA [22].
Though TCGA [4] has yielded large amounts of
molecular profiling (e.g., genomic, transcriptomic, epige-
nomic and proteomic cancer data) of various cancer types,
the “p � N” issue is rather prominent. For example,
TCGA maintains hundreds of samples for each tumor
type, but every sample contains ~10k features (e.g., DNA
methylation and mRNA expression). The state-of-the-art
methods on predicting dichotomized survival time using
the cancer genomic and proteomic data are not so
promising [22]. Here, we adopted the classification
version of the eRBMs (see Section of Classification
Restricted Boltzmann Machines for technical details) to
perform the same task on the datasets of ovarian serous

cystadenocarcinoma (OV). More details of the datasets
can be found in Section of datasets in Materials and
Methods. Our test results showed that the proposed
eRBMs models beat other methods, including the
traditional RBMs, in the prediction performance, which
provides another demonstration of the superiority of the
eRBMs.

Model performance under different hyperparameters

To predict the dichotomized survival time of OV from its
genomic and proteomic data, here we adopted the more
flexible RBM variant—ClassRBM introduced in Section
of Classification Restricted Boltzmann Machines. We
have shown that ClassRBMs can be trained in both
unsupervised and supervised fashions, which are perfect
candidate models to evaluate our elastic regularization
method by the classification task. For each OV molecular
profiling types, we implemented the traditional
ClassRBM and its elastic versions on the basis of the
MATLAB package [RBM Toolbox], and set the coeffi-
cient α (see Equation (14)) adjusting the generative and
discriminative objective terms to be the default 0.5. The
candidate (l1, l2)-configuration set was still {0.1, 0.01,
0.001, 0.0001, 0}� {0.1, 0.01, 0.001, 0.0001, 0}. For the
network structure, we set 256 hidden units for the “p �
N” case, i.e., the OV profiling of DNA methylation,
mRNA and miRNA expressions. For the SCNA and
protein expression, in which the feature dimension is
comparable to the sample size, we assigned 100 hidden
units to their corresponding RBMs, as previous studies
have shown RBMs with equal or less hidden units to/than
the visible units will perform better than those with more
hidden units [21,23].
To evaluate the prediction performance, here we

adopted the area under receiver operating characteristic
curve (AUROC), the same as that in [22]. Note that for
fairness, we used the same 10-fold data partition as that of
[22], which is deposited in [syn1748545]. The result
comparison is illustrated in Table 2. Here, we only present
the AUROC performance of the best (l1, l2)-configura-
tion, the traditional ClassRBM, and the state-of-the-art
methods for each OV molecular profiling type for brevity.
The complete results are provided in Tables B1 to B5 of
Appendix B.
We find from Table 2 that, in predicting dichotomized

survival time for OV, the elastic version of ClassRBM
outperformed all other models, including the traditional
ClassRBM, in all OV molecular profiling types. The
average AUROC increase of the best eRBM vs. the state-
of-the-art method was 7.8%. Interestingly, the traditional
ClassRBM, though equipped with more capacity to model
objective distributions than other models (e.g., logistic
regression and partial least square), only got similar or

Table 1. Test results on the simulated dataa.

Case l1 l2 ΔSðCCDÞ
1 0 0 117.58

2 0.0001 0 109.17

3 0 0.01 93.53

4 0.0001 0.01 67.96b

a We only present representative test results here for brevity. The whole

results can be found in Appendix A.
b The smallest CCD in all 25 (l1, l2)-configurations.
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worse prediction performance, probably affected by the
“p � N” issue. For example, for DNA methylation, the
RBM model yielded similar AUROC score (0.620) to the
state-of-the-art result (0.619), while for mRNA expres-
sion, the RBM model acted much worse (AUROC of
0.608) than discriminant analysis and partial least square
(AUROC of 0.640). Similar situation happened for other
three profiling types. Note that for SCNA and protein
expression, in which there was no “p � N” problem and
the feature dimension was less than the sample size (109
vs. 252 and 165 vs. 252 for SCNA and protein expression,
respectively), our eRBMs models also obtained the best
prediction performance.
We note that to address the “p � N” problem, Yuan et

al. [22] adopted the pre-selection strategy, namely, to
select important variables before inputing to the corre-
sponding models. Yuan et al. [22] used ANOVA and
shrinking centroids [24] to select 10 to 50 important input
variables via the 10-fold cross-validation and the best
AUROC scores were finally reported. In contrast, for our
eRBMs models, the feature selection procedure was
simultaneously performed during the model training
process, i.e., setting the weights of irresponsible visible
variables for each hidden variables to be zero. The above
observations further demonstrate the superiority of our
eRBMs models.

Model selection

The elastic regularization term introduces two hyperpara-
meters, i.e., l1 and l2, to the model training. In the
previous sections, we have demonstrated the effects of
different hyperparameters on the final model perfor-
mance. Here, we take the test of miRNA profiling data of
OV as an example to show how we can perform the
hyperparameter selection/model selection for eRBMs in a
regular manner. Without loss of generality, the candidate
(l1, l2)-configuration was set be {0, 0.1, 0.3, 0.01, 0.03,
0.001, 0.003, 0.0001, 0.0003} � {0, 0.1, 0.3, 0.01, 0.03,
0.001, 0.003, 0.0001, 0.0003}. First, we divided all the
samples into 10 folds, in which one fold was randomly
selected as the independent test set and the left nine folds
were regarded as the training set. Based on the training
data, we performed a nine-fold cross-validation procedure
for each candidate (l1, l2)-configuration to select the best
hyperparameters. The number of the hidden units of
eRBM was set to be 256, the same as that in Section of
Model Performance Under Different Hyperparameters.
The AUROC scores of the nine-fold cross-validation for
different hyperparameters are shown in Table 3. We found
that the eRBMs model achieved the best prediction
performance when (l1, l2) = (0.3, 0.001). With this
selected (l1, l2)-configuration, we further trained our

Table 3. AUROC scores for selecting hyperparameters (l1, l2)
a.

l1=l2 0 0.1 0.3 0.01 0.03 0.001 0.003 0.0001 0.0003

0 0.517 0.641 0.650 0.564 0.587 0.521 0.534 0.517 0.517

0.1 0.646 0.646 0.641 0.658 0.641 0.642 0.634 0.636 0.658

0.3 0.642 0.644 0.656 0.647 0.653 0.671 0.656 0.634 0.661

0.01 0.662 0.648 0.652 0.639 0.644 0.641 0.650 0.649 0.642

0.03 0.656 0.641 0.649 0.665 0.655 0.617 0.634 0.646 0.645

0.001 0.519 0.639 0.652 0.580 0.609 0.531 0.534 0.518 0.535

0.003 0.638 0.623 0.652 0.662 0.646 0.653 0.650 0.658 0.654

0.0001 0.520 0.636 0.639 0.559 0.604 0.552 0.546 0.532 0.538

0.0003 0.549 0.639 0.657 0.541 0.595 0.546 0.543 0.535 0.529
a The AUROC score for each (l1, l2)-configuration is presented here, in which the best performance is shown in bold.

Table 2. AUROC scores of the 10-fold cross-validation for predicting dichotomized survival time for OVa.
Model/Profiling DDA KNN DA LR NC PLS RF SVM RBMs eRBMs l1 l2

Methy 0.597 0.573 0.598 0.599 0.582 0.598 0.579 0.619 0.620 0.683 0.001 0.1

mRNA 0.618 0.617 0.640 0.604 0.612 0.640 0.619 0.626 0.608 0.690 0 0.1

miRNA 0.586 0.582 0.605 0.594 0.584 0.605 0.589 0.625 0.551 0.679 0.1 0.001

SCNA 0.612 0.591 0.558 0.580 0.586 0.558 0.606 0.615 0.563 0.689 0.1 0.01

Protein 0.578 0.595 0.575 0.618 0.599 0.589 0.546 0.625 0.605 0.684 0.1 0.001
a The model acronyms DDA, KNN, DA, LR, NC, PLS, RF, SVM are short for diagonal discriminant analysis, K-nearest neighbor, discriminant

analysis, logistic regression, nearest centroid, partial least square, random forest and support vector machine, respectively. The implementation details

(e.g., the hyperparameter settings) of those models can be found in [22]. The best AUROC for each OV molecular profiling is shown in bold, and the

AUROC of the state-of-the-art method is shown in italic. Only the performance of the best (l1,l2)-configuration and the traditional ClassRBM is

presented here for brevity. The whole test results can be found in Appendix B.
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final eRBMs model based on the whole training data and
evaluated its performance on the independent test data, in
which the AUROC was 0.635 and the area under the
precision-recall curve (AUPR) was 0.625.

RELATED WORK

The idea of regularization to solve the “p � N” problem
and increase the model generalization ability is widely
used in statistics [7,25]. There are many other regulariza-
tion/penalty terms with various properties equipping
statistical models, see [7] for a nice review. In particular,
the traditional ridge regression [5], LASSO [8] and elastic
net [9] use similar regularization techniques adopted in
our study. However, different from our eRBMs, these
base models are linear in nature and have no latent
variables, which may lack the ability to model compli-
cated nonlinear features. Moreover, both supervised (see
the classification RBMs in Section of Classification
Restricted Boltzmann Machines) and unsupervised learn-
ing are practicable in eRBMs, which extends the
application scope of our method, like the semi-supervised
scenarios.
Several code packages have implemented the weight

decay technique [21] to train an RBM. We have shown
that the weight decay is a special case of our elastic
regularization given α ¼ 1 in Problem (2), see Section of
Theoretical Analysis for details. Our test results in Section
3 also demonstrate that only with l2-regularization is not
enough for high-dimensional data analysis. In particular,
our work focuses on addressing the “p � N” problem
from the beginning (by following the bias-variance trade-
off principle), and derives the elastic regularization term
combining both l1- and l2-norms. Both theoretical and
empirical analyses verify that our method indeed works as
expected.
We have noted that the l1-norm on weights leads to

sparse solutions. For instance, LASSO searches for a few
significant and explainable predictors while ignoring
other less important factors. In fact, sparsity is always a
dominant topic in machine learning, signal processing
and statistics [5,13]. The consideration of sparsity first
appears in computational neuroscience (the visual system
[26]) and is further embodied as sparse coding [27]. Based
on this biological observation, researchers in machine
learning, especially in neural networks and deep learning,
have been exploring various effective distributed sparse
representations [28], such as the sparse auto-encoders
[29‒31] and the sparse RBMs [21,32]. These sparse
models are seeking for sparse latent representations of the
input data, in which (in the language of RBMs) the hidden
variables are activated (computing Equation (10) and
getting high probability) in only a few fraction while
leaving most others silent. The detailed motivation and
advantage of introducing sparsity can be found in an

excellent survey [13]. However, we want to emphasize
that this representation sparsity (sparse hidden variables)
is not our goal (sparse weights) in this study. Indeed, these
two kinds of sparsity are not conceptually orthogonal and
we can further integrate the representation sparsity into
our method.
Recently, Min et al. developed a network-regularized

sparse logistic regression model for the clinical risk
prediction [33], in which the prior knowledge like
biological pathways or gene interaction networks were
integrated. Test results on both simulated and real cancer
data demonstrated the superiority of their regularized
method over traditional models. The regularization
technique proposed in [33] is complementary to our
elastic regularization, and this network-regularized term
can also be integrated into our eRBMs model.

DISCUSSION

The “p � N” issue challenges the extant statistical and
computational models for cancer data analysis. In this
study, we proposed a novel graphical model, called the
elastic restricted Boltzmann machines (eRBMs), to
address this problem. In the principle of the bias-variance
trade-off, we reformalized the optimization objective of
the traditional RBMs by combining the l1 and l2
regularization. Both comprehensive theoretical analysis
and empirical tests on simulated data verified that our
eRBMs models gain nice properties that achieve our
primary motivations. Moreover, we developed an efficient
training algorithm, referred to as the elastic contrastive
divergence (eCD), for eRBMs based on the classic CD
algorithm. Our eRBMs models are also consistent with
other RBM variants, such as the ClassRBMs, which can
be trained in both generative (unsupervised) and dis-
criminative (supervised) settings. This flexibility enlarges
the application area of our method. At last, to evaluate the
application performance of eRBMs, we performed a task
of predicting dichotomized survival time using the
molecular profiling of tumors, which is quite challenging
as there are many other factors that can influence the
survival time, such as the psychological factors, age,
gender and tumor stages. Test results revealed that the
prediction performance of our method was much superior
to that of the state-of-the-art approaches. In this work, we
mainly focused on balanced dataset. For the imbalanced
high-dimensional dataset, we recommend integrating the
regular upsampling or downsampling techniques [34]
with our eCD training algorithm.

MATERIALS AND METHODS

Background on restricted Boltzmann machines

Restricted Boltzmann machines (RBMs, see Figure 1)
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[10] are undirected graphical models (also referred to as
Markov random fields) which describe the probability
distributions of binary variables. Various generalizations
[21] of RBMs make them effective to model different
types of data, e.g., count vectors [18] and real-valued data
[21]. Here we introduce the most commonly used RBM
(also used in this study) — the Bernoulli-Bernoulli RBM
(BBRBM). In the following, we always denote BBRBM
by RBM for short.
An RBM can be regarded as a bipartite graph: the

visible layer consists of m visible units fV 1, :::,Vmg to
represent observed data/variables, and the dependency
across them is depicted by n hidden units fH1, :::,Hng
which constitute the hidden layer. We note that the both
visible and hidden units are binary variables in an
BBRBM. In particular, in an RBM, each visible unit is
connected to every hidden unit, but there is no edge
between each two units in the same layer. This means that
the variables in the same layer are conditionally
independent given the other layer.
In an RBM, let wij denote the real-valued weight

associated with the edge between the visible variable Vi
and the hidden variable Hj, and let bi and ci be the bias
terms of Vi and Hi, respectively. We further useW, b and
c to denote the vector representations of corresponding
parameters. Then the joint probability mass function of
the RBM can be defined by

pðv, h; θÞ :¼ 1

ZðθÞ expð –Eðv,h; θÞÞ, (8)

where ðv, hÞ 2 f0,1gmþn, θ :¼fb, c,Wg, ZðθÞ is the parti-
tion function, and the energy function E : f0, 1gmþn

↕ ↓ℝ
is defined by

Eðv, h; θÞ :=–
Xm
i=1

Xn
j=1

wijvihj –
Xm
i=1

biυi –
Xn
j=1

cjhj: (9)

Note that herem is the dimension of the input features and
we have replaced p by m to follow the convention of the
machine learning literature. The conditional indepen-
dence of visible and hidden variables makes it easy to
calculate their conditional probabilities:

PðHj=1jvÞ=s
Xm
i=1

wijυi þ cj

 !
(10)

and

PðVi=1jhÞ=s
Xn
j=1

wijhj þ bi

 !
, (11)

where s(x) denotes the sigmoid function, i.e., s(x) :¼1/(1
+ e–x).
The principle of training an RBM is based on the

maximum likelihood estimation (MLE), i.e., to learn the
parameter set θ that maximizes the log-likelihood lnLðS
; θÞ=Σv2  S lnpðv; θÞ of the training set S. The gradient of
the log-likelihood is given by

∂lnLðS; θÞ
∂θ

/ –EpðhjvÞqðvÞ
∂Eðv, h; θÞ

∂θ

� 	

þ Epðh, vÞ
∂Eðv, h; θÞ

∂θ

� 	
, (12)

where q(v) denotes the empirical distribution. The above
gradient is of exponential complexity and thus intractable.
One may approximate the expectations by sampling
methods, e.g., Gibbs sampling, but this requires running
the Markov chain long enough to achieve its equilibrium,
which is also less efficient. Intuitively, during sampling
we can run the Markov chain for only a few steps before
its convergence, which results in the Contrastive
Divergence (CD) algorithm [17]. CD has been shown to
be sufficient for training products of experts and is now a
standard training method for RBMs. With k-step CD
(usually k = 1), the gradient of the log-likelihood for one
training sample v(0) can be approximated by

CDkðvð0Þ; θÞ=–
X
h

pðhjvð0ÞÞ∂Eðv
ð0Þ, h; θÞ
∂θ

þ
X
h

pðhjvðkÞÞ∂Eðv
ðkÞ, h; θÞ
∂θ

, (13)

where v(k) is the sample value after running the Markov
chain for k steps and v(0) is the original value of observed
data. Note that Equation (13) is in its general form, and
the update rules (based on the gradient ascent algorithm)
for other RBM-liked models can be derived easily.

Classification restricted Boltzmann machines

The classification restricted Boltzmann machine
(ClassRBM) [35,36] is a variant of the traditional RBM,
which is adapted to both unsupervised and supervised

Figure 1. An RBM example where connections only exist
between visible and hidden layers.

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017 167

Elastic restricted Boltzmann machines



learning settings. The key idea of ClassRBMs is to treat
the target class of each sample as another visible variable
and model the joint probability distribution of sample
features and target using RBMs. In this principle, the
ClassRBMs can be trained based on the hybrid objectives,
i.e.,

HðS; θÞ=– ð1þ αÞ
X
S

ln pðyjxÞ – α
X
S

ln pðxÞ, (14)

where x is the sample feature, y is the sample target and
the coefficient α adjusts the fraction of these two terms.
Note that the first term (can be computed directly due to
the special structure of the ClassRBM) of the r. h. s. of
Equation (14) represents the discriminative training
objective which estimates the sample target given its
input feature. Meanwhile, the second term of the r. h. s. of
Equation (14) is the usual log-likelihood function w. r. t.
the sample features, which is known as the generative
training objective.
The word “hybrid” comes from combining the

generative objective with the discriminative one, which
is the main property of ClassRBMs. In this case, the
traditional RBMs are special cases of the ClassRBMs, and
the CD algorithm can be integrated into training
ClassRBMs efficiently. The major flexibility of the
ClassRBMs lies in that we can perform semi-supervised
learning and multitask learning in this framework quite
naturally. Due to the space limitation, we omit most
definitions and derivations here. For details, readers may
refer to [35] and [36].

Elastic regularization

We have mentioned that RBMs are universal approx-
imators of discrete distributions [37]. However, in the
case of “p � N”, i.e., the dimension of data features is
much larger than the sample size, the traditional RBM
models and their corresponding training algorithms do
fall into a dilemma of model complexity vs. general-
ization, where the biasvariance trade-off plays a more
important role in the model design. Mathematically
speaking, limited by the insufficient training samples,
the “p � N” case always incurs an illposed problem [38],
whose false solutions discover the false structures in the
data that results in the overfitting phenomena. It has been
shown that the well-studied regularization theory can
solve the ill-posed problem satisfactorily and has been
widely used in statistics and optimization fields [7,38].

From complexity to generalization

Based on the discussion given by [21], the number of bits
it takes to identify an input data determines the amount of

constraint each training example imposes on the model
parameters. Thus, it is reasonable to fitm�n parameters to
m � N training bits if N� n. This implies that we should
determine the number of hidden units to be small enough
limited by the sample size, which yields large bias but
small variance. On the other hand, since the input feature
dimension is severely large, and adding hidden units
improves the modeling power at least for BBRBM [37],
we need large enough number of hidden units to
characterize the complicated probabilistic distribution of
high-dimensional input data, which yields small bias but
large variance. To address this particular bias-variance
trade-off issue, here we consider the following regularized
optimization problem,

minimize
W

–
1

jSjlnLðSÞ, subject  to  kWk1£t   for  some  t,

(15)

where jSj is the sample size, k$k1 denotes the l1-norm
andkWk1 :¼ Σijjwijj . Note that here we only consider the
regularization of weights. It is well-known that the nature
of l1 regularization generates the sparsity of the model
parameters. For example, in linear regression, LASSO
[88] plays the role of variable selection and omits those
predictors less responsible for the regression objective.
For the RBMmodel, the l1 regularization term in Problem
(15) will shrink most weights to be 0, which results in that
each input bit is only responsible for a few hidden units.
This enables us to add more hidden units (i.e., increasing
the model complexity) for boosting RBM’s modeling
power without losing its generalization ability (i.e.,
preventing overfitting). Therefore, we have tackled the
bias-variance trade-off in the “p � N” case preliminarily.
Indeed, since the weights minimizing Problem (15) are
sparse, each hidden unit is actually activated by a few
visible units (see Equation (10)). Thus optimizing
Problem (15) can be treated as automatically selecting
prominent variables/features responsible for hidden units
similarly to LASSO.

From generalization to complexity

It has been shown that in the “p � N” problem, there are
high correlations across visible variables, which clusters
the variables into groups [6,9]. Different from linear
models (e.g., linear regression and logistic regression),
where variable correlations are embodied by correspond-
ing coefficients, RBMs can model this grouping effect
with hidden variables, which is the main superiority of
latent variable models. However, the l1 regularization
appearing in Problem (15) also restricts the model
flexibility, which weakens RBM’s ability to fully discover
variable correlations. In particular, it has been shown
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theoretically that LASSO tends to randomly select only
one variable from the correlated group [39]. To illustrate
this phenomenon informally, we find that two input
variables that share similar weights would be positively
correlated, while the l1 regularization breaks this balance
and increases their weight variance, which leads to
unpredictable correlation modeling. More theoretical
analysis on this topic can be found in Section of Test on
Simulated Data.
To make a further compromise between the model

generalization and its expression power, the well-known
l2 regularization turns to be our natural choice. Intuitively,
let us first consider the following simple optimization
problem,

minimize
wij

X
ij

w2
ij, subject  to 

X
ij

jwijj=c,

where c is a constant. Geometrically speaking, we want to
minimize the radius of a ball (expressed as the object
function) in a high-dimensional space with the restriction
that the ball intersects with a given convex polyhedron
(expressed as the constraint). Obviously, the solutions of
this problem are given when the ball and the fixed convex
polyhedron are tangent, where all coordinates of the
solution vectors have equal modulus. Thus, by adding
another external l2 regularization term in Problem (15),
the weights in the RBM are averaged to some extent,
which imposes similar weights between correlated
variables expicitely.
At last, we obtain the following optimization problem,

minimize
W

–
1

jSjlnLðSÞ,

subject to  kWk1£t1   and  kWk22£t2 for  some  t1, t2,
(16)

where k$k2 denotes the l2-norm and kWk22 :¼ Σijw
2
ij. In

particular, it is equivalent to

minimize
W

–
1

jSjlnLðSÞ þ l1kWk1 þ l2kWk22, (17)

where l1and l2 are two fixed coefficients measuring the
contributions of corresponding regularization terms. Let
α ¼ l2=ðl1 þ l2Þ, then the above problem is further
equivalent to the problem

minimize
W

–
1

jSjlnLðSÞ,

subject  to  ð1 – αÞkWk1 þ αkWk22£t   for  some  t:

(18)

Model training

With only a few modifications, our eRBMs model can be

trained efficiently based on the CD algorithm. In the
previous sections, we have noticed that the CD algorithm
is used to approximate the gradient of the log-likelihood
function, i.e., Equation (12). Meanwhile, we note that the
optimization function of eRBMs (i.e., Problem (1))
contains the elastic regularization term besides the
likelihood function. Therefore, to learn parameters of
eRBMs, we should integrate the derivatives of the l1- and
l2-norms into the CD algorithm.
It is trivial to compute the derivative of l2-norm for

model parameters, i.e.,

∂kWk22
∂wij

=2wij:

As for the l1-norm, here we adopt the subgradient method
[40], i.e.,

∂kWk1
∂wij

� sgnfwijg,

which is widely used in convex optimization.
The adapted CD algorithm, which is called elastic

contrastive divergence (eCD), is shown Algorithm 1.
Though intermediate variables have to be sampled (for k
times) during the CD/eCD algorithm, attributed to the
conditional independence of visible and hidden variables
(see Equations (10) and (11)), the Gibbs sampling can be
performed quite efficiently. Also, it has been verified
empirically that the 1-step CD algorithm can yield
satisfiable training results [21], which was also adopted
in our tests. We note that several training parameters, e.g.,
learning rate, training batch size and momentum [21], are
omitted in Algorithm 1 for brevity. We also notice that to
hybridly train the elastic version of ClassRBMs, we can
simply replace the CD algorithm for its generative part by
the eCD described in Algorithm 1.

Datasets

The genomic and proteomic profiling types of ovarian
serous cystadenocarcinoma (OV) include: (i) mRNA
expression (AgilentG4502A, Agilent 244K Custom Gene
Expression G4502A), (ii) DNA methylation (27k,
Illumina Infinium Human DNA Methylation 27K), (iii)
SCNA (SNP 6, Affymetrix Genome-Wide Human SNP
Array 6.0), (iv) microRNA (miRNA) expression (H-
miRNA 8�15K, Agilent 8�15K Human miRNA-specific
microarray platform) and (v) protein expression (RPPA,
MD Anderson reverse phase protein array). The datasets
we used in tests came from [22], which can be
downloaded from [syn1710282]. In particular, Yuan
et al. [22] first compiled a sample set (called the core
set) in which each sample has the above five kinds of
information as well as the survival time. Then Yuan et al.
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[22] dichotomized the censored continuous survival time
by setting a cutoff time, i.e., three years, which balanced
the positive and negative sample sizes in the prediction
task. Individuals who lived beyond the cutoff time were
assigned label one (positive samples), while those died
before were labeled as zero (negative samples). The
ambiguous samples with the survival time censored
before three years were excluded. Note that here
predicting dichotomized survival time is a classification
task in nature, which is not the same as predicting the
exact survival time. Moreover, since the RBM models
mainly deal with binary variables, we dichotomized the
real-valued molecular profiling data based on the
corresponding mean cutoff, i.e., values above the mean
were set to be one (highly expressed), while those
under the mean were set to be zero (lowly expressed).
The overview of the OV datasets is illustrated in
Table 4.

APPENDIX A

APPENDIX B

Table A1. Complete test results on the simulated dataa.
l2=l1 0 0.0001 0.001 0.01 0.1

0 117.58 80.89 85.07 93.53 129.89

0.0001 109.17 94.30 137.38 67.96 122.98

0.001 103.83 98.66 133.40 101.74 127.12

0.01 83.67 84.77 92.11 138.16 94.69

0.1 151.16 131.57 83.37 85.83 100.65
a The CCDΔR for each (l1,l2)-configuration is presentedin the table,

where the smallest one is shown in bold.

Table B1. AUROC scores of the 10-fold cross-validation
for predicting dichotomized survival time using DNA
methylationa.
l2=l1 0 0.0001 0.001 0.01 0.1

0 0.620 0.631 0.629 0.610 0.693

0.0001 0.579 0.623 0.679 0.612 0.693

0.001 0.689 0.684 0.689 0.675 0.696

0.01 0.672 0.674 0.679 0.675 0.673

0.1 0.677 0.676 0.678 0.679 0.678
a The best AUROC score is shown in bold.

Table B2. AUROC scores of the 10-fold cross-validation
for predicting dichotomized survival time using mRNA
expressiona.
l2=l1 0 0.0001 0.001 0.01 0.1

0 0.608 0.566 0.552 0.614 0.709

0.0001 0.591 0.597 0.602 0.639 0.687

0.001 0.691 0.691 0.696 0.693 0.695

0.01 0.697 0.694 0.698 0.696 0.697

0.1 0.696 0.697 0.694 0.698 0.694
a The best AUROC score is shown in bold.

Table B3. AUROC scores of the 10-fold cross-validation
for predicting dichotomized survival time using miRNA
expressiona.
l2=l1 0 0.0001 0.001 0.01 0.1

0 0.551 0.569 0.579 0.634 0.657

0.0001 0.549 0.557 0.569 0.631 0.664

0.001 0.607 0.635 0.624 0.659 0.692

0.01 0.692 0.687 0.687 0.692 0.686

0.1 0.693 0.695 0.6973 0.691 0.6969
a The best AUROC score is shown in bold.

Table B4. AUROC scores of the 10-fold cross-validation
for predicting dichotomized survival time using SCNAa.
l2=l1 0 0.0001 0.001 0.01 0.1

0 0.562 0.560 0.600 0.635 0.660

0.0001 0.577 0.559 0.585 0.643 0.670

0.001 0.591 0.585 0.595 0.644 0.700

0.01 0.697 0.696 0.693 0.695 0.695

0.1 0.704 0.700 0.700 0.709 0.704
a The best AUROC score is shown in bold.

Table B5. AUROC scores of the 10-fold cross-validation
for predicting dichotomized survival time using protein
expressiona.
l2=l1 0 0.0001 0.001 0.01 0.1

0 0.605 0.611 0.619 0.687 0.690

0.0001 0.618 0.608 0.615 0.690 0.695

0.001 0.630 0.609 0.625 0.676 0.697

0.01 0.695 0.701 0.694 0.695 0.701

0.1 0.698 0.701 0.703 0.699 0.702
a The best AUROC score is shown in bold.

Table 4. Statistics of the OV datasetsa.
Overall survival Selected samples Positive Negative Methy mRNA miRNA SCNA Protein

563 252 153 99 24, 980 17, 813 798 109 165
a The dichotomizing cutoff time was set to be three years to balance the positive and negative sample sizes [22].
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