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Background: 1dentifying biomarkers for accurate diagnosis and prognosis of diseases is important for the prevention

of disease development. The molecular networks that describe the functional relationships among molecules provide a

global view of the complex biological systems. With the molecular networks, the molecular mechanisms underlying
diseases can be unveiled, which helps identify biomarkers in a systematic way.

Results: In this survey, we report the recent progress on identifying biomarkers based on the topology of molecular

networks, and we categorize those biomarkers into three groups, including node biomarkers, edge biomarkers and
network biomarkers. These distinct types of biomarkers can be detected under different conditions depending on the

data available.

Conclusions: The biomarkers identified based on molecular networks can provide more accurate diagnosis and
prognosis. The pros and cons of different types of biomarkers as well as future directions to improve the methods for

identifying biomarkers are also discussed.
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INTRODUCTION

In biomedicine, biomarkers generally refer to those
biological characteristics that can describe the disease
states very well, and thus can be used for diagnosis and
prognosis. Recently, due to the rapid development of high
throughput technologies, large amount of omics data is
accumulated, e.g., transcriptomics and proteomics data,
which provides opportunity to detect biomarkers more
efficiently. For example, the omics data deposited in The
Cancer Genome Atlas (TCGA) and International Cancer
Genome Consortium (ICGC) can help detect gene
biomarkers for diagnosis and prognostic markers for
survival analysis. With these data, Akbani et al. identified
protein-level signatures that are able to predict the
survival time of cancer patients [1]. The gene biomarkers
have also been detected that can stratify the ovarian
cancers into two groups with significantly different
survival time [2]. Later, with the gene expression data,
Verhaak et al. refined the cancer subtypes defined by
TCGA and predicted the survival time and therapeutic
resistance of patients better based on the refined

subtypes [3].

Although traditional methods can detect sets of genes
as biomarkers, they generally investigated these genes
independently and did not consider the interactions
between the genes. Given that molecules in biological
systems interact with each other in a complicated way and
the rewiring of interactomes may lead to diseases, the
molecular context should be taken into account when
detecting molecular biomarkers. In the past decade, lots of
molecular interactions have been detected. For example,
physical interactions and functional interactions have
been respectively found for human genes in the BioGRID
and STRING databases. These interactomes can help
understand how the molecules interact and how the
biomarkers are involved in the pathogenesis processes.
For instance, Wu and Stein identified module biomarkers
from protein functional interaction networks for breast
and ovarian cancers, which can stratify the patients into
high-risk and low-risk groups with high accuracy on 4
independent data sets [44]. From microRNA (miRNA)-
mRNA interaction network, Zhang et al. identified
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miRNA biomarkers that are critical for prostate cancer
[5]. By constructing a protein-protein interaction network
(PPIN) for prostate cancer, Li et al. identified module
biomarkers in the PPIN which can discriminate control
from cancer samples [6]. By considering their molecular
contexts, the candidate biomarkers detected generally
perform better and robust.

In this survey, we will introduce the recent progress on
computational approaches that have been developed for
identifying biomarkers based on molecular networks.
Based on the way they are detected as shown in Figure 1,
the biomarkers identified based on molecular networks
can be grouped into three categories, i.e., node biomarker,
edge biomarker and network biomarker. The details on
detecting the three types of biomarkers will be addressed
in the following parts.

MOLECULAR NETWORKS

Right now, a lot of molecular networks have been built,
including PPINs, gene regulation networks, miRNA-gene
interaction networks, metabolic networks, and so on.
These molecular networks can be described as graphs,
where the nodes usually represent molecules while the
edges represent the interactions between molecules. Since

these networks can describe various types of functional
relationships among molecules, they are widely used for
identifying biomarkers. Table 1 lists the popular resources
about different types of human molecular networks.

IDENTIFICATION OF NODE
BIOMARKERS

As described above, more and more molecular interac-
tions are being collected, the molecular networks
constructed accordingly can describe the biological
systems very well. In general, a network can be described
as a graph G(V, E), where V is the set of nodes
representing the molecules and E is the set of edges
representing the functional relationships among mole-
cules. For example, the nodes in a protein-protein
interaction network are proteins and the edges are
interactions among proteins. The nodes in a miRNA-
gene regulatory network respectively represent miRNAs
and genes, and the edges represent the regulations of
miRNAs on genes.

Traditionally, the molecular biomarkers can be identi-
fied by comparing their expressions in different condi-
tions. For example, the genes that are differentially
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lllustration of three types of network based biomarkers.
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expressed between normal and disease conditions are
generally selected as candidate biomarkers. In a network,
except for its own expression value, the importance of
each node can be described by its topological properties.
For example, the nodes with high degrees are generally
regarded as important and have significant influences on
other nodes in the network, where the degree of a node is
the number of other nodes it connects to in the network.
Therefore, the molecules that are differentially expressed
between phenotypes of interest and have high degrees are
more likely related to the phenotypes. Considering both
the differential expression and the degrees of genes,
Santiago and Potashkin identified two accurate biomar-
kers in blood samples for diagnosing early-stage
Parkinson’s disease [7]. In complex networks, the nodes
with highest degrees are called hub nodes. By investigat-
ing the miRNAs with top 15% degrees in a miRNA-gene
regulatory network, Li ef al. found miRNA biomarkers
that accurately predict the survival time of glioma patients
with cox-regression [8]. Besides degree, the other kinds of
centralities of a node are also widely used to measure its
importance. Among different types of centralities,
betweenness is one of the most widely used, which is
defined as the number of the shortest paths going through
the node of interest when connecting any pair of nodes in
the network. Based on a prostate cancer (PC)-specific
network consisting of known PC-related genes from the
Prostate Gene DataBase (PGDB), Ozgur et al. ranked all
genes with respect to their topological characteristics and
found that betweenness yielded the highest precision in
ranking PC associated genes [9]. When detecting the
potential disease genes, it is still a challenge to set the
number of top ranked genes to be chosen. Furthermore,
distinct types of centrality indexes have different
performance and it is a try and trial process to determine
the appropriate centrality index to be used [9].

In general, the genes that harbor frequent mutations are
often considered as candidate drivers of the pathological
process and used as biomarkers. However, such genes are
rarely available. Moreover, the mutated genes may not
drive the pathogenetic process directly. Instead, the
mutated genes will interact with other genes to initiate
the pathogenetic process. Therefore, the effects of
individual genes may be not significant, but their epistatic
effect is evident in the disease state. Based on this idea,
Bertrand et al. proposed a new approach to identify
patient-specific driver gene [10]. They assumed that the
mutated gene will lead to the abberent expression of its
downstream genes, and the expression changes can be
used to describe the impact of the mutated gene. With a
gene interaction network, the mutated genes that can
affect those differentially expressed genes through paths
of limited length were identified and regarded as driver
genes. When quantitatively describing the driver genes,

the sum of fold changes of those affected downstream
genes were used. Later, Suo et al. proposed another
method to identify driver genes predictive of breast cancer
survival based on integration of mutation and transcrip-
tome data [11]. For each mutated gene, they investigated
those differentially expressed genes (DEGs) that directly
interact with the gene, and defined the impact of the
mutated gene as below.

Z:dAF*uAF, (1)

O4F

where dyr is the number of DEGs, uyr and oyr are
respectively the mean and standard deviation of d,r by
randomizing the interactome. It has been found that the
driver genes detected in this way are more accurate and
meaningful compared with those detected based only on
the mutation data [11].

In the methods described above, the influence of one
gene is either described as its own expression change or
the sum of expression changes of its downstream genes.
Considering the interactions among genes, the network
smoothing approaches are becoming popular, where the
influence of each node in a molecular network will be
refined based on its position in the network topology. For
example, in Figure 2A, both genes A and B are mutated
and will be regarded as disease genes by assigning weight
of 1 to them. In the network, gene C interacts with both A
and B, and may play important roles in pathogenesis even
the gene has no mutation. However, gene C will be
assigned a weight of 0 and is missed if only the mutation
status is considered. After one-step smoothing, gene C
will be assigned a weight of 1, which makes the important
role of gene C clearer. Figure 2B shows another example
with only gene D mutated, where only this gene will be
considered (with weight of 1) based on the mutation data.
Considering the interactions among genes, after one-step
smoothing, gene C will be assigned a weight of 0.5. From
these examples, we can see that the functional roles of
genes can be better described with smoothing based on
the molecular network. As one representative of the
smoothing approaches, random walk has been widely
used to detect disease related genes. For instance, the
node weights in one network can be smoothed with the
following p-step random walk kernel.

K= (al-L""Y, 2
where the L™ is the normalized Laplacian matrix of the
network, a is a constant parameter, and I is a diagonal
matrix with each entry equals to 1 [12]. After smoothing
the weights of both mRNAs and miRNAs in a network
consisting of PPIs and miRNA-target gene interactions,
Cun and Frohlich identified biomarkers that better predict
the survival of cancer patients compared with those before
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Figure 2. The example of the smoothing process. The black and red values respectively represent the weights before and after

smoothing.

smoothing [13]. With smoothing over the network based
on the mutation data, Hofree et al. stratified patients into
different subtypes and identified genes that predict
survival of individual patients better with Cox-propor-
tional hazards model [14]. We have used smoothing in
domain-domain interaction networks to extend the
disease-domain associations, which leads to detecting
more disease associated domains [15].

Since the node biomarkers are generally single genes or
proteins, it is more easy to interpret the roles of those
genes in diseases. Furthermore, the node biomarkers are
more applicable in clinics. However, many diseases
happen due to the coordination of a set of functionally
related genes instead of single genes. The node
biomarkers may not work well in these cases.

IDENTIFICATION OF EDGE
BIOMARKERS

The node biomarkers described above generally assume
that they have significant characteristics in different
conditions, e.g., aberrant expression change in diseases.
However, in many cases, the diseases are not driven by
single genes. Instead of significant changes of nodes, it is
the rewiring of the interactome that makes diseases
happen. The rewired interactions, i.e., the differential
edges, can be directly used as features to quantify the
biomarker, and these differential edges are called edge
biomarkers here since the edges were used as potential
biomarkers. For example, Zhang et al. developed Edge-
Marker to identify the edge biomarkers among the non-
differentially expressed genes from the co-expression
network [16]. With the edge biomarkers detected, the
phenotypes can be classified with higher accuracy than
the traditional DEGs. We have previously proposed a

differential interaction approach to identify the edge
biomarkers for diseases [17]. With a protein-protein
interaction network as the background network, we
detected the interactions that were rewired in diseases
based on the gene expression data. The genes involved in
differential interactions were found to be significantly
related to diseases. When applied to a real gastric cancer
dataset, the cancers samples can be separated from normal
ones in a more accurate way compared with established
gene biomarkers. Moreover, the edge biomarkers can help
unveil how the interactions are rewired during the
development of diseases. With the similar idea, Ben-
Hamo et al. developed a PhenoNet approach that
identifies changes in regulation under different pheno-
types. With the most changed pathway as baseline,
PhenoNet identified the differential regulations with
changes above the baseline. The edge biomarkers
identified by PhenoNet have been successfully applied
to the diagnosis of breast cancer across multiple datasets
[18].

Except for PPIN, the gene regulatory networks consist
of regulations between genes, e.g., regulations between
transcription factors (TFs) and genes, are also widely used
for edge biomarker identification. For instance, Ma et al.
developed an approach, namely DRAGEN, to detect the
altered regulations in diseases [19]. The regulation
strengths were defined as the regression coefficients
derived from a linear regression model, and the regula-
tions with altered regulation strengths in different
conditions were identified and used as edge biomarkers.
DRAGEN was proved to have better performance in
identifying phenotype-associated genes than the popular
gene set enrichment analysis method GSEA which does
not consider network information. With a probabilistic
miRNA-mRNA interaction network, Li et al. identified
the altered miRNA-mRNA regulations in thyroid cancer
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samples [20]. Compared with either miRNAs or mRNAs
detected differentially expressed, the edge biomarkers are
found to perform best.

In the network described above, the nodes are

molecules. Recently, Yu et al. constructed an edge
|

network to identify the edge biomarkers [21]. In the
edge network, each node is an edge described as
the correlation between a pair of genes and the

PCC(xi>xj,xk9xl) =

Clxinx;) = E((x;—u) (x5 7)), *)

V(x)=E(x—u;)’, )

where x; denotes the expression of the i-th molecule, and
u; denotes the mean of x;. After the edge-network was
constructed for every patient, the dynamical network
biomarker (DNB) approach was employed to detect the
early signals of disease state. The early signal of disease
state was defined as below.

_ SD,-PCC,

Ccr
PCC,

(6)
where PCC, and SD, respectively denotes the mean and
standard deviation of the correlation coefficients between
nodes within DNB, and PCC, is the average of the PCC
correlation coefficients between nodes within and outside
of DNB. When applied to influenza infection, the edge
biomarkers yield high accuracy of 90%.

Compared with node biomarkers, the edge biomarkers
take into account the functional relationships among
genes and achieve better accuracy. However, the edge
biomarkers are generally gene pairs, and different gene
pairs are considered independently, which is not the case
in the biological systems. In addition, the correlation
coefficients are usually adopted to quantify the edges, and
more indexes can be used to characterize the edges.

IDENTIFICATION OF NETWORK
BIOMARKERS

Despite both node and edge biomarkers perform well, the
molecular biomarkers detected are generally independent
and the functional relationships among molecules are not
considered. In the biological systems, there are complex
interactions among molecules instead of pairwise inter-
actions. Therefore, when detecting the biomarkers, the
functional context of the biomarkers in the molecular
circuit should be taken into account. The molecular
pathways have important roles in the biological systems,
the dysregulation of which leads to diseases. Recently,
some dysfunctional pathways have been detected and
used as biomarkers. For example, we have proposed a
feature selection approach to identify the dysfunctional
pathways based on a pathway interaction network, where

correlation between two nodes was defined as
below.
C (%) C (x> x1) + C x5, x3) C (x5, x7) + C x5, x7) C (x5 1) 3)

{/V(xi) V(xj) V(xi)V (x;) ’

each node in the pathway interaction network denotes a
pathway and the links among nodes represent the
crosstalks among pathways [22]. Compared with the
gene biomarkers, the pathway biomarkers we detected
perform better and robustly on multiple cancer datasets.
Wang et al. found that the pathway biomarkers are more
robust across nine individual microarray datasets [23].
Recently, we further developed a new approach to
identify both pathways and miRNAs that have important
roles in cancer based on the miRNA-pathway interactions
[24]. The detected dysfunctional miRNA-pathway inter-
actions help understand how the miRNAs are involved in
cancer.

The pathway biomarkers detected can interpret the
molecular mechanisms underlying diseases. Unfortu-
nately, our knowledge about pathways is far from
complete. Therefore, some approaches have presented
to detect modules from molecular networks, where a
module refers to a set of nodes that are more tensely
connected to each other rather than to the other nodes
outside of the module in a network. Given the fact that
molecules tend to interact with each other to perform their
functions, it is more reasonable to consider network
modules instead of single genes when detecting biomar-
kers. Some tools have been developed to detect modules
from molecular networks. For example, MCODE has
been developed to detect protein complexes in protein-
protein interaction networks [25], and ClusterOne was
presented to detect modules from a network by employing
greedy search [26]. The modules can complement very
well with molecular pathways and can be regarded as
mega-nodes to some extent, where the modules can be
quantitatively characterized with the nodes in the module.
If one module shows different activities in disease and
normal conditions, the module can be used as a
biomarker. For example, Zhang ef al. identified a module
biomarker containing 32 genes with high accuracy in
discriminating type 2 diabetes mellitus samples from
normal samples [27], where the module biomarkers were
defined to be able to minimize the intersection area of the
module expression distribution curves in disease samples
and normal samples. Chuang et al. detected module
biomarkers that are most associated with the phenotype of
interest based on mutual information [28]. Zeng et al.
developed the module network rewiring-analysis (MNR)
approach to investigate drug response [29], where
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consistent modules were detected based on the integration
of time-course gene expression data, PPIs and TF-target
interactions. Based on the module network with the
modules as nodes, MNR was successfully used to
discriminate the protected vaccines from non-protected
vaccines based on the gene expression data from a malaria
vaccine trial [30].

With the mutated genes as seeds, Leung ef al. proposed
a new approach to detect network modules with mutated
genes that are close in PPIN with the assumption that
interacting mutated genes have more important roles in
diseases compared against single mutated genes [31]. The
module biomarkers they detected can predict the survival
time of patients very well. Recently, the mutations were
found to be exclusive in cancer. With this prior
information, Kim et al. developed the MEMCover
algorithm to detect modules with mutated genes that are
mutually exclusive across various types of cancer samples
based on the Module Cover algorithm [32,33]. Unlike
traditional molecular networks with edges describing the
interactions among molecules, they built a mutual
exclusivity and functional network, where the edges not
only describe the functional relationships among genes
but also the exclusivity among genes. The module
biomarkers they detected were found to cover many
known cancer driver genes, implying the effectiveness of
the module biomarkers.

As the pre-disease state is usually reversible to the
normal state, the biomarkers that can diagnose the pre-
disease state is important for the prevention of disease.
The DNB approach has developed to detect early-warning
signals of the complex disease [34] based on the
assumption that groups of molecules can reveal the
early-warning signals when the system approaches the
critical transition from normal to disease states. The pre-
disease state was assumed to be reached when the
following three conditions were satisfied:

(1) The correlation between any pair of nodes within
DNB becomes stronger.

(ii)) The correlation between any nodes within DNB
and any nodes out of DNB becomes weaker.

(ii1) The nodes within DNB start to fluctuate drasti-
cally.

These 3 conditions were quantified to calculate the
DNB score as shown in Equation(6). The DNB score
quantifies the dynamic nature of the leading networks and
indicates important information about the critical transi-
tion, which cannot be detected by conventional biomar-
kers. The DNBs have been used to accurately detect the
pre-disease states for lung injury disease, liver cancer, and
lymphoma cancer [34]. Considering the computational
cost of identifying DNBs from all nodes in the network,
Liu et al. adopted the state-transition-based entropy (SNE)
to detect the pre-disease state [35]. As SNE quantitatively

measures the structural stability and robustness of the
dynamical network, the drastic decrease of SNE indicates
the dynamical network is approaching the critical
transition. The SNE accurately predicted the pre-disease
states of HCV-induced dysplasia and hepatocellular
carcinoma. The original DNB approach and their
improved versions identified network biomarkers based
on co-expression networks, and the biomarkers may not
be applicable. Li ef al. utilized ordinary differential
equation models to combine time-course gene expression
data and prior knowledge of PPIs to construct dynamic
networks, based on which DNBs identified were smaller
and could be used in clinical applications [36]. With a
module-module network, the module biomarkers identi-
fied by Zeng based on DNB criterions can classify the
pre-disease stage from the advanced one [37].

Both the module and pathway biomarkers are actually
subnetworks of genes, and are therefore called network
biomarkers here. Although the network biomarkers take
into account the functional relationships among genes, it
is still challenging to quantify a network biomarker. The
most adopted average value over members of either a
module or a pathway has been proved not effective
enough [38]. In addition, the module biomarkers are
generally defined as those most determinative modules,
which increases the risk of over-fitting and decreasing the
robustness of the biomarkers across distinct datasets for
the same disease [38]. Recently, Allahyar and de Ridder
developed a method, namely FERAL, to identify the
module biomarkers by using the Sparse Group Lasso,
where appropriate multiple operators were utilized to
quantify each module [38]. The biomarkers identified by
FERAL achieved high accuracy and perform robustly
across individual data sets. With more data integrated
with network, more appropriate quantification indexes
should be defined in the future.

DISCUSSION

The identification of biomarkers is important for precision
medicine. However, it is a challenging task to develop
biomarkers with high accuracy and robustness consider-
ing the complexity of the biological systems and the
variability among patients [39]. The molecular networks
that describe the functional relationships among mole-
cules provide a global view of the complex biological
systems. With the molecular networks, the molecular
mechanisms underlying diseases can be unveiled.
Accordingly, many computational approaches have been
developed to identify biomarkers that can be used for
diagnosis or prognosis based on molecular networks
[40,41]. In this survey, we reported the recent progress on
computational approaches that have been developed for
identifying biomarkers based on the topology of mole-
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cular networks.

Lots of efforts have been made to classify the
biomarkers as the way the network information utilized
in the process of identification [30,42,43]. For instance,
depending on how network information was used, Zeng et
al. classified the biomarkers into node biomarker,
network-based biomarker, edge biomarker, and dynami-
cal network biomarker [42]. Based on the way they were
detected, we grouped the biomarkers detected from
molecular networks into three general categories, i.e.,
node biomarkers, edge biomarkers and network biomar-
kers. The node biomarkers used single molecules as
biomarkers which are easy to interpret and can be used
directly in clinic. However, the node biomarkers assume
those single molecules are independent which is not the
case in practice. There are complex functional relation-
ships among molecules, which should be taken into
account when detecting biomarkers. The edge biomarkers

take a step further to use the functional relationship
between a pair of molecules as biomarkers. However, the
pairwise edge biomarkers still treat the molecules
functionally independent to some extent. The network
biomarkers consider the functional context of molecules
and identify sub-networks as biomarkers which are more
biologically reasonable, but it is not practical to use them
as biomarkers in clinic considering the number of
molecules as well as the complicated functional relation-
ship in the network biomarkers. Table 2 summarizes the
characteristics of the 3 classes of biomarkers, and some
typical tools for identification of the network-based
biomarkers are listed in Table 3.

When detecting biomarkers based on molecular net-
works, one important issue is to quantify the biomarkers,
especially for edge and network biomarkers. For node
biomarkers, the expression changes of themselves or their
downstream nodes are generally used. For edge or

Table 2. The characters, advantages and disadvantages of 3 kinds of network-based biomarkers.

Node biomarker

Edge biomarker

Network biomarker

Utilization of molecular Network information is used to

network evaluate the impact of individual ~ to detect the rewired interactions
nodes
Advantages More simple and applicable The function interactions between
pairs of nodes, i.c., edges, are
considered
Disadvantages The functional relationships among Edges are usually considered

nodes is not considered

The network information is used

independently

The network is used as the context to
detect the dysfunctional modules in the
network

The functional interactions among nodes
are considered and have more predictive
power

Difficult to interpret and cannot be used
directly in clinics

Table 3. Tools for the identification of the network-based biomarkers.

Tool Biomarker type Description

Availability

NetworkAnalyst
biomarker

Node biomarker, network Analysis of degree and betweenness of nodes,
detection of modules and shortest paths, and

http://www.networkanalyst.ca/

functional enrichment analysis

Detection of driver genes with a score for each

Quantify the impact of candidate driver mutations

Both mRNA and miRNA profiles were smoothed,

http://fafner.meb.ki.se/biostatwiki/
driver-genes/

http://sourceforge.net/projects/on
coimpact

The mutation profiles are smoothed over the network http://idekerlab.ucsd.edu/software

/NBS/
The R package netClass

which are further used for classification

regulated gene sets between different phenotypes

DGscore Node biomarker
sample
OncolMPACT Node biomarker
with genes connected to them
Network-based Node biomarker
stratification (NBS) and the subtypes are detected
stSVM Node biomarker
DRAGEN Edge biomarker
ProMISe Edge biomarker
signatures for diagnosis
miR_Path Network biomarker
HyperModules Network biomarker
genes are detected
FERAL Network biomarker

sets of connected genes as biomarker

The identification of significant differentially

The detection of miRNA-mRNA interaction

The cancer-related miRNAs are detected

The module biomarkers with frequently mutated

Multiple operators are used to quantify the

http://bioinfo.au.tsinghua.edu.cn/
dragen/
http://www.bioconductor.org/pack
ages/release/bioc/html/Roleswitc
h.html
http://comp-sysbio.org/miR_Path/
http://www.baderlab.org/Sofware/
HyperModules
http://homepage.tudelft.nl/53a60/
resources/FERAL/FERAL.zip
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network biomarkers, they can be quantified as the average
or summation of those values of the nodes within them,
where the biomarkers work like mega-nodes [8,19,27].
Other complicated approaches, such as linear regression
model, SVM, and the DNB method, have also been
proposed to quantify the biomarkers [13,20,34,44].
However, it is still a challenging task to choose an
appropriate way to quantify the biomarkers. Recently,
Allahyar and de Ridder have proposed to use Sparse
Group Lasso (SGL) to select the most appropriate
operators for quantifying network modules, which may
be used to quantify the network biomarkers in the future
[38].
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