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Gene expression is a complex biochemical process, involving many specific processes such as transcription,
translation, switching between promoter states, and regulation. All these biochemical processes inevitably lead to
fluctuations in mRNA and protein abundances. This noise has been identified as an important factor underlying the
observed phenotypic variability of genetically identical cells in homogeneous environments. Quantifying the
contributions of different sources of noise using stochastic models of gene expression is an important step towards
understanding fundamental cellular processes and cell-to-cell variability in expression levels. In this paper, we review
progresses in quantitative study of simple gene expression systems, including some results that we have not published.
We analytically show how specific processes associated with gene expression affect expression levels. In particular, we
derive the analytical decomposition of expression noise, which is important for understanding the roles of the factorial
noise in controlling phenotypic variability. We also introduce a new index (called attribute factor) to quantify
expression noise, which has more advantages than the commonly-used noise indices such as noise intensity and Fano

factor.
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INTRODUCTION

The latest advances in biological experiments allow us to
map not only the protein-coding genes in the genomes of
prokaryotic or eukaryotic organisms but also the
regulatory sequences present in these genomes. In
particular, single-molecule and single-cell measurements
allow direct observations of real-time fluctuations in gene
expression levels in individual live cells [1-5]. A main
challenge in the post-gene epoch is to understand how the
regulatory sequences across a genome control the
expression spectrum of every gene within a cell and
how they collectively determine stochastic behavior of the
entire gene regulatory network and further the cell’s
function.

Traditionally, the regulation of expression spectrum
was studied in experiments that usually measured the
average expression level in populations consisting of
many genetically identical cells (the number of cells used
in an experiment would be up to a few millions). These
studies related the average expression level of a gene to its

regulatory DNA sequence, but averaging over popula-
tions often conceals differences in gene expression, which
not only may occur between individual cells [6] but also
may in turn have consequences for the whole multi-cell
system or organism [7]. Therefore, this apparent draw-
back of the average method makes it necessary to develop
other more effective methods to understand gene expres-
sion in single cells as well as cell-to-cell variability in
expression spectrums.

Within a single cell, gene expression is indigenously
stochastic mainly because of the following three reasons:
(1) Protein-coding genes are typically present in only one
or two copies in a cell; (ii)) Transcription initiation is a
multi-step biochemical process; (iii) Whether a gene is
transcribed at any given moment depends on the arrival of
multiple transcription factors to their designated binding
sites. From the viewpoint of biochemical reactions, gene
expression involves transcription of DNA to mRNA,
translation of mRNA to protein, transition or switching
between promoter activity states, feedback regulation,
alternative splicing, and RNA nuclear retention [8—14].
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All these specific biochemical processes are stochastic
due to the low copies of the involved reactive species.
This stochasticity inevitably results in fluctuations in
mRNA and protein abundances, and further cell-to-cell
variability in expression levels. This variability is referred
to as gene expression noise, which is a main analysis
object of this paper.

As a key step of gene expression, transcription takes
place often in a bursting fashion. Single-cell measure-
ments have provided evidence for transcriptional bursting
in prokaryotic cells [1] and in eukaryotic cells [2,15].
Although the sources of transcriptional bursting remain
poorly understood [16], several lines of evidence
[3,10,11,17-21] point to stochastic transitions among
the active (ON) and inactive (OFF) states of gene
promoter as an important source of expression noise,
which is responsible for cell-to-cell heterogeneity in
homogeneous environments. It has been shown that in
contrast to Poissonian transcription, where mRNA is
synthesized in random, uncorrelated events with a
probability being uniform over time, bursty transcription,
where mRNA is produced in episodes of high transcrip-
tional activity (bursts) followed by long periods of
inactivity, typically leads to higher expression noise [22].

Given the inherent stochasticity and complexity of gene
expression, several questions are raised: (i) Are the
stochastic dynamics of gene expression—and therefore
the resulting cell-to-cell variability in mRNA and protein
levels—encoded by the promoter regulatory sequence,
just as the mean expression level of a gene appears to be?
(i) How are reasonable gene models developed and
analyzed with results that can interpret experimental
phenomena? (iii) What are roles of specific processes
associated with gene expression in controlling the
expression spectrum of a gene? There are other questions,
which either have been partially studied or need to be
further studied. Refer to Figure 1, where we list aspects of

common interest in quantitative analysis of stochastic
gene expression models.

We will address some of the questions listed in Figure 1
(see the deep grey parts) by reviewing progresses in the
study of gene expression systems combined with some of
our works that were recently finished but have not been
published elsewhere. For the understanding convenience
of the reader, we will first consider two representative
gene models: the one is an extended version of the
common ON-OFF model, which considers not only two
kinds of regulations (i.e., positive and negative feedbacks)
but also promoter leakage (i.e., there is a small
transcription rate at the promoter’s inactive state in
contrast to that at the active state); the other is an extended
version of the common gene model of stochastic
transcription, where the ON and OFF waiting-time
distributions are not exponential but are general. We
will derive analytical results that not only can explain
some important experimental phenomena but also can
make biologically reasonable predictions as well as would
provide guidelines for designing functional gene circuits.
Then, we will consider a general gene model at the
transcription level, where the promoter is assumed to
contain multiple ON states and multiple OFF states and
that there are stochastic transitions among these states. We
will also derive analytical results, including analytical
mRNA distribution and mean ON and OFF times. The
overall review focuses on generality and accuracy of
theoretical results, applicability of analysis methods and
elucidation of important mechanisms underlying cell-to-
cell variability in expression levels.

QUANTITATIVE ANALYSIS OF TWO
REPRESENTATIVE GENE MODELS

First, we introduce a representative model of gene
expression, referring to Figure 2A. It considers three

Gene-product distributions
and their characteristics

Relationship between
feedback and noise

Decomposition of
expression noise

Aspects of common
interest in quantitative
analysis of gene
expression systems

Effects of detailed
processes or factors
on expression levels

Mean ON and
OFF times

Bursting kinetics

Energy cost

Mean-noise
relationship

Figure 1. Aspects of common interest in quantitative analysis of gene expression systems in single cells. This paper
focuses on research progresses in some of them indicated in deep grey, including our own works unpublished elsewhere.
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OFF

Figure 2. Schematic for two representative ON-OFF models of gene expression. (A) The model considers not only
regulations but also promoter leakage; (B) The model considers ON and OFF mechanisms with general waiting-time distributions.

kinds of fundamental biochemical processes: (i) Stochastic
switching between two promoter activity states (the active
state is denoted by A and the inactive state by /); (i) Two
kinds of regulations, i.e., positive and negative feedbacks.
To derive analytical results, however, we assume that
feedback regulation is linear although for nonlinear
regulation, it is possible to derive some analytical results
[23]; (ii1)) Promoter leakage, i.e., there is a small
transcription rate at the OFF state, compared to that at
the ON state. Thus, our model contains most of the
common ON-OFF models studied in the literature [24—34]
as its particular case. For this model, we first derive the
analytical distribution of gene product, then give char-
acteristics of statistical quantities such as noise intensity
and attribute factor first introduced in this paper, and finally
analyze the roles of factorial noise (i.e., a part of the total
noise) in inducing the bimodal expression of gene product.

Then, we introduce another representative gene model
at the transcription level, where waiting time distributions
at ON and OFF are not exponential but are general,
referring to Figure 2B. For this kind of model, we first
derive an integral equation that can be used to calculate
moments of the mRNA distribution, and then give an
explicit expression for the common noise index and
discuss its characteristics.

We point that the analysis methods used to derive our
analytical results are very general, and can be applied to
stochastic analysis of any reaction networks.

Explicit distribution

The distribution of the molecule numbers of the reactive
species in a biochemical system of interest is very
important for understanding stochastic behavior and
properties of this system. Thus, finding this distribution
is common interest although it is a challenging task in
many cases.

First, we consider model (A) shown in schematic
Figure 2. The corresponding chemical master equation

(CME) reads

%= — AP (n, t) + yPy(n, t) + hnPy(n, t)
—gnPy(n, t) + u[Py(n—1, )= P(n, t)]
+ol(n+ )P (n+ 1, t)—nP(n, 1)]
6P0(n, t)

=AP\(n, t)—yPy(n, t)—hnPy(n, t)
+gnPy(n, t) + polPo(n—1, t)—Py(n, )]
+o[(n + 1)Py(n + 1, t)—nPy(n, 1)]

(1

where P;(n, t) represents the probability that the gene
product has n molecules at state-I (i=1 stands for ON
whereas i =0 for OFF) at time ¢. If the total probability is
denoted as P(n, t), then P(n, t)=Py(n, t)+ Py(n, t)
according to the sum law of probability. In Equation (1), A
and y are transition rates from ON to OFF states and vice
versa, respectively; p; and p are transcription rates at ON
and OFF states, respectively (We assume i, > i in this
paper since the latter describes promoter leakage); 4 and g
represent strengths of positive and negative feedbacks,
respectively; and 0 is the degradation rate of gene product.
For convenience, we rescale all the parameters by J in the
following, that is, A=21/4, =7/d, h=h/5, g =g/, and
f;=p;/0 with i=0, 1. Our interest is to find the
stationary distribution P(n).

There are several efficient methods to find the
analytical expression of this distribution [26,31-34].
Here, we adopt the Poisson representation method [35]
to solve Equation 1. For this, we introduce two factorial
functions py(s) and p;(s), which are related to two
factorial distributions Py(n) and P;(n) by

P = |

where the total function p(s) = py(s) + p;1(s) satisfies the
j p(s)ds=1 due to the prob-

Smax

pi(s)efs%ds, i=0, 1 2)

0

normalization condition

ability conservative condition Zn>0P<n) =1. By sub-
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stituting into Equation (2), we can obtain a group of
differential equations regarding py(s) and p;(s). To
guarantee the uniqueness of the corresponding solution,

we impose the boundary conditions: f f}” ls—1g)/
((1 4 g+)h)](s"/n))ds =0, n=0, 1,2, .... Solving this

equation group with the given boundary conditions, we
obtain the following expression of p(s)

g+h 2 A@+h) B(g-+h)
ps) = Cexit (s —fug) *(o —8)e71" (s —aap)e771

A3)

where C is a normalization constant. In Equation (3), we
have denoted

4= (a1 =p1)(a1—p,) ’ B—

(00 —=py) (a2~ )

Q12 =

| o — 0y Oy — 0
(3A)
(1+&)jio + (1 4+ A £/ [(1 +@)ito + (1 + 1) ju]*~4(1 + &+ K)o 5
2@ +h+1)
~~ . T ~~ . T2 ~ N /T~ _—
&l +hipy —A-7 £ \/(guo+hu1—/1—y) +4(g + h) (Ao + 7 ) 30)
2=

As such, the distribution of gene product can be formally
expressed as

C Ag+h) | B(g+h) |

Smax __—s
P(n)z Jfo eé+/‘r+1sﬂ(siﬂo)—2(al7S)§+};+] t (S7a2)2+’;+1 } lds
“

In theory, this expression can reproduce many previously-
derived distributions. Here, we give its explicit expressions
in two particular cases.

In general, the promoter leakage rate, i.e., the
transcription rate at OFF state is much smaller than that
at the active state, i.e., iy << p;. To derive the analytical
expression of the distribution, we assume g, ~ 0 for
simplicity. In this case, it is found from Equation (4) that

()" L'(n+ o)l (B)
n! I'(a)['(n+p)

p(n)= Fi(n+a, n+p; &)

®)

where lFl (Cl, b;Z): n:o[(a)n/(b)n](zn/n!) with (c)n
being the Pochhammer symbol defined as (c¢),=
[(c+n)/T(c) is a confluent hypergeometric
function, a=j/(h+1), B=(A+7)/(h+g+1)+
@)/ (h+g+1)°, and &=(h+1)/(h+g+1)".
Note that in the absence of feedback, i.e., if h= g=0,
the above expression can reproduce the mRNA distribu-
tion in the common ON-OFF model of stochastic
transcription [4,26].

Then, we consider model (B) shown in Figure 2. In this
case, the mRNA distribution in general cannot be
analytically derived since waiting-time distributions are
general. In spite of this, we can derive integral equations

2(g +h)

T
for both the moment-generating function and moments of

the distribution. In fact, denote by W (z;¢) the moment-
generating function of the distribution at time ¢, and in
particular, denote W,,;(z)=W(z;0). Suppose that there
are N molecules at time ¢ =0, where N itself is a random
variable. Then, every mRNA at time ¢, which is also a
stochastic variable and is denoted by X;, 1 <i<N, has a

survival probability p(f)=1-D(t)=e %, where D(t) =

f ;5e7’5‘?ds represents the cumulative distribution function
for the mRNA lifetime. For simplicity, we assume that
these variables X; are independent of one another, each
following a Bernoulli distribution with the moment-
generating function given by M(z) =1+ p(t)(e€—1)=
+e (& —1) [36-38]. Note that the total molecule
number of mRNA at time ¢ is given by S=X;, +---+
Xy. Using the law of total expectation, we can know

Win(log(1 +e (€-1))  (6)
where we have assumed that every X; is independent of N.
In particular, at the end of an OFF-state, W (z;,;) can be
given by integrating W,,;,(log(1 + e (& —1))) over the
interval (0, co), that is,

W(z;t)=

W (z5t) = [ Willog (1 + (&~ 1))y ()t (7)
where f,(s) = f o F (&, s)de with F(u, s) representing
the joint probability density function of OFF and ON
times is the distribution of times that the gene dwells at the
OFF state (i.e., OFF times).

Except that an ON-period degradation of the mRNA
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molecules that have been present at the beginning of the
burst continues as described above through the function
e M@ 1) with Wiz oy + ) = Wi (log(1+
e 9Wtr)(¢ —1))), mRNAs are also created and
degraded according to a birth-death process with an
exponential waiting time. Moreover, the distribution for
this birth-death process is a Poisson distribution with the

average pu=%(lfe’5") and the moment—generating

function W, (z; to5 + u) =@~ 1) [38]. Therefore,
their combination produces an effective burst size. During
an ON-state, the probability distribution of the mRNA
number is given by the convolution of the distribution of
the number of those molecules that are still present from
previous bursts and the effective burst-size distribution.
This can be expressed as

Wzt + )= [ Willog(1 +e (1))

-ep“(ezfl)ﬁ?ﬁv(s)ds ®)

Note that one complete OFF and ON cycle defines a
boundary condition:

W(Z; 0) = W(Z; fon + tqff’)

- .[ZO,[;O:SW(Z; t)fon(tfs)ﬁ?ﬁ'(l‘)dl‘ds )

0
where f,, (1) = fo F
of ON times. Combining Equation (9) with Equation (6)
and Equation (8), we thus arrive at the following integral
equation with respect to W;,;(z)

(u, 6)dO represents the distribution

W)= (50)=[ " [~ Wllog(1+¢7 %4 ()

L PENL () (s)drds (10)

which is a pivot for derivation of analytical results. For
example, moments of the total mRNA distribution can be
expressed as

1
Ton + Togr
1 —g(u))du

Um0< G+ [
(11)

. [e.¢] o
with k=1, 2, where 7,; = fu=0js=0sF(u, s)dsdu and
o

Ton = Szof:i oUuF (u, s)duds are the mean OFF and ON

times respectively, whereas f(s) and g(s) are the
cumulative functions of the duration distributions at

() =

OFF- and ON-states respectively. In Equation (11), (m*),
is the k" -order moment of the mRNA distribution at time
t = s during the OFF-state, which can be given by the k-
order derivative of Equation (6) at z=0, whereas (m*),, is
the k™ moment of the mRNA distribution at time 7 = Loy +
u during the ON-state, which can be given by the k" -
order derivative of Equation (8) at z=0.

In principle, the moments obtained by Equation (11)
can be used to approximate the mRNA distribution. In
fact, based on these common moments, we can calculate
so-called binomial moments [39—-41], which, e.g., in the
one-dimensional case, are defined as

b,c:z;( ) k‘Z:k m—1)---(m—k+1)P(m),
k=0, 1,2, --- (12)

where the sum function on the right-hand side can be
expressed as the linear combination of the common
original moments given above. In turn, these binomial
moments can be used to reconstruct the corresponding
distribution according to the formula

P(m):Z(—U’"*"(k )bk, m=0, 1,2, - (13)

k=zm m

Note that unlike common moments that are divergent as
their orders go to infinity, binomial moments are
convergent as their orders go to infinity [39]. In addition,
we point out that binomial moments defined above are
easily extended to cases of many random variables.

Decomposition and characteristics of expression
noise

Noise decomposition is an interesting topic. Some authors
studied noise decomposition in gene regulatory systems,
e.g., Weinberger, et al., showed that dynamics of protein
noise can distinguish between alternate sources of
variability in gene expression levels [42]. Other authors
studied noise decomposition in general biochemical
networks, e.g., Levchenko, et al, gave an empirical
decomposition of the total noise (including intrinsic and
extrinsic noise) in intracellular biochemical signaling
networks using nonequivalent reporters [43], and
Bowsher, et al., discussed the issue of noise decomposi-
tion in some biological networks and elucidated the
biological significance of their noise decomposition [44].
Here, we are interested in accurate decomposition and
essential characteristics of the total intrinsic noise in
several representative models of gene expression, focus-
ing on the tracing and dissecting of intrinsic noisy
sources.
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Note that it is in general difficult to see features of the
total noise directly from the above analytical distribu-
tions. Therefore, we turn to considering statistical indices
of a distribution such as noise intensity that is defined as
the ratio of the variance over the square of the mean and a
new statistical index (called the attribute factor of noise in
this paper) that we will introduce. These indices can not
only provide intuitive understanding of expression noise
in contrast to the distribution bust also simplify stochastic
analysis, in particular for complex reaction networks.

First, we consider expression noise in the common
sense. Let 7,, and 7, represent the mean residence times
at the active and inactive states of a gene respectively, and
(n) represent the mean expression of gene product.
Denote by 7, the intensity of common expression noise.
Then, in the absence of feedback (i.e., h=g=0) and
without promoter leakage (i.e., py=0), we find that for
each of the above two gene models, the noise intensity can
be expressed

1 7>
— + o (14)
<}’l> Toff Ton + Toff + Ton

Nelassic

where the first term on the right-hand side, i.e., x40 deamn
=1/(n) = (t,, + 1)/ (1117,,), represents the intensity of
the factorial noise due to the random birth and death of
mRNA whereas the second term, i.e., &,omorer = r(z,ﬁf [ (To
Ton + To + T,y) Tepresents the intensity of the factorial
noise from switching between promoter states (i.e., so-
called promoter noise). Note that 7., calculated by
Equation (14) is exact in the case of no feedback but
approximate in the presence of feedback since the mean
level of gene product is changed in this case (in fact,
the mean level is given by (n)= (ﬁlron)/[(il +g+1)
(Ton + Top) + giz[zlranrqﬁr], which depends on feedback

1.0 T T T T

= Georrection

2
17 exact

2
== MNclassic

Negative feedback strength

Figure 3.

0 02 04 06 08 1.0

strengths). In the latter case, the expression noise (or the
total noise) should be modified as [33,45,46]

(15)

where the first term on the right-hand side represents the
approximate noise calculated by Equation (14) whereas
the second term represents the feedback-induced addi-
tional contribution to the expression noise. By calcula-
tion, we find

Nexact — Hclassic + 8correction

8correction —

1 (h+g+)(0+hi-g)+ingh 2
P (h+g+1)(A+7+h+g+1)+ugh A+j+1
(16)

which analytically shows how the positive or negative
feedback strength impacts this correction. To see this
impact more clearly, we plot Figure 3. We observe from
this figure that negative feedback reduces the expression
noise, referring to the shadowed part in Figure 3A,
whereas the positive feedback enlarges this noise,
referring to the shadowed part in Figure 3B. In particular,
if only positive feedback appears, then the correction
becomes

>0 (17)

8correction

i h(3+7)
PO+ )+

If only negative feedback appears, then it becomes

<0 (18)

8correction

g —@+HE+P+I+A)
7 O+7+DE+ DA +74+8+1)

Then, we introduce an attribute factor to quantify

Expression noise

0 02 04 06 08 10
Positive feedback strength

(Color online) Feedback-induced additional contributions to expression noise (A) Negative feedback, where the

mean protein is fixed at (n) =20, and the other parameter values are set as y=0.1, i, =40, 1y =0 and = 0; (B) Positive feedback,
where (n)=20,1=16, u; =40, uo=0and g=0.The solid curve (red) represents the exact noise calculated by Equation (15), the
dash-dotted curve (green) represents the approximate noise calculated by Equation (14), and the shadowed area (yellow) with the
boundary (the blue dash curve) represents the additional contribution from feedback.
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expression noise. Analogous to the definition of common
noise intensity, we define the attribute factor as the ratio of
the double of the second-order binomial moment over the
square of the first-order binomial moment

2b
Eattribute = bizz (1 9)
1

One will see that this factor has more advantages than the
noise intensity in quantifying characteristics of expression
noise.

In order to help understand this factor, let us
consider the simplest birth-death process described by

-5 x A @. For this reaction model, we know that the
molecule number of X follows a Poisson distribution,
P(n)=e *X"/n!, where A=g/J is a characteristic para-
meter of this distribution. Recall that the size of the Fano
factor defined as the ratio of variance over mean can be
used to judge whether a distribution is Poissonian [47].
Specifically, the distribution is sub-Poissonian if the Fano
factor is less than 1; it is Poissonian if the Fano factor is
equal to 1; and it is sup-Poissonian if the Fano factor is
more than 1. Similarly, for the attribute factor introduced
above, we have that if €,,,5,,.<1, then the distribution is
sub-Poissonian; if &, =1, then the distribution is
Poissonian; and if &,ipue > 1, then the distribution is
sup-Poissonian.

Interestingly, we find that for the common ON-OFF
gene model at the transcription level, the attribute factor

Eamibure 15 glven by

Sattribute = gbirth —death + gpromoter

2
o
Ton + Tof + TonTQ[f

>1 (20)

which depends only on promoter structure but is irrelative
to the transcription rate. Thus, the mRNA distribution is
sup-Poissonian for this gene model. In the presence of
feedback but without promoter leakage, we can show

mg(h+1)

h+g+1
mg

h+g+1

A+ hA-gy+

Sattribute = 1 +

= =
o

+i+h+g+1+

O+ﬁﬂﬁ+g+1y+gh>
Vi
This indicates that the mRNA distribution is also sup-
Poissonian.
We point out the following three points: (i) the above
analysis gives partial reasons why &, 1S called the
attribute factor; (ii) the attribute factor has many other

1 Q1)

|
+

advantages, e.g., it contains useful information on
bursting kinetics; (iii) the above analytical results provide
quantitative descriptions of essential intracellular pro-
cesses. The related results for the first and second points
will be published elsewhere.

Roles of factorial noise in controlling phenotypic
variability

In this subsection, we investigate the role of factorial
noise in controlling cellular phenotype (e.g., bimodality).
From the above subsection, we know that the expression
noise is composed of two parts: the one is from the birth
and death of gene product and the other from stochastic
switching between promoter states. Each part is called as
factorial noise in this paper. As is well known, the
distribution of gene product in an ON-OFF model can
exhibit one peak or two distinct peaks, which correspond
to different cellular phenotypes. Thus, a natural question
is what the role of factorial noise is in inducing
unimodality or bimodality.

For simplicity, we consider the common ON-OFF
model at the transcription level, implying that we consider
neither regulation nor promoter leakage. In this case, we
adopt two approximations to elucidate the roles of two
noisy sources in inducing bimodality [31]: continuous
approximation and adiabatic approximation.

First, we consider continuous approximation. If the
characteristic number of gene products (i.e., proteins) is
very large as that in the deterministic case (i.e.,
M=,/ > 1), then the ratio (or concentration) x=n/
M may be considered as a continuous variable. Thus, we
can easily derive the corresponding CME. By solving this
equation, we obtain

- _ o Rjig+Ajy
Pl =Ce B (-0 oo /) | (22)

where 7 =hji,, g=gJi;, and C is a normalization constant
determined by f (I)P(x) =1.

Then, we consider adiabatic approximation. If the
protein number fluctuations become significant compared
to those from switching between promoter activity states
(e.g., in prokaryotic cells), the CME will be reduced to
another simpler model, where all the gene states are
simply integrated by fast equilibrium. In this simplified
model, the dominant noise is transcriptional or transla-
tional noise, which is generated due to the stochastic birth
and death of protein. Moreover, the protein distribution is
given by

_ 1 (11)" (@),
1Fi(a, i) nt (B

where o= (i + Afio) / (hji) and f= fu,.

P(n) (23)
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In order to characterize the above two approximations,
we introduce a ratio, which is defined as

promoter noise

Ratio=

24)

synthesis noise

Apparently, promoter noise is dominant if Ratio > 1
whereas translational noise is dominant if Ratio << 1.
Thus, the former corresponds to the continuous approx-
imation whereas the latter to the adiabatic approximation.
Figure 4 shows how factorial noise can induce bimodality.

It should be pointed out that the above analysis can also
obtain the decomposition of expression noise (Actually,
we only can the formal expression according to the noise
definition). Compared to the derived-above analytical
decomposition in which the noisy sources are practically
artificial, the former decomosition is essential since the
traced sources of noise are releastic. However, the
difference between them is not too big under some
assumed conditions (detailed discussions are omitted
here).

QUANTITATIVE ANALYSIS OF A
GENERAL GENE MODEL

Complex promoters with more than two states are not the
exception but the rule as combinatorial control of gene
regulation by multiple species of transcription factors, and
the latter case is widespread in eukaryotic cells [48]. Even
those promoters that are regulated by a single transcrip-
tion factor may have multiple states [2,49]. For bacterial
cells, the promoters that are often viewed as simple can
exist in a surprisingly large number of regulatory states.
For example, the PRM promoter of phage lambda in F.
coli is regulated by two different transcription factors

A
30 T I T
— Low
- Intermediate
- -
] =+~ High _
© 20k, . —— Deterministic [+
55_ \-;é_:_‘.m:;h~:~
G b\;‘:»::;ﬁ- -
1) ~)
Qo N
€10 g 4
2
O 1 L
0 2 4 6 8
Ratio

Figure 4.

binding to two sets of three operators that can be brought
together by looping out the intervening DNA. As a result,
the number of regulatory states of the PRM promoter is up
to 128 [50]. In contrast, eukaryotic promoters are more
complex, involving nucleosomes competing with or being
removed by transcription factors [S1]. In addition to the
conventional regulation by transcription factors, the
eukaryotic promoters can be also epigenetically regulated
via histone modifications [52—54]. Such regulation may
lead to very complex promoter kinetics [52].

Based on the above reasons, we introduce a general
gene model at the transcription level, where the gene
promoter contains many activity states due to different
bindings of transcription factors to regulatory sites on
DNA or other unspecified mechanisms. These activity
states (V in total) are divided as L active states and K
(=N —L) inactive states. For analysis convenience, we do
not consider regulation. We use matrix A=(a;) to
describe promoter activity, diagonal matrix A= diag(u,
Hy, -+, fy) to describe exits of transcription from DNA
to mRNA, and diagonal matrix & = diag(d;, d,, ---, dy)
to describe degradation of mRNA at promoter activity
states. Let Py(m) represent the distribution that mRNA
has m molecules at state-k of the promoter and P=
(P;, ---, Py)" represent the column vector consisting of
these factorial probabilities. Then, the CME for the
corresponding gene model can be expressed as

%:AP(}%; t) + S(E—-I)[mP(m;1)]

+A(E ' =D)[P(m; 1)] (25)

where E is a vector of step operators and I is a vector of
unit operators. Interestingly, the time-evolution equations
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(Color online) Phase diagrams describing how stochastic bimodality is generated (A) Slow switching, where

A=y=0.5; (B) Fast switching, where 1=20 and y=2. In (A) and (B), the gray curve represents the monstable state in the
deterministic case, and blue, dashed green and dot-dashed red curves each representing the noise-induced stable state in the
stochastic case correspond respectively to the high state where the protein number is large, the middle state where the protein
number is moderate (corresponding to the valley between two peaks of the distribution) and the low state where the protein number

is small.
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for the binomial moments defined above take the
following simpler form in contrast to the CME

%bk = Abk + Abk—l —kﬁbk (26)
where k=1, 2, ---. Clearly, the first term on the right-
hand side of Equation (26) describes kinetics of the
promoter with the transition matrix A that is actually an
M-matrix (since the sum of every column elements is
equal to zero), the second term describes the exits of
transcription with the transcription matrix A, and the third
term describes the degradation dynamics of mRNA with
the degradation matrix & (throughout this paper, we
consider only the same degradation rate for simplicity,
and denote it as d). We point out that model (26) includes
all previously-studied models of mRNA expression as its
particular cases.

mRNA distributions

For simplicity, we consider a particular case, i.e., assume
all the degradation rates are equal: 6y =3d, = --- =dy =0
(implying that the degradation matrix takes the form of
o0=0ly with Iy being the unit matrix). In addition, we
rescale all the parameters by 0 for convenience. In the
following, we are only interested in the steady-state
mRNA distribution.

Note that when solving Equation (26), we need to know
the expression of by = (bf)U, b(()z), e b((]N) )T, which can
be given by noting the fact that the transition matrix A is
an M-matrix (i.e., the sum of every column elements is
equal to zero). By solving uyby =1 and Ab, =0, where

uy=(1, 1, ---, 1)isan N — dimensional row vector, we
find
N-1 pk)
K Bi
by = ,  1<k<N (27)
i=1 %
where 0, —a;, —a,, ---, —oy_; are the characteristic

values of the rescaled matrix A and fﬂgk), —ﬂgk), e
- ﬁ](\];ll are the eigenvalues of the matrix M that is the
minor one of the N x N matrix A by crossing out the £
row and k" column of its entry .

Also note that the total distribution is given by P(m)
= Zszl P, and the order-k binomial moment is
calculated according to bk=2;v:1 b,@ =uy -b;. Thus,
it follows from Equation (26) that

L TT [(-A) b,

n[Ti- det(kI-A) =,

n =

n=1,2, - (28)

where (kI —

and the determinant of matrix (kIﬂ&), respectively.
Once all the binomial moments are given by Equation
(28), we can calculate the mRNA distribution according
to the above Equation (13).

Now, we consider distributions in several particular
cases. If all the rescaled transcription rates are equal, i.e.,
[y =, = -+ =y =t (implying that the rescaled tran-
scription matrix takes the form of /~1=[¢IN), then the
number of mMRNA molecules always follows a Poissonian
distribution, independent of promoter structure. This is an
interesting fact. If transcription matrix takes the form of

A= /J(O(N -1 0), then the mRNA distribution takes
1

A) " and det (kI — [&) are the adjacency matrix

the fOI‘I’I(l)

- (
:“ P )m
m ];[ a
N N
'NlFNl<m+ﬁ§) s m By ;—ﬁ>,
m-+ap, -, m+oy_
m=0, 1,2, --- (29)

where ,F, (al o |;a> is a confluent hypergeo-

metric functlon [55] "If the rescaled transcription matrix
takes the form: A:,LNL(I(N*I) 0), then the mRNA
0

distribution 0
Pmy =<3 (M) k)
m! =\
N pN) (V) (N)
' H(ﬂl )klele(k—'—ﬁ1 ’k+ﬁN";M>
i=1 (ai)k k+a], cey, k+aN,1
(30)

In particular, for the common ON-OFF model of
stochastic transcription, we find that the resulting
mRNA distribution obtained by Equation (13) combined
with Equation (28) can reproduce the one obtained in
previous studies [4]. That is,

~m r(i+m)r(§+§)

p(m)_ ml (A+y+m)l“</1>

-1F1(1+m, X+’y“+m;—ﬁ) 31)

Waiting time distributions and mean waiting times

As is seen from the above, the mean ON and OFF times
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are important for calculating the mean mRNA level and
studying the mRNA noise. In the case that the gene
promoter has multiple ON and OFF states, in order to give
mean ON and OFF times, we need to calculate the
distributions of ON and OFF times.

Let matrices A;; and Ay, describe transitions among
the active states and among the inactive states, respec-
tively. The matrix A, describes how the active states
transition to the inactive states. Similarly, we can
introduce matrix A,;. Denote by A=(a;) the N x N
transition matrix, which consist of four block matrices
All, Ay, Ajg and Ag;. Matrix A=diag(py, -+, fy)
describes exits of transcription with p; representing the
transcription rate of mRNA in state-i (; = 0 means that no
transcription takes place). Thus, two matrices A and A
altogether determine the promoter structure completely

Assume that the promoter states begin to transition
from OFF (ON) to ON (OFF) at time #=0. Define
00 (=1, -, L) and O'(x) (k=1, ---, K)
as the subsequent “survival” probabilities that the
promoter is still at the i ON and at the k”* OFF state at

time =17 > 0, respectively. If we denote Q(z)=
0 0 1

(0@, -+, O@)" and QW ()= (0 (x), -,

Qf)(r))T, then according to the corresponding CME,

we can show

Q(O) (r)= eXP(Aoof)Q(O) (0)
(32)
Q(l)(f) = eXP(AuT)Q(l)«))
Thus, for two given sets of initial survival probabilities
{0"(0), -, 0¢(0)} and {0]"(0), ---, 0} (0)},
the distribution functions for the dwell times 7 at the
OFF and ON states are given by

faff'(f) =u;Aq QY (1) =uy Agexp(Agr)Q” (0)

J;on (r)= uKAIOQ(1> (1)= UKAloeXP(AnT)Q(l) (0233)

From Equation (33), we can see that each of two
distribution functions is in general a linear combination
of exponential functions of the form %7, so the result here
is an extension of that in [56—58]. Furthermore, the OFF

and ON times can be computed by substituting f o (7)s
fon(7) into the general expression 7= f zotf (7)dr, that is,

Tofy = f . ru; Agrexp(Agr)Q” (0)dz

=, Ay (Ay) 2Q(0)

%on = ,[0 TuKAloeXp(AIIT)Q(l)(O)dT

:uKAIO(All)izq(l)(O) (34)

Note that Equation (34) is not the resulting mean
waiting times at OFF and ON states since the initial
survival probabilities Q¥ (z) and Q" (z) depend on the
transition pattern among ON and OFF states. For a given
promoter structure, to obtain the total OFF and ON dwell
times, we require to average (Z,;) or (7,,) over all such
ON states that transition to OFF states or over all such
OFF states that transition to ON states. For example, to

compute the resulting f,,(z), one should choose QEU )(O)

_ L (0-1) K L (0-1) ..
=(Q =14 /Zk:llelakl )0y Gy i=1, oo,

K) as the initial conditions, where d; is the Kronecker

delta, and for clarity, we let af,?al) represent the transition
rate from the k" OFF state to the i ON state (similarly,
as;w), a;/gw) and al(,,:ﬁl)). The resulting distribution

functions for the mean ON and OFF times are given by

foﬁ"(f) = ULA019XP(AOOT)A10“LT
(35)

Jon(7) = UKALOGXP(AMT)A01“1T<

Correspondingly, the resulting mean dwell times at OFF
and ON states are given by

1
T = ———u; Ag (Agy) ZAjoul
i uLAllouZ L3012 00 our 6
= ugA (A Ay uk
Ton uKAOIuIT(uK 10(Aqp) 01Ug

One can use the common ON-OFF model to verify the
correctness of the above analytical expressions.

Decomposition and characteristics of the mRNA
noise

First, note that the common noise (i.e., it is defined as the
ratio of variance over the square of mean) in a reactive
species of interest in any reaction network can be
calculated using the first two binomial moments. That
is, we have the following general formula

! +2b27b%
Th TR

(37

Second, for the above gene model with general
promoter structure, we find that the mRNA noise is
given by
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where (m) = (fiz,,)/ (o5 + 7,,). Like the case of the
common ON-OFF model, the first term on the right-hand
side of Equation (38) represents the birth-death noise of
mRNA whereas the second term represents the promoter
noise. In other words, we have the following decomposi-
tion formula for the mRNA noise in any case

Mm = gbirthfdeath + gpromater (38)

\" Third, we give the decomposition of the mRNA noise
using the attribute factor introduced above. It is easy to
verify that the attribute factor can be expressed as

ﬁ pY l’h 1+ Ao Y

=1 % |i=1 1+te = o

N-1 ,(N)\ 2
b
()

which is independent of the transcription rate u. Recall
that (2b,)/b? represents the burst size [59]. Thus, for the
above general model of stochastic transcription, the
attribute factor can describe not only the level of the
expression noise but also the burst size.

In addition, if the gene promoter has one active state
and L inactive states, which altogether form a loop with
unidirectional transcription between every two neighbor-
ing states, then the mRNA noise intensity can be
expressed as

] (39)

gattribute =1 +

_ (Ton + Toff')l_[£=1(1 +174) B
i S TR v e

Finally, we show how the number of the inactive states
impacts the noise intensity in the common sense. If the

L . N-1
total OFF time is fixed, i.e., Zkzl 7, = cosntant, then
we have

1

(Ton + T ) (T /L + 1)
nm?r]min: <m> + on off J\ off

(14 7o) (Top /L + 1E =1

Note that the function f(L)= (z,;/L+ 1)"/[(1+7,,)
(top /L + 1)“—1] is monotonically decreasing with the
increase of L, so the noise intensity (7,,) achieves the
maximum at L =1 that corresponds to the common two-
state gene model (we denote by 7,4 the corresponding
noise intensity). Therefore,

(41)

’7m<’70nfoff (42)

unless L=1. Since the actual OFF mechanism corre-
sponds to L > 1 [10], we obtain an important biological
conclusion, i.e., the multi-OFF mechanism always
reduces the noise in contrast to the common ON-OFF
mechanism. This implies that the common ON-OFF
model overestimates the noise in gene expression in the
real case.

SUMMARY AND DISCUSSION

Gene expression is one of the important research contents
of systems biology since it is the core of intracellular
processes. While recent advances in experimental meth-
ods allow direct observations of real-time fluctuations in
gene expression levels in individual live cells [1-5], there
is considerable interest in theoretically understanding
how different molecular mechanisms of gene expression
impact variations in mRNA and protein levels across a
population of cells. By analyzing two representative gene
models (Figure 2) and a general gene model at the
transcription level, we have shown that the molecule
number of gene product in general follows a distribution
expressed by a confluent hypergeometric function. We
have also shown that in the absence of feedback,
expression noise can be decomposed into the simple
sum of the birth-death noise and transcription noise. In the
presence of feedback, however, we have found that the
feedback can induce additional contribution to expression
noise. In particular, the multi-OFF mechanism always
plays a role of reducing expression noise in contrast to the
common ON-OFF mechanism. These results are inde-
pendent of choice of system parameters and are therefore
qualitative.

As is pointed out in the introduction, gene expression
involves other biochemical processes such as alternative
splicing [50,61] and RNA nuclear retention [62], apart
from transcription, translation and feedback regulation. In
fact, gene expression processes are becoming clearer due
to the occurrence of new experimental technologies. One
can imagine that these detailed processes would impact
expression levels in their own ways. For quantitative
analysis of this impact, one may take some methods and
indices used in this paper, such as binomial moment
method and attribute factor. In addition, we point out that
this paper has focused on analysis of intrinsic noise, but
extrinsic noise can also exist in gene expression systems.
Analyzing contributions of extrinsic noise to cell-to-cell
variability and dissecting decomposition principles of the
total noise as done in this paper are challenging tasks
since source of extrinsic noise may be complex.

In this paper, we have reviewed some progresses in the
study of several gene expression systems, focusing on
modeling and analysis as well as elucidation of the related

178 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2015



Quantitative Analysis of Expression Spectrums

mechanisms. Even for these systems, however, there are
some other questions that are also interesting but
unsolved. Here, we list only partial and unsolved
questions, and give frameworks for their quantitative
analysis.

Differences between transient and stationary
dynamics of gene expression

Many dynamical systems may exhibit very different
steady-state and transient dynamics. In particular, there
are big differences between stationary and transient
behaviors of gene expression systems, mainly because
of stochastic switching between promoter activity states.
For example, for the common ON-OFF model of gene
expression, the time-evolutional distribution may exhibit
bimodalities of different modes although the correspond-
ing steady-state distribution is unimodal [46]. For steady-
state dynamics, this paper has given nice, analytical
descriptions. For transient dynamics, however, it seems
impossible to give analytical descriptions. In spite of this,
numerical simulation based on the Gillespie stochastic
algorithm [63] or on the binomial moment method
mentioned in this paper may give quantitative descrip-
tions for differences between two distinct behaviors.

Inferring promoter structure based on expression
spectrums

While expression spectrums observed in experiments are
comprehensive consequences of gene expression, the
number of promoter activity states in eukaryotic organ-
isms may be up to 128 [50]. A question naturally arises:
how is promoter structure inferred from experimental
data? This question is interesting but challenging. A
possible way of solving the question is to analyze and
compare all the possible modes of steady-state and
transient distributions and find differences between them.
For example, for the common ON-OFF model at the
transcription level, all the possible modes of the mRNA
distribution are only those: two modes of unimodality,
where the peak is close to the origin and the peak is away
from the origin; one mode of bimodality, where one peak
is close to the origin whereas the other peak is away from
the origin [46]. If the promoter has activity states of more
than one, then the modes of the mRNA distribution may
be complex but different from those in the case of only
two activity states.

The mean-noise relationship

Mathematically, the mean-noise relationship is formu-
lated as

log(0®/?) =Blogy + loga (43)

where ¢? and y represent the variance and the mean of
mRNA or protein, respectively. In Equation (43), both «
and £ are two constants depending on the parameters of a
stochastic system of interest. For this formulation, the key
is to determine the sign and size of § since f represents the
slope of the line in the (logu, log(o?/u*)) plane. For
systems of gene expression, there are many works to
study the relationship between mean and noise [64—66],
some of which showed that f is negative [64] whereas
others showed it may be positive or negative [65]. An
unsolved question is what mechanisms govern the mean-
noise relationship, in particular the sign and size of f.
Owing to potential applications of this relationship in,
e.g., disease systems [66], this question deserves study.
Note that o? /i* represents the noise intensity. Therefore,
one may use the results given in this paper to analyze the
mean-noise relationship in some cases.
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