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Recent advances in next-generation sequencing technology allow high-throughput RNA sequencing (RNA-Seq) to be
widely applied in transcriptomic studies. For model organisms with a reference genome, the first step in analysis of
RNA-Seq data involves mapping of short-read sequences to the reference genome. Reference-guided transcriptome
assembly is an optional step, which is recommended if the aim is to identify novel transcripts. Following read
mapping, the primary interest of biologists in many RNA-Seq studies is the investigation of differential expression
between experimental groups. In this review, we discuss recent developments in RNA-Seq data analysis applied to
model organisms, including methods and algorithms for direct mapping, reference-guided transcriptome assembly
and differential expression analysis, and provide insights for the future direction of RNA-Seq.
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INTRODUCTION

RNA-Seq is an application of next-generation sequencing
(NGS) technologies to perform transcriptome-wide pro-
filing. As one of the most cost-effective approaches,
RNA-Seq has been widely applied in humans, model
organisms and non-model species and has provided
unprecedented insights into the transcriptomic landscape
[1–8]. The versatile applications of RNA-Seq include
(i) whole transcriptome reconstruction based on de novo
transcriptome assembly [9], (ii) identification of novel
transcripts [4], (iii) detection of differentially expressed
genes [10] or transcripts [11] between experimental
groups, (iv) detection of alternatively spliced isoforms
[12], (v) detection of allele-specific expression [13],
(vi) construction of co-expression networks [14], (vii)
identification of RNA editing sites [15], and (viii)
identification of DNA variations in gene regions [16].
Many of these applications have been the subject of recent

reviews [2,17–20], but the field is rapidly evolving,
particularly with respect to methods for mapping of short-
read RNA-Seq data in model organisms, which is a
fundamental step for all forms of RNA-Seq data analysis.
In this review we focus on recent progress in read-
mapping algorithms for RNA-Seq data and reference-
guided transcriptome assembly,which is recommended if
the aim is to detect novel transcripts. Additionally, we
discuss the latest developments in differential expression
analysis from RNA-Seq data, which is the primary
interest of biologists in many RNA-Seq studies. We
conclude with a perspective on future directions for RNA-
Seq.1

STRATEGIES FOR TRANSCRIPTOMIC
ANALYSIS WITH A REFERENCE
GENOME

For organisms with a reference genome, direct mapping to
the reference and/or reference-guided transcriptome
assembly are more computationally efficient than de
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novo assembly and are the most commonly used
strategies.
Direct mapping is a straightforward option for

transcriptomic analysis in model organisms with a well-
annotated reference genome or transcriptome. Using this
strategy, RNA-Seq reads are directly aligned to the
reference genome or to transcript sequences using
mapping tools such as Tophat [21], Tophat2 [22],
HISAT [23], HISAT2 [23], MapSplice [24], SOAPSplice
[25] or STAR [26] for splice-junction mapping, or Bowtie
[27], Bowtie2 [28], BWA [29], BWA-SW [30], BWA-
MEM [31], SOAP [32] or SOAP2 [33] for non-splice-
junction mapping. Based on the annotation, each feature
(i.e., gene, transcript or exon) is assigned a count value or
a normalized count value by counting the number of
RNA-Seq reads covering the feature, with these count
values representing the relative abundance of features in
the transcriptome. Comprehensive annotation is advanta-
geous for this approach, but a simulation study has shown
that the method is robust to the presence of incomplete
annotation and any incorrect transcripts present in a
curated set do not absorb much signal [34]. In summary,
direct mapping to the reference is a popular approach for
analysis of RNA-Seq data, both because the analysis
workflow is straightforward and due to the availability of
many well-developed downstream software tools (e.g.,
edgeR [35], DESeq [36], DESeq2 [37], SAMseq [38],
baySeq [39], NOIseq [40], limma [41], NBPSeq [42],
TSPM [43] and EBSeq [44] for differential expression
analysis).
Reference-guided transcriptome assembly is a more

ambitious approach for transcriptomic analysis. This
method involves aligning reads to a reference genome
and uses both the alignment outcomes and curated
annotations to infer the transcript structures. This strategy
is attractive because it can leverage a reference genome
and existing annotations for the discovery of novel
transcripts. In theory, this strategy is superior to the direct
mapping approach because it offers the possibility of
obtaining a more complete set of gene/transcript
sequences, as has now been shown in many RNA-Seq
studies [11,45,46], whereas direct mapping relies on
current annotations for model organisms that are often
incomplete. However, a potential caveat is that due to
typical limitations in RNA-Seq data, such as short read
length, sequencing errors and biases, and/or errors
introduced during alignment and assembly, reference-
guided transcriptome assembly may generate massive
partial transcripts and even assembled artefacts that can
confound transcriptomic analyses. Recent studies have
shown that these assembled artefacts can account for a
substantial proportion of the signal when performing
expression analyses [34]. In addition, compared to the
direct mapping approach, there are fewer downstream

tools supporting this methodology. Cufflinks [11,47] and
Scripture [45] were the first software tools to implement
reference-guided transcriptome assembly. Trinity was
initially designed for de novo transcriptome assembly
[48], but now it also offers reference-guided transcrip-
tome assembly in recently released versions. More
recently a related method called StringTie has been
released that claims to have improved performance
compared to Cufflinks [49]. Reference-guided transcrip-
tome assembly is unquestionably the best option if the
objective is to identify novel transcripts. Alternatively,
direct mapping to the reference is arguably the best choice
for analysis of RNA-Seq data in well-annotated model
organisms.

MAPPING ALGORITHMS FOR
SHORT-READ DATA

Ideally, the first step in analysis of RNA-Seq data would
involve mapping of short-read sequences to a reference
transcriptome. However, because the complexity of the
transcriptome is incompletely annotated, even for well-
studied species, mapping RNA-Seq reads to a reference
genome is preferable for organisms whose reference
genomes are available.
A wide variety of mapping algorithms and software

tools have been developed over the past few years. For
example, more than 60 aligners are listed in Fonseca et al.
(2012)’s study [50] and the number continues to increase
(e.g., 84 aligners were listed in http://www.ebi.ac.uk/~nf/
hts_mappers/ as at 09/2015). The growing number of
aligners is indicative of the importance of sequence
alignment to the research community and is evidence of
the active development of mapping tools. However, it also
present challenges to researchers in terms of selecting a
suitable aligner for their studies.
Mapping tools for short-read sequencing data can be

divided into two major groups: (i) unspliced aligners that
are designed to align continuous reads to a reference
without consideration for splicing junctions, and
(ii) spliced aligners that are capable of splitting reads at
intron-exon boundaries. For RNA-Seq studies, unspliced
aligners are mainly applied when (i) organisms do not
contain introns in their genomes (e.g., most bacteria and
some eukaryotic microorganisms), or (ii) sequence reads
are mapped to a library of known transcript sequences
(i.e., a reference transcriptome) rather than a reference
genome sequence. On the other hand, spliced aligners are
capable of mapping RNA-Seq data to a reference genome.
Below we briefly discuss the mapping algorithms and
tools that are commonly applied to RNA-Seq data. Note
that most unspliced aligners discussed below are designed
for short-read NGS data rather than specifically for RNA-
Seq data. However, these unspliced aligners can be
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applied in RNA-Seq studies under the aforementioned
scenarios.
Three broad categories of mapping algorithms are

commonly used in analysis of short-read data (reviewed
in Ref. [51]): algorithms based on hash tables, algorithms
based on suffix trees and algorithms based on merge
sorting (Figure 1).

Algorithms and tools based on hash tables

A hash table is a key-value data structure used to

implement an associative array. The most important
feature of this type of data structure is that it can map keys
to values very efficiently. The idea of hash table based
algorithms, which essentially follow the seed-and-extend
paradigm by matching a short section (i.e., a seed) of each
read to the reference and extending these seed matches to
the full length of the read, can be traced back to when the
BLAST algorithm was first developed [52,53].
Arguably, Eland was the first successful aligner

integrated into the Illumina data processing package that
utilized the seed-and-extend paradigm in short-read

Figure 1. The general concept and data structures for three broad categories of mapping algorithms. (A) Algorithms based
on hash tables. A set of k-mers and their positional indexes are extracted from each reference sequenceand stored in a hash table.
The alignment is performed by searching k-mers in sequencing reads against keys in the hash table with matched index(es). In this

example, 3 bp k-mers and their indexes are generated and stored in a hash table. (B) Algorithms based on suffix trees. A reference
sequence “GATACA” is shown as an example for the data structure based on suffix trees. The five paths from the root (blue circle) to
the leaves (red circles) corresponding to the five suffixes (from left to right: “GATACA”, “TACA”, “CA”, “ACA” and “ATACA”). (C)
Algorithms based on merge sorting. Illumina probability files generated from the Illumina Genome Analyzer platform are used as

input files. Shown is an example where we assume a read is 6 bp (left side). All possible sequences are generated as Px_reads
considering every possible nucleotide with a probability higher than a certain threshold (a 0.2% value is used by default). The
algorithms scans both the lexographically sorted reference database and the lexographically sorted Px_reads to generate all unique

matches (um) and multiple matches (mm). In this example, the set of imput sequences is 6 bp, which is aligned to a reference
database of 10 bp oligos created by a sliding window across the reference sequences. Reads that match are indicated in bold and
underlined with an example of a unique match (solid line) and a multiple match (dashed line).
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alignment (A. J. Cox, unpublished). The concept of
Eland is to split a read into segments, creating a
memory-resident hash table for all read segments and
scanning inexact matches using combinations of seg-
ments as exact hash-keys. This seed strategy is also
known as space seed. This approach inspired the
development of many other short-read aligners based on
space seed, such as SOAP [32], MAQ [54], RMAP
[55,56], and ZOOM [57], among others. The downside of
the space seed approach is that gaps are not permitted
within the seed. More recent methods have sought to
overcome this limitation by use of dynamic programming
to detect gaps during the extension step or by attempting
small gaps at each read position [32,58]. Ultimately, the
problem was overcome by the q-gram filter and multiple
seed hits approaches. The q-gram filter is based on the
observation that the substrings of an approximate match
must have a certain number of q-grams (i.e., strings of
length q) in common [59]. In general, methods based on
space seed and q-gram are similar insomuch as they both
rely on a hash table for fast and exact matching. Space
seed initiates seed extension from one long-seed match
while q-gram initiates extension usually with multiple
relatively short-seed matches. SHRiMP [60] and RazerS
[61] are two successful examples implementing the q-
gram filter that provides a solution to building an index
that allows gaps. Later, RazerS 3 [62] was developed as a
successor to RazerS with a superior running time and the
capability to mapping reads of various lengths with many
insertion and deletion errors. In addition to using the q-
gram filter, RazerS 3 makes use of Open Multi-Processing
to provide a share-memory parallelization with dynamic
load balancing, a pigeonhole-based filter with controllable
sensitivity, and an implementation of a banded version of
Myers’ bit-vector algorithm for verification to improve
the performance on both running time and sensitivity
[62].
Major improvements on seed extension were also

achieved by accelerating the standard Smith-Waterman
algorithm with vectorization (i.e., multiple query
sequences can be processed in one CPU cycle) and by
constraining dynamic programming around seeds. These
improvements enabled significant acceleration of the
alignment process. For example, the striped Smith-
Waterman algorithm (i.e., the Smith-Waterman imple-
mentation where the Single-Instruction Multiple-Data
(SIMD) registers are parallel to the query sequence, but
are accessed in a striped pattern) achieved a 2–8 fold
performance improvement over other SIMD based Smith-
Waterman implementations [63]. Novoalign (http://www.
novocraft.com/products/novoalign/), CLC Genomics
workbench (http://www.clcbio.com/products/clc-geno-
mics-workbench/), SHRiMP [60] and SMALT (http://

www.sanger.ac.uk/science/tools/smalt-0) are examples of
software that utilize the accelerated Smith-Waterman
algorithm in the alignment. BWA-MEM [31]also recently
joined this category, and introduced several innovations
including seeding and re-seeding, improved seed exten-
sion, and chaining (i.e., linking a group of seeds that are
collinear and close to each other) and chain filtering (i.e.,
filtering overlapping short chains by some criteria), all
designed for optimal alignment of 70 bp or longer reads.

Algorithms and tools based on suffix trees

A suffix tree is a compressed trie containing all the
suffixes (i.e., substrings) of the given sequence (e.g., a
genome sequence) by pre-processing the sequence data
into a space-efficient data structure. After the construction
of suffix trees, fast query searches can be performed
easily, for instance by locating a substring with specific
mismatches. Algorithms based on suffix trees essentially
reduce the inexact matching problem to the exact
matching problem. This is achieved by first identifying
exact matches and then building inexact matches
supported by these exact matches [51].
Use of a trie greatly enhances alignment efficiency

because multiple loci that share an identical substring in a
reference need only be aligned once (since identical
alignments collapse on a single path in the trie), whereas
alignment needs to be performed independently for each
locus using the hash table approach.The suffix tree is
undoubtedly one of the most important and widely used
data structures in string processing. However, algorithms
based on suffix trees are memory intensive because even
the most space efficient implementation [64] requires at
least 12.5 bytes per bp, which equates to> 37 G bytes for
the human genome (~3 Gbp). Continuous improvements
have been made to overcome this obstacle, culminating in
the enhanced suffix array [65] and FM-index [66]. An
enhanced suffix array uses a basic suffix array enhanced
with several auxiliary arrays, leading to a reduction in
space consumption to 6.25 bytes per bp. An FM-index
(Full-text index in Minute space) is a compressed full-text
substring index based on Burrows-Wheeler transform
[67], which allows compression of the input text while
still supporting fast substring queries.
A number of publicly available aligners have been

developed based on suffix tree algorithms. For example,
Segemehl [68] use an enhanced suffix array, Bowtie [27],
BWA [29], SOAP2 [33], and BWA-SW [30] are based on
the FM-index. Bowtie2 combines ultrafast FM-index-
based seeding with efficient extension by dynamic
programming in order to obtain gapped alignments [28].
RSEM is a software package for quantifying gene and
isoform abundances from short-read RNA-Seq data [69].
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It uses the Bowtie/Bowtie2 alignment program to align
reads against transcript sequences rather than a genome
reference, with parameters specifically chosen for tran-
script quantification from RNA-Seq data (e.g., the
“- -estimate-rspd” option enables RSEM to use the data
to learn how RNA-Seq reads are distributed across a
transcript). TopHat is one of the few tools that supports
splice junction mapping for RNA-Seq reads. It first maps
RNA-Seq reads to a genome reference using Bowtie, and
then analyses the mapping results to identify splice
junctions between exons [21]. TopHat2 [22] is the
descendant of TopHat. By using Bowtie or Bowtie2 as
the underlying mapping engine and adopting a two-step
approach — these being (i) detection of potential splice
sites for introns and (ii) use of these candidate splice sites
in a subsequent step to correctly align multiexon-
spanning reads— TopHat2 is able to align reads
spanning insertions and deletions on the same chromo-
some, even if these are very large, and reads spanning
translocations involving different chromosomes [22].
MapSplice [24] and SOAPSplice [25] use a similar two-
step approach for splice junction mapping. Spliced
Transcripts Alignment to a Reference (STAR) is another
popular splice junction mapper based on an algorithm that
uses sequential maximum mappable seed search in
uncompressed suffix arrays followed by seed clustering
and a stitching procedure [26]. Another recent and highly
promising method is HISAT [23] and its upgraded version
HISAT2. In addition to using one global FM index that
represents a whole genome, HISAT and HISAT2 use
massive local FM indexes that collectively cover the
whole genome for the effective alignment of RNA-Seq
reads [23].

Algorithms and tools based on merge sorting

The alignment algorithm based on merge sorting uses not
only the most probable base, but also all possible bases
with a probability above a certain base probability
threshold provided by the Illumina probability file. It
then generates all possible reads with probability above a
certain read probability threshold. For the core alignment,
it sorts all these generated reads in lexicographical order
and then crosses it sequentially with a pre-sorted table of
windows of reference sequences and their reverse
complements. This approach eliminates the need for an
indexed structure by replacing random I/O with sequen-
tial I/O. Currently, the only software using this approach
are Slider [70] and its descendant SliderII [71].

Summary for mapping algorithms and tools

In general, the strengths of hash table based algorithms
are that they can tolerate high levels of genomic variation

and easily perform partial alignment (such as for exon-
exon junction reads), but this comes at the cost of high
memory requirements for hashing and poor sensitivity for
alignment of reads in repetitive regions. In comparison,
the strengths of algorithms based on suffix trees are that
they are able to perform fast alignment, especially for
exact matches, and these algorithms offer alignments with
high sensitivity in repetitive regions. However, suffix tree
based algorithms are generally less tolerant of high
genomic variation than hash table based algorithms.
Merge sorting based tools, since Slider and SliderII, are
becoming less popular, primarily because they use
Illumina probability files as input rather than more
standard file format (such as fastq), and recent sequencing
platforms (such as HiSeq 2000) do not provide Illumina
probability files. Table 1 lists some popular aligners that
have been widely applied in short-read sequence align-
ment. Note that this is not a complete list. Readers are
referred to Fonseca et al. (2012)’s study [50] and the well-
maintained high-throughput sequencing mappers website
(http://www.ebi.ac.uk/~nf/hts_mappers/) for a more com-
prehensive list of aligners.

DIFFERENTIAL EXPRESSION ANALYSIS

The primary goal of most RNA-Seq studies is to identify
differentially expressed genes (DEGs) and/or differen-
tially expressed transcripts (DETs) between experimental
groups. Prior to data analysis, quality control is usually
performed to assess the quality of sequencing reads,
including sequence quality scores, GC content, sequence
duplication levels. There are a number of tools that are
designed for this purpose, such as FastQC and FASTX-
Toolkit. To quantify gene expression, RNA-Seq reads
need to be aligned to a reference genome for model
organisms (e.g., using HISAT2 [23]) or to a library of
transcriptome sequences reconstructed using de novo
assembly strategies for organisms without reference
sequences (e.g., using Trinity [48] for de novo assembly,
and RSEM [69] for mapping and detection of DETs). If
detecting novel isoforms is of interest in a study, then
reference-guided assembly needs to be performed (e.g.,
using StringTie [49]), followed by a merge step to
generate a non-redundant set of transcripts (e.g., using
Cufflinks-Cuffmerge [72]) for downstream analyses.
Following alignment, the expression level of genes/
transcripts is quantified by counting the number of reads
aligned to each feature (e.g., using HTSeq or StringTie
[49] for generating gene-level or transcript-level count
tables, respectively). Subsequently, a range of statistical
methods can be applied to assess the significance of
differences in expression level observed between experi-
mental groups (e.g., using edgeR [35] or Ballgown [73]
for detection DEGs or DETs, respectively). A general
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workflow for the differential expression analysis is
illustrated in Figure 2.

Tools and methods for RNA-Seq differential
expression analysis

Accurate quantification of gene expression and detection
of DEGs and DETs is non-trivial [74,75] due to (i) biases
and errors inherent in NGS technology [76–78], (ii) biases
of abundance measures due to the effects of nucleotide
composition and the varying length of genes or transcripts
[79,80], (iii) undetermined effects of both sequencing
depth and the number of replicates, (iv) the mixture of
technical and biological variation, and (v) the existence of
alternative gene isoforms and overlapping sense-antisense
transcripts [72]. A lot of efforts have been made to address
these difficulties [72,81,82]. In early RNA-Seq studies

lacking biological replicates, the distribution of feature
counts across technical replicates was reported to fit well
to a Poisson distribution where the variance is equal to the
mean [76,83]. However, when biological replicates are
included in RNA-Seq studies, the Poisson distribution
underestimates the variation seen in many studies [84,85],
a problem known as overdispersion. Several methods
have been proposed to account for overdispersion in
RNA-Seq differential expression analysis, including Auer
et al.’s (2011) [43] two-stage Poisson model based on
quasi-likelihood, the negative binomial (NB) distribution
[35,36], and non-parametric methods such as NOISeq
[40] and SAMseq [38]. Among all these methods, NB has
achieved a dominant position in the methodologies to
model feature counts for RNA-Seq data [35,36,80] due to
the capability of accounting for both technical and
biological variance. A number of software tools were

Table 1. Popular short-read aligners.

Aligner Spliced (Y/N) Supported NGS data

Aligners based on hash tables

BWA-MEM N Illumina (> 70 bp), 454 and long-read data (e.g., PacBio). The developer of BWA

recommends BWA-MEM over BWA-SW as it is faster and more accurate than BWA-SW

CLC genomics N Almost all NGS data (commercial software package)

Eland N Illumina (implemented by Illumina)

MAQ N Illumina. MAQ has not been maintained since 2008. The developer of MAQ recommends

people to use other tools (such as BWA) rather than MAQ

Novoalign N Illumina (commercial software package)

RazerS N Illumina

RazerS 3 N Illumina, 454 and long read platforms (e.g., PacBio). RazerS 3 is a successor to RazerS

RMAP N Illumina and bisulfite-treaded Illumina reads

SHRiMP N Illumina and SOLiD. SHRiMP has not been maintained since 2012

SMALT N Illumina and 454

SOAP N Illumina

ZOOM N Illumina and SOLiD

Aligners based on suffix trees

Bowtie N Illumina, 454, SOLiD. Works best when aligning short reads to large genomes

Bowtie2 N Illumina, 454 and long-read data. For reads> 50 bp, Bowtie2 is generally faster, more

sensitive, and uses less memory than Bowtie

BWA N Illumina (£100 bp)

BWA-SW N Illumina (> 70 bp), 454. BWA-SW has better sensitivity when alignment gaps are frequent

HISAT Y Illumina, 454. HISAT is> 50 times faster than TopHat2 with better alignment quality

HISAT2 Y Illumina, 454. HISAT2 is a successor to both HISAT and TopHat2

Segemehl N Illumina and bisulfite-treaded Illumina data, 454 and long-read data

SOAP2 N Illumina

TopHat Y Illumina, 454, SOLiD. It uses Bowtie or Bowtie2 as the underlying mapping engine

TopHat2 Y Illumina, 454, SOLiD. TopHat2 is a successor to TopHat

Aligners based on merge sorting

Slider N Data from Illumina Genome Analyzer

SliderII N Data from Illumina Genome Analyzer
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developed based on NB, including DESeq [36], DESeq2
[37], edgeR [35], and baySeq [39], among others.
Although most existing tools were developed for

differential expression analysis at the gene level, it is
worth noting that Cufflinks-Cuffdiff [11] and its upgraded
version Cuffdiff2 [72] implemented a more ambitious
method for transcript-level differential expression analy-
sis. Cuffdiff2 estimates count variances for each transcript
among biological replicates under a beta negative
binomial model of fragment count variability [72].
Another software package, RSEM, computes maximum
likelihood abundance estimates at transcript-level resolu-
tion using the Expectation-Maximization algorithm for its
directed graphical model [69]. A key feature of RSEM is
that it only requires the user to provide a set of reference
transcript sequences, such as one produced by a de novo
transcriptome assembler, which allows for RNA-Seq
analysis of species for which only transcript sequences are
available [69]. Ballgown is another recently developed

software tool that performs linear model-based differen-
tial expression analysis at transcript-level resolution [73].
It also offers functionality for visualization of the
transcript assembly on a gene-by-gene basis and extrac-
tion of abundance estimates for exons, introns, transcripts
or genes [73].
Differential expression analysis at transcript-level

resolution is unquestionably an ideal approach as all
RNA-Seq reads originate from transcripts whereas gene-
based analyses represent a combination of all isoforms in
the same gene locus. One simple scenario that illustrates
this point is when two isoforms are differentially
expressed in different directions (i.e., one isoform is up-
regulated and the other isoform is down-regulated), in
which case one may not detect any gene-level differtial
expression. However, a key challenge in transcript-level
quantification from RNA-Seq data is that lists of
transcripts are incomplete, even for well-studied model
organisms. As a consequence, if a gene has novel

Figure 2. The workflow for RNA-Seq differential expression analysis.
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isoforms, then RNA-Seq reads originated from these
isoforms may be assigned to other known isoforms,
leading to incorrect quantification of those known
isoforms.
The field of differential expression analysis, although

maturing, is still growing quickly and new software tools
are continuously being developed. A few comparison
studies have been reported to evaluate the performance of
different RNA-Seq software tools. Soneson and Delorenzi
[86] evaluated 11 software packages (DESeq [36], edgeR
[35], NBPSeq [42], TSPM [43], baySeq [39], EBSeq
[44], NOISeq [40], SAMseq [38], ShrinkSeq [87] and two
versions of limma [36,41]) mainly based on simulated
data sets and concluded that the method of choice in a
particular situation depends on the experimental condi-
tions. Rapaport et al. [88] evaluated six of the most
commonly used differential expression software packages
(Cuffdiff [89], edgeR [35], DESeq [36], PoissonSeq [90],
baySeq [39], and limma [41]) by considering a number of
key features, including normalization, accuracy of
differential expression detection and differential expres-
sion analysis when one condition has no detectable
expression. They found significant differences among the
methods, but comparable performance was found
between array-based methods (e.g., limma) adapted to
RNA-Seq data and methods specially designed for RNA-
Seq (e.g., edgeR). Seyednasrollah et al. [91] performed a
systematic comparison of eight widely used software
packages (edgeR [35], DESeq [36], baySeq [39], NOIseq
[40], SAMseq [38], limma [41], Cuffdiff2 [72] and
EBSeq [44]) for detecting differential expression between
sample groups, focusing on measures that are of practical
interest to researchers when analysing RNA-Seq data sets,
including the number of DEGs identified using different
numbers of replicates, their consistency within and
between pipelines, the estimated proportion of false
discoveries and the runtimes. They found marked
differences among software packages, and the number
of replicates and the heterogeneity of the samples should
be taken into account when selecting the analysis pipeline
[91]. Zhang et al. [75] have recently demonstrated that
edgeR outperforms DESeq and Cuffdiff2 using both real
and simulated RNA-Seq data sets by consideration of
number of replicates, sequencing depth, and balanced vs.
unbalanced sequencing depth within and between groups.
These comparison studies have provided useful guide-
lines for a proper study design and a suitable software tool
for RNA-Seq differential expression analysis. However,
new software tools such as DESeq2 [37] and Ballgown
[73] have since been developed and most existing tools
have been upgraded (typically resulting in improved
performance). The fast growing number of new tools and
active development of existing tools also makes it difficult
to choose the best (or the most suitable) software tool for

differential expression analysis in a given RNA-Seq
study, though edgeR and limma were previously reported
to perform well under many circumstances compared with
others [75,91].

Key factors in study design: sequencing depth and
sample size

Sequencing depth and sample size are two key factors that
affect differential expression analysis. Zhang et al. [75]
have shown that the performance of Cuffdiff2 is sensitive
to sequencing depth, whereas DESeq and edgeR appear
relatively stable and thus are a better choice for
differential expression analysis when sequencing depth
is low (i.e., number of reads< 10 M). There is evidence
that the number of DEGs discovered in RNA-Seq studies
is positively correlated with sequencing depth [40,75],
suggesting a strong effect of sequencing depth on
differential expression analysis. Unbalanced sequencing
depth between groups can also have negative effects on
the performance of differential expression analysis for
some software tools [75].
Another key factor for RNA-Seq differential expres-

sion analysis is the sample size (i.e., the number of
biological replicates in each group). In theory, one would
expect an increase in statistical power for the identifica-
tion of DEGs with an increasing number of biological
replicates, and indeed a positive correlation between
DEGs and the number of biological replicates has been
reported by Seyednasrollah et al. [91] and Zhang et al.
[75]. However, different versions of software tools may
have opposite effects on correlations between DEGs and
the number of biological replicates, as discovered by
Seyednasrollah et al. that with a different version of
Cuffdiff2 the number of detected DEGs decreased when
the number of samples increased [91].
Since budgetary constraints are common with RNA

sequencing, an optimal experimental design needs to
balance the sequencing depth for each sample with the
number of replicates for each group. The consensus
position of many studies [75,88,92] is that the overall
impact of the sequencing depth is not as critical as sample
size, and thus including sufficient biological replicates
should be the prime consideration for RNA-Seq study
designs. The required number of biological replicates
depends on a number of factors including the amount of
biological variation in the samples to be sequenced.
Several studies have suggested that 4–6 biological
replicates from inbred mice cell populations, and at
least 14 biological replicates from human cell lines
(unrelated individuals in the same ethnic group) are
required for RNA-Seq differential expression analysis
[75,91]. Larger sample sizes are likely to be required in
animal/human tissue samples compared to cell lines or
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cells from inbred lab strains. However, to determine the
optimal number, more gold standard datasets and
comprehensive evaluations based on these datasets are
required to guide future RNA-Seq study designs.

FUTURE DIRECTIONS

Long-read RNA-Seq

Long reads have greater potential than short reads at many
levels. For transcriptomic analysis with a genome
reference, long-read RNA-Seq data has greater power
than short-read data to (i) unambiguously map to the
reference genome [51,93], (ii) detect indels and structural
variations, especially for variants in repeat regions [94],
(iii) produce full-length transcripts without assembly
[95,96], (iv) resolve transcriptional complexity for gene
loci with a massive number of isoforms and/or antisense
transcripts [96,97], and (v) detect allele-specific expres-
sion and allele-specific AS patterns [93].
Roche 454 was the first high-throughput sequencing

platform offering long-read sequencing using the pyr-
osequencing technology and sequencing-by-synthesis
approach [98]. It can generate relatively long reads of
up to 1 kp (average read length of 450 bp with the Roche
454 FLX Titanium sequencer [78]). The use of 454
sequencing has led to a better understanding of the
structure of the human genome [99] since its launch in
2005, enabling the first non-Sanger sequence of an
individual human [100] and opening up new approaches
for transcriptomic studies [101].
The PacBio SMRT (single molecule real-time) sequen-

cing platform, also known as one of the third-generation
sequencing platforms, has been pioneered by Pacific
Biosciences [102,103]. PacBio SMRT sequencing is built
upon several key innovations (i.e., zero-mode waveguides
and phospholinked nucleotides) that harness the natural
process of DNA replication and enable real-time
observation of DNA synthesis [102]. It offers long-read
sequencing with an average read length> 10 kb, and a
proportion of reads longer than 60 kb. Despite the
relatively high error rate associated with the PacBio
SMRT techonology, since the SMRT sequencing platform
was commercially launched in early 2011, it has achieved
many successful applications in the RNA-Seq field,
including but not limited to obtaining comprehensive
gene sets for non-model eukaryotes [95], characterization
of full-length alleles in complex gene loci [96], and
resolving the transcriptomic complexity [104]. Another
important innovation based on the PacBio SMRT plat-
form is Iso-Seq (the isoform sequencing: http://www.
pacb.com/applications/rna-sequencing/), a method for the
production of complete and unbiased full-length com-
plementary DNA (cDNA) sequences without transcrip-

tome reconstruction. This approach provides accurate
information about alternatively spliced exons, transcrip-
tional start sites and alternative polyadenylation sites
directly from sequencing.
Oxford Nanopore technologies MinION offers a new

approach for long-read sequencing. MinION uses the
nanopore sequencing technology that can discriminate
individual nucleotides by measuring the change in
electrical conductivity as DNA molecules pass through
the nanopore [105,106]. As the first commercially
available sequencer that uses nanopores, MinION offers
read lengths of tens of kilobases, with theoretically no
instrument-imposed limitation on the size of sequenced
reads [107]. An important feature of nanopore sequen-
cingis that the sequencing process does not rely on DNA
replication. It has the advantage of reading full-length
molecules in real-time and has the potential for sequen-
cing RNA without conversion to cDNA, which is
extremely attractive because it has the potential of
recognizing the modified RNA bases during real-time
sequencing and therefore may shed light on the types and
putative functions of RNA modifications. Currently,
direct sequencing of RNA using the nanopore technology
is yet to be developed but this development is expected in
the near future.
The broad application of long-read sequencing is

currently constrained by relatively high error rates of
sequenced nucleotides and relatively high sequencing and
computational costs [108] (e.g., it was estimated that
32.86 years CPU time would be required to process the
PacBio raw reads for error-correction-overlap at ~ 44X
sequencing coverage in Pendleton et al.’s study [108]),
compared to short-read sequencing. Nonetheless, it is
foreseeable that long-read sequencing will play a more
important role in future RNA-Seq studies.

Single-cell RNA-Seq

Cells are the basic units of biological structure and
function. Each tissue is a mixture of different cell types,
and these subpopulations, or indeed individual cells in a
single subpopulation, may have temporal and spatial
variation in gene expression. There is a growing demand
for single-cell profiling that is driven by the need for (i)
direct analysis of rare cell types or cells with insufficient
material for conventional RNA-Seq protocols, (ii)
identification of cell subpopulations in tissues [109] and
(iii) profiling interesting subpopulations of cells from a
heterogeneous population [110]. To fully understand how
complex tissues work in development and physiology, it
will be important and essential to study transcriptional
programs at single-cell resolution.
With the application of RNA imaging techniques such

as RNA-FISH (fluorescent in situ hybridization targeting
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ribonucleic acid molecules), single-cell measurements of
gene expression are now possible. Previous studies have
provided important insights into the dynamics of
transcription and cell-to-cell variation in gene expression
[111–113]. However, such approaches can only examine
the expression of a small number of genes in each
experiment, thus restricting our ability to perform
transcriptome-wide examinations of gene expression
and co-expression patterns.
Recent technological advances have enabled RNA-Seq

whole-transcriptome analysis of a single cell [114].
Several such methods for profiling single cells have
emerged, such as CEL-Seq [115], Smart-seq2 [116] and
MARS-Seq [7]. Typically, these methods first separate the
cells by fluorescence-activated cell sorting (FACS) [6] or
microfluidics [8], and then amplify each cell’s transcrip-
tome separately for RNA-Seq, typically profiling hun-
dreds to a few thousand cells in one experiment. To
overcome the low-throughput issue, two droplet-based
RNA-Seq approaches: inDrop RNA-Seq [117] and Drop-
Seq [118] have recently been developed to enable fast
profiling of the transcriptome for thousands of individual
cells. Both approaches encapsulate cells into droplets and
use novel barcoding strategies to match each mRNA to its
cell-of-origin; inDrop RNA-Seq uses a microfluidic
platform for droplet barcoding whereas Drop-Seq uses a
split-pool synthesis approach to generate large numbers of
distinctly barcoded beads into individual droplets
[117,118]. Klein et al. also claimed that the inDrop
RNA-Seq method has a theoretical capacity to barcode
tens of thousands of cells per run [117], which will be
important for its future application for profiling large
populations of cells when sequencing throughput is high
enough to afford multiplexing tens of thousands of cell
samples in a single run. Meanwhile, G&T-Seq offers a
powerful method for simultaneously sequencing a single
cell’s genome and transcriptome, thereby enabling direct
identification of genetic variations and their effect on gene
expression at single-cell resolution [104]. Macaulay et al.
demonstrate the power of G&T-Seq by sequencing the
genome and transcriptome of a single cell in parallel by
discovery of many cellular properties that could not be
inferred from DNA or RNA sequencing alone.
Methods and tools for single cell RNA-Seq analysis are

only now beginning to emerge. Pollen et al. reported an
analysis strategy for unbiased analysis and comparison of
cell populations from heterogeneous tissue by micro-
fluidic single-cell capture and low-coverage sequencing
of many cells using existing tools [119]. Meanwhile,
Trapnell et al. reported a tool kit called Monocle which is
an unsupervised algorithm that increases the temporal
resolution of transcriptome dynamics using single-cell
RNA-Seq data collected at multiple time points[120].
Another recent method called scLVM (single-cell Latent

Variable Model) has been developed to tease apart
different sources of gene expression heterogeneity in
single-cell transcriptomes, in particular that due to cell
cycle-induced variation [109]. Interest in single-cell
RNA-Seq is growing rapidly. It is foreseeable that
single-cell RNA-Seq will significantly accelerate biolo-
gical discovery by enabling routine transcriptional
profiling at single-cell resolution, revolutionizing our
view of the transcriptome. In addition, the integrated
analysis of a cell’s transcriptome, genome and eventually
epigenome will enable a more complete understanding of
the molecular machinery of cells and how this relates to
higher order phenotypic variation.
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