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Abstract
Purpose of Review In 2020, the Appropriations Committee for the U.S. House of Representatives directed the CDC to 
develop a national One Health framework to combat zoonotic diseases, including sylvatic plague, which is caused by the 
flea-borne bacterium Yersinia pestis. This review builds upon that multisectoral objective. We aim to increase awareness of 
Y. pestis and to highlight examples of plague mitigation for One Health purposes (i.e., to achieve optimal health outcomes 
for people, animals, plants, and their shared environment). We draw primarily upon examples from the USA, but also discuss 
research from Madagascar and Uganda where relevant, as Y. pestis has emerged as a zoonotic threat in those foci.
Recent Findings Historically, the bulk of plague research has been directed at the disease in humans. This is not surprising, 
given that Y. pestis is a scourge of human history. Nevertheless, the ecology of Y. pestis is inextricably linked to other mam-
mals and fleas under natural conditions. Accumulating evidence demonstrates Y. pestis is an unrelenting threat to multiple 
ecosystems, where the bacterium is capable of significantly reducing native species abundance and diversity while altering 
competitive and trophic relationships, food web connections, and nutrient cycles. In doing so, Y. pestis transforms ecosystems, 
causing “shifting baselines syndrome” in humans, where there is a gradual shift in the accepted norms for the condition of 
the natural environment. Eradication of Y. pestis in nature is difficult to impossible, but effective mitigation is achievable; 
we discuss flea vector control and One Health implications in this context.
Summary There is an acute need to rapidly expand research on Y. pestis, across multiple host and flea species and varied 
ecosystems of the Western US and abroad, for human and environmental health purposes. The fate of many wildlife species 
hangs in the balance, and the implications for humans are profound in some regions. Collaborative multisectoral research is 
needed to define the scope of the problem in each epidemiological context and to identify, refine, and implement appropri-
ate and effective mitigation practices.
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Introduction

In 2017, the Centers for Disease Control and Preven-
tion (CDC), U.S. Department of Agriculture (USDA), 
and U.S. Department of the Interior held a “One Health 
Zoonotic Disease Prioritization Workshop for the United 
States.” Plague, caused by the flea-borne bacterium Yers-
inia pestis, was prioritized as a zoonosis of national con-
cern. Similarly, the Government of Uganda, CDC, U.S. 
Agency for International Development, and Preparedness 
and Response Project identified plague as a zoonosis of 
national concern in Uganda [1]. Previously, the World 
Health Organization described plague as a significant re-
emerging zoonotic threat in Madagascar [2]. In all cases 
above, partners (from federal, state, local, tribal, and ter-
ritorial groups), non-profit and private sectors, and the 
public were invited to collaborate on projects aiming to 
increase the understanding of plague ecology and mitiga-
tion measures. A greater understanding of the impacts of 
Y. pestis on ecosystem function and integrity, and interac-
tions with multiple stressors, including climate change, 
land use, and biodiversity loss, should facilitate efforts to 
mitigate plague for One Health purposes (i.e., to achieve 
optimal health outcomes for people, animals, plants, and 
their shared environment) [3]. This review builds upon that 
multisectoral objective.

A Brief History of Plague and Its Introduction 
to North America

From an evolutionary perspective, Y. pestis (Entero-
bacteriaceae) might be considered a newly evolved 
pathogen [4]. It adapted to f lea-borne transmission 
only ~ 3000–6000 years ago [5]. Most evidence suggests 
Y. pestis originated in Asia [6] and subsequently spread 
broadly to become a scourge of human history across 
much of Earth [7]. Here, we concentrate on Y. pestis in 
the Western US, where the pathogen is classified as a tier 
1 biological agent on the U.S. Health and Human Services 
and USDA Select Agents and Toxins list. Since, in recent 
decades, the majority of human plague cases are reported 
from East and Central Africa and Madagascar [8, 9], we 
also draw upon research from Madagascar and Uganda 
for a more encompassing current view of the bacterium’s 
far-reaching influence.

In the early 1900s, Y. pestis was introduced to North 
America on trading ships carrying flea-infested rats to 
seaports of Louisiana, Texas, California, and Washington 
[10, 11]. Continued introductions and brief associations 
with commensal rats and fleas were mostly eliminated 
through inspection and sanitation of quarantined wharf 

ships and urban sanitation/rodent control [12]. In 1903, 
health researchers in California suspected that Y. pestis 
was present in California ground squirrels (Otospermophi-
lus beecheyi), and in 1908, the pathogen was also found in 
peridomestic rats, other free-ranging rodents, and flea vec-
tors [13, 14]. Eradication of Y. pestis proved to be difficult 
to impossible due to its presence in multiple host and flea 
species [7, 10, 15–17]. Y. pestis quickly naturalized itself 
among native mammal and flea species of the Pacific coast 
and interior California [18]. Over time, Y. pestis invaded 
areas > 2000 km eastward, expanding to multiple regions 
and ecosystems. Mammalian hosts, flea vectors, soil char-
acteristics, weather, and climate played influential roles 
in expansion to the  100th meridian in the USA [19–23]. 
Similar scenarios of maritime Y. pestis invasion apply to 
its invasion of Africa [8, 24].

In a seminal book on ecological invasions, Elton [25] 
describes the spread of Y. pestis in the Western US as akin 
to invasions by other introduced organisms. Kugeler et al. 
[26] characterized three distinct eras of human plague in the 
USA: common but restricted outbreaks occurring in popu-
lous Pacific port cities from 1900 to 1925, rapid geographic 
expansion among wildlife with a falling number of human 
cases from 1926 to 1964, and sporadic annual human cases, 
primarily in the rural Southwest combined with continued 
spread among wildlife from 1965 to 2012 (a trend continu-
ing today, with an annual average of seven confirmed human 
plague cases). The scenario is different in other areas. From 
2006 to 2015, about 97% of reported plague cases (11,247 
of 11,598) were reported from Madagascar, the countries of 
Democratic Republic of the Congo (DRC), Tanzania, and 
Uganda [8, 9, 27].

Plague Epidemiology

Yersinia pestis remains a significant hazard to human 
health. Following the onset of symptoms, septicemic and 
pneumonic plagues are almost 100% fatal within 1 to 4 days 
without appropriate antimicrobial treatment [28, 29]. With 
early detection and diagnosis, some treatment protocols 
are highly effective (e.g., streptomycin) [7]. Strains of Y. 
pestis carrying resistance plasmids, or strains capable of 
acquiring resistance plasmids via horizontal gene transfer 
from other Enterobacteriaceae, remain an enduring threat 
[30–32]. Likewise, the emergence of more adaptive changes 
is anticipated due to natural selection and, perhaps, artificial 
experimentation in laboratories [33–35].

Ecological Consequences of Plague

Globally, Y. pestis transmission imposes extraordinary 
ecologic and evolutionary consequences. Yersinia pestis 
mostly circulates among rodents and their fleas, but there 

170 Current Tropical Medicine Reports (2022) 9:169–184



1 3

is potential for spillover to several sympatric mammal spe-
cies including carnivores, lagomorphs, and insectivores such 
as Eulipotyphla, raising concerns for wildlife conservation 
[36]. The bacterium can infect and kill nearly all suscepti-
ble mammals [6, 36, 37] as it spreads rapidly during occa-
sional but repeated epizootic outbreaks [38–40], colonizes 
new habitats [8, 19], and persists and kills hosts between 
epizootics [41–46]. Yersinia pestis has a demonstrated abil-
ity to transform ecosystems in the Western US by reducing 
native species abundance and diversity, altering competitive 
and trophic relationships, undercutting food web connec-
tions, distorting nutrient cycles, reducing ecosystem resil-
ience, and depopulating imperiled species [18, 36, 38, 48]. 
As discussed 20 years ago [36] and still applicable today, 
Y. pestis has received little attention in ecological reviews 
of non-native organisms (see [49] for a recent exception). 
New research suggests Yersinia murine toxin (Ymt) facili-
tates spillover among a variety of mammals, highlighting 
opportunities for ecological disruptions [50]. Earlier Y. pes-
tis strains lacking Ymt may have circulated mostly among 
brown rats (Rattus norvegicus) and their fleas [50]. Acqui-
sition of Ymt via horizontal gene transfer [51] expanded 
the range of hosts considerably [50] and enhanced bacterial 
survival in fleas [52], helping Y. pestis to become a sweep-
ing threat.

We view Y. pestis as an influential ecological entity of 
conservation concern and One Health importance [18, 36, 
42, 47, 48, 53–57]. In this review, we aim to raise aware-
ness of Y. pestis. We discuss the following topics, with cita-
tions and case examples for illustration: (1) descriptions of 
epizootic and enzootic plague manifestations, (2) mecha-
nisms of Y. pestis transmission by fleas and the evolution of 
hypervirulence to mammalian hosts, (3) “shifting baselines 
syndrome” caused by Y. pestis, and (4) an update on methods 
and tools for plague mitigation. We conclude by briefly dis-
cussing the need for more research on plague across varied 
ecosystems.

Epizootic and Enzootic Plague

The literature commonly lacks explicit definitions of eco-
logical phenomena associated with plague, which may hin-
der scientific progress. In this review, we consider Y. pestis 
transmission rates to occur along a continuum. We have 
defined epizootic plague (mainly in studies of prairie dogs, 
which are highly susceptible) as outbreaks resulting in the 
deaths of ≥ 90% of hosts in a given population over a defined 
geographic area and within a short time span (often months; 
e.g., [50]). In a dichotomous classification, enzootic plague 
includes all slower Y. pestis transmission rates affecting 
lesser proportions of hosts [50, 54] often on smaller spatial 
scales and over longer time intervals. Definitions may vary 

by region or local rodent community, particularly in regions 
with species thought to be less susceptible to Y. pestis, and 
context-specific definitions are perhaps useful. This practi-
cal classification of Y. pestis transmission is defined by dif-
ferential mortality with spatial and temporal limitations. In 
this sense, epizootic plague defines the high mortality end of 
a spectrum and enzootic plague encompasses a large range 
of lesser transmission and host mortality rates [58]; what 
is considered enzootic conditions in some regions may be 
considered epizootic in others.

Epizootics as we have defined them in prairie dogs, for 
instance, might be rare or absent in some mammal commu-
nities [58], and perceptions may lead to differing mitigation 
strategies. From a public health perspective, for instance, the 
threshold for epizootic transmission (and therefore increased 
risk of transmission to the public) may be much lower than 
for prairie dog systems. In the Sierra Nevada Mountains of 
California, numerous rodent species of variable susceptibil-
ity are involved in the enzootic maintenance and epizootic 
transmission of Y. pestis. Epizootic mortality (as defined 
here) is rarely detected partly because of complex variations 
in rodent density, diversity, and susceptibility (and other fac-
tors), but any transmission significantly above the baseline 
is considered epizootic and may need to be mitigated to 
decrease a risk of transmission to the public.

One of the most striking aspects of Y. pestis is its abil-
ity to spread explosively during epizootics [55]. These 
generative, fulminating events [59] kill enormous numbers 
of susceptible animals in an area, or multiple areas con-
nected epidemiologically, sometimes in quick succession, 
for instance within days, weeks, or months [14, 39]. These 
epizootic periods represent times when humans are at great-
est risk of acquiring plague infection. In addition, at least 
some Y. pestis transmission and host mortality can occur 
during longer periods of enzootic plague, when a lack of 
obvious mortality in some cases makes it seem as if Y. pestis 
has disappeared [55]. The bacterium actually persists or is 
maintained in a “plague triad” including hosts and their fleas 
[41] with potential roles for soils, amoebas, and other factors 
in bacterial maintenance [55]. How Y. pestis persists during 
enzootic periods and what triggers transitions to epizoot-
ics are debated; adaptive strategies for Y. pestis to persist 
during enzootic periods and to spread rapidly during epi-
zootics were reviewed previously in the literature [60, 61]. 
Although the mechanism by which Y. pestis persists during 
inter-epizootic periods is largely unknown, from a public 
health perspective, early recognition of plague epizootics 
is paramount to reducing plague morbidity and mortality.

In the plague literature, host species have sometimes been 
characterized as enzootic “maintenance” and/or epizootic 
“amplifying” hosts [62]. Effectively, Y. pestis might be main-
tained by sustained transmission among partially resistant 
enzootic hosts and their fleas and occasionally spread to 
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more highly susceptible epizootic hosts that, along with 
their fleas, allow for Y. pestis amplification and epizootic or 
sustained enzootic spread. Although this dichotomy seems 
reasonable, evidence for separate enzootic and epizootic 
cycles is perhaps unconvincing, and epizootics may repre-
sent periods of greatly increased transmission among the 
same hosts and fleas that support Y. pestis during enzootic 
periods [6] (additional review in [60]).

Epizootic outbreaks can be apparent among some con-
spicuous, susceptible rodents or populations, especially 
diurnal, colonial sciurids such as prairie dogs (Cynomys 
spp.) and ground squirrels, or rats in urban and rural settings 
[54, 63]. The outbreaks are sometimes (but not always [64]) 
accompanied by detection of Y. pestis in hosts, carcasses, 
and/or fleas. In contrast, due to the sequestered activity of 
enzootic plague, slow declines in host densities are typi-
cally not appreciated until late in the process, if at all, and 
Y. pestis is even more difficult to detect [42, 54]. Species 
declines from enzootic plague are more likely to be incor-
rectly attributed to familiar causes such as concurrent habitat 
destruction, hunting, food scarcity, and climatic events [65].

Ecologists and epidemiologists agree epizootic plague is 
a real phenomenon, whereas the concept of enzootic plague 
is debated. Colman et al. [66] suggested confirmation of 
enzootic plague, as defined here, would require detection of 
Y. pestis with specific PCR assays, particularly those target-
ing multiple regions of the Y. pestis genome (e.g., the pla 
and F1 genes), in the absence of host mortality of epizootic 
proportions as defined by ≥ 90% mortality criterion. Tests 
on multiple targets are important because the pla gene is not 
specific to Y. pestis, and the presence of any one marker is 
not assured. During a 3-year capture-mark-recapture study 
of 4 prairie dog species on 58 plots in 7 western states [67], 
Y. pestis was positively detected via PCR testing of pla and 
F1 genes from prairie dog carcasses (16 plot-year cases) 
and/or fleas (15 plot-year cases) collected from plots lacking 
epizootic declines (Table 1). Detection in host carcasses was 

defined as “confirmed plague” [67]. Thus, under Colman 
et al.’s [66] recommendations, which might be considered 
stringent given Y. pestis must be detected [64, 68, 69], our 
definition of enzootic plague seems reasonable, even for pur-
ported amplifying hosts like prairie dogs. Additional support 
for the concept of enzootic plague comes from experiments 
involving vaccination (direct support) and flea control meas-
ures and intensive monitoring and testing of fleas and hosts 
(indirect support) with highly susceptible mammals (prai-
rie dogs [54]; black-footed ferrets, Mustela nigripes [42]; 
woodrats, Neotoma spp. [70]; ground squirrels, Urocitellus 
spp.; and yellow-pine chipmunks, Neotamias amoenus [57]; 
see also [21, 45, 71]). Regular serological surveillance of 
rodents and carnivores, combined with evaluation of other 
indicators of plague activity (e.g., carcasses, flea data, evi-
dence of burrow abandonment), can provide useful informa-
tion to determine the suspected magnitude (i.e., enzootic or 
epizootic) and/or extent of plague activity in an area [43].

Put simply, accumulating evidence demonstrates that 
flea-borne Y. pestis can actively kill hosts in the presence or 
absence of epizootic outbreaks regardless of how epizootic 
is defined [45, 72]. This general concept is not new (e.g., 
[73]), and experiences in California demonstrate that it is 
not uncommon to see mortality (e.g., Y. pestis positive host 
carcasses) in highly and moderately susceptible rodent spe-
cies without evidence of obvious population declines [43].

Flea‑Borne Yersinia pestis Transmission 
and Hypervirulence

Generally speaking, fleas are a “key” to Y. pestis trans-
mission [17, 74–78], though other modes of transmission 
occur (e.g., inhalation of respiratory droplets or consump-
tion of infectious carcasses [6, 22]). At least half of the 
Y. pestis life cycle occurs in the flea, which is another site 
of refuge, replication, gene sharing, and adaptation [77, 

Table 1  Prairie dog population 
responses and levels of 
suspected Y. pestis circulation 
on plots with Y. pestis-positive 
host carcasses or flea pools 
during a 3-year capture-mark-
recapture study of 4 prairie dog 
species on 58 plots in 7 western 
states [67]

a Change in catch-per-unit effort (n is the number of unique animals captured/number of trap days)
b Suspected Y. pestis circulation (≥ 90% decline = epizootic, < 90% = enzootic)
c Samples tested for pla and F1 genes using PCR
d Sampling unit = individual trapping plots by year

Prairie dog population  responsea Level Y. pestis 
 circulationb

Sample type tested for 
Y. pestisc

No. plot-
years Y. pestis 
 detectedd

Increase, stable, or < 50% decline Enzootic Host carcasses 5
Flea pools 10

50–89% decline Enzootic Host carcasses 11
Flea pools 5

 ≥ 90% decline Epizootic Host carcasses 9
Flea pools 0
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78]. Multiple lines of evidence demonstrate that flea-borne 
transmission predominates, particularly with rodent hosts 
[4, 76, 79–81]. Field experiments during enzootic and epi-
zootic periods are revealing; in many cases, if flea popula-
tions are controlled with the use of insecticides, Y. pestis 
transmission is reduced or eliminated, thereby retaining or 
increasing host survival and population densities [42, 47, 
54, 57]. For more on this topic, see also [82, 83].

There are two main mechanisms of flea-borne Y. pestis 
transmission [4]. The first mechanism, termed early-phase 
transmission [84], can occur when a newly infected flea 
next feeds on a naïve host. In this scenario, within a few 
hours after fleas ingest blood from a host with high num-
bers of Y. pestis, the bacteria coalesce into multicellular 
aggregates that localize to the proventriculus, a valve in 
the flea foregut [76, 85]. These forming bacterial masses 
can be sufficient to interfere with blood flow into the mid-
gut during the next feeding event, resulting in backflow of 
blood mixed with dislodged Y. pestis into the bite site [76, 
85]. This early transmission phenomenon following a short 
extrinsic incubation period (≤ 4 days post-infection) was 
originally called mass transmission because it depends on 
several infected fleas feeding simultaneously on the same 
host, though early-phase transmission has also been dem-
onstrated for a single flea [86–89]. It was long assumed 
to be due to mechanical transmission via contaminated 
mouthparts. However, Y. pestis survives for only a few 
hours on flea mouthparts [90], and so is probably nonvi-
able by the next feeding attempt. Several lines of evidence 
suggest that the early-phase mechanism involves regurgita-
tion from a fouled foregut [76, 85]. Early-phase transmis-
sion potential is significantly lower in subsequent feeds 
[60, 91], presumably because the initial proventricular 
obstruction is transient; incoming blood during the first 
post-infection feed eventually flushes most of the bacte-
rial mass out of the proventriculus back into the midgut 
[4, 16, 88]. Thus, infectiousness typically wanes over the 
first few days following the flea’s infectious feeding on a 
highly bacteremic host and may not recur unless the flea 
takes another infectious blood meal [60, 91].

The second phase of transmission ensues after Y. pestis 
establishes a cohesive biofilm in the proventriculus that is 
refractory to being flushed back into the midgut during blood 
feeding. This mode is referred to as proventricular biofilm-
dependent transmission or, more familiarly, the “blocked 
flea model” of transmission [92]. As the biofilm grows and 
consolidates, it interferes with normal blood feeding and 
eventually completely blocks the passage of blood into the 
midgut. Complete blockage typically does not develop until 
7 to 21 days or later after infection but can occur as early as 
5 days [4]. Blocked fleas are unable to feed to repletion, if 
at all, but persistently probe and strenuously attempt to feed 
throughout the few days before they starve to death [92]. 

The altered, sustained feeding behavior of a blocked flea is 
a significant multiplier of transmission probability [4].

Unlike many arthropod-borne pathogens, which rely on a 
single vector species, Y. pestis is a generalist, able to infect 
and be transmitted by many different flea species via the 
mechanisms described above. The transmission potential of 
its many different flea vector species varies considerably, 
which is evident for both modes of transmission [16, 93]. 
This, together with the varying degrees of susceptibility of 
its many different wild rodent hosts, contributes to the com-
plex ecology of plague. Notably, some important flea vec-
tor species do not develop proventricular blockage readily, 
leading to proposals that early-phase transmission is more 
important in some host populations (reviewed recently in 
[94]). Quantitative estimates of blockage rates have been 
based on different experimental conditions, making com-
parisons problematic and sometimes leading to discordant 
conclusions [93]. Chronic infectivity and subsequent block-
age are sensitive to infectious dose and blood source [95]. 
Furthermore, the relative importance of early-phase vs. 
blockage-dependent mechanisms following a single infec-
tious blood meal has yet to be systematically evaluated for 
any flea species. These significant unknowns merit further 
research [16].

Nonetheless, both modes of transmission are fairly inef-
ficient requiring a large number of fleas to sustain epizootic 
transmission [84, 96]. During epizootics, as hosts die of 
infection, the average number of fleas per remaining host 
typically increases [58], thus increasing the efficiency of 
transmission during both phases of infection. During both 
enzootic and epizootic periods, the need for blocked fleas to 
attempt multiple blood feeding opportunities increases the 
overall rates of transmission by individual fleas. Together, 
early phase and blocked flea transmission combine to extend 
the infectious period of individual infected fleas, but the rate 
of Y. pestis spread in a mammal population or community is 
dependent on contact rates between fleas and hosts.

Plague endemicity and transmission rates might be 
explained by host and flea diversity, for instance with mul-
tiple flea species, of varying host preferences, facilitating 
persistence and transmission [17]. Moreover, flea physiol-
ogy and feeding preferences may influence local transmis-
sion rates [4]. Differences in digestive tract physiology, 
foregut anatomy, and feeding frequency likely contribute to 
the varying degrees of vector competence among flea spe-
cies [16, 88, 93]. Recently, it has been recognized that the 
source of host blood affects the prevalence of infection and 
Y. pestis loads in fleas [97]; subsequent work showed that 
the biochemical characteristics of host blood is important, 
independent of any factors intrinsic to the flea [95]. Host 
blood with a poorly soluble hemoglobin molecule, such as 
rat and guinea pig blood, is digested more slowly by fleas 
and correlates with a phenomenon termed post-infection 
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esophageal reflux [95, 97]. When fleas are infected using rat 
blood, the proventricular is colonized more aggressively and 
infected blood is found in the esophagus within a day after 
an infectious blood meal [95]. In this case, the proventricular 
obstruction is more resistant to dislodgement, and Y. pes-
tis is already present in the esophagus, which can enhance 
regurgitative early-phase transmission [95]. Because post-
infection esophageal reflux helps to stabilize proventricular 
colonization, Y. pestis may quickly develop a protective bio-
film, producing overlap with the second phase of transmis-
sion in fleas.

Fleas are integral to the process, but they are not espe-
cially efficient at transmitting Y. pestis [96]. In many cases, 
the dose of Y. pestis needed to infect an individual flea is 
high  (ID50 = 4.8 ×  103 Y. pestis), at least partly because Y. 
pestis does not adhere to or invade the midgut epithelium 
and may be eliminated rapidly through peristalsis and excre-
tion in flea feces [96]. Consequently, it seems fleas must feed 
on a mammalian host with terminal septicemia to become 
infected (e.g., >  108 Y. pestis/ml peripheral blood [96]). 
Moreover, if flea infection occurs, the number of Y. pes-
tis colony-forming units (CFUs) transmitted per individual 
blocked flea bite is highly variable (0 to > 1000 CFUs and 
transmission rate of ~ 40 to 50% for Xenopsylla cheopis 
[96]) even though infected fleas may contain 4.8 ×  105 or 
more Y. pestis organisms. The transmission rate of individ-
ual early-phase fleas infected using rat blood is ~ 5 to 10% 
[94]; the number of CFUs transmitted per flea has not been 
determined but appears to be even lower than for blocked 
fleas [93, 95]. Inefficient flea infection and transmission of 
few Y. pestis (or fewer than needed) reduces transmission 
efficiency.

Poor flea vector efficiency coupled with the need for 
fleas to imbibe highly bacteremic blood to reliably become 
infected [77, 98] may provide the evolutionary explanation 
for Y. pestis’ high virulence (i.e., host killing capacity [96, 
99]). Reliance on the blood-feeding flea for transmission 
has naturally selected for Y. pestis strains that produce an 
aggressive infection and high virulence in mammals [76, 
100]. Host deaths encourage live infectious fleas to quest 
for new hosts, resulting in more host deaths, host-seeking by 
more “flocking” fleas, and further host deaths, and so forth, 
perpetuating Y. pestis transmission and epizootic spread in a 
positive feedback cycle [58] with varying degrees of plague 
mortality among host species and populations of differing 
density/susceptibility and flea communities/densities.

In some cases, as an epizootic subsides, plague dynam-
ics transition into the largely occult, enzootic phase, during 
which Y. pestis is perhaps “hiding in plain sight,” is often 
undetected [42, 54], even with targeted surveillance [101], 
while killing hosts or even “cooling off” when few to no live 
fleas or (perhaps preferred) hosts are available (e.g., persist-
ing in soils, or even plants or amoebas, or host carcasses, or 

moving elsewhere on the landscape [55, 60, 61, 102–105]. 
Inapparent, latent long-term infections have often been doc-
umented within rodent populations, and fleas may also assist 
in maintaining prolonged prevalence of Y. pestis in locales 
[60, 61, 106, 107]. Where and how Y. pestis persists during 
such periods is poorly understood and a top research prior-
ity. When conditions allow in some host species or mammal 
communities, or a trigger is pulled or a match is sparked, so 
to speak, yet another epizootic event may ensue and endure 
until conditions dampen transmission rates back to enzo-
otic proportions (the latter of which might actually be the 
modus operandi of Y. pestis [58]). In essence, the effects of 
Y. pestis are perhaps unrelenting. Yet, human perceptions of 
plague’s far-reaching influence on natural ecosystems may 
shift over time.

Yersinia pestis and Shifting Baseline 
Syndrome

“Any measure of change in a natural ecosystem must be 
grounded upon a well-defined natural standard or benchmark 
against which potential changes are measured and evaluated 
in relation to natural variation in the system” ~ Dayton et al. 
[108].

The definition of a meaningful benchmark of abundance 
or distributions is perhaps impossible for Y. pestis-suscepti-
ble mammal species. Humans had already caused significant 
ecologic change before Y. pestis invaded the Western US, 
for instance, and the invasion itself preceded collections of 
benchmark data for many species. Thus, the effects of plague 
can only be measured relative to an already altered state. 
This sort of scenario allows for shifting and sliding ecologic 
benchmarks and baselines.

Pauly [109] was perhaps the first scientist to use the term 
shifting baseline syndrome, in relation to fisheries, defining 
the syndrome as occurring because each new generation of 
fisheries scientists accepts as a baseline the conditions that 
occurred at the beginning of their careers, and they use this 
baseline to evaluate changes. As ecosystems change over 
time, past ecosystem states are sometimes forgotten. Conse-
quently, the baseline used shifts, perhaps to a more and more 
degraded state [110].

Yersinia pestis may be contributing to a shifting baseline 
syndrome. In this context, we discuss prairie dogs, which 
can serve a noticeable role in amplifying Y. pestis in the 
grasslands of western North America [18]. Independent esti-
mates place total prairie dog occupancy around 40 million 
ha in the early 1900s [111]. Yersinia pestis was detected 
among prairie dogs in 1932 [112] and thereafter devastated 
their populations [18]. The impacts to prairie dogs have been 
profound [111]. Admittedly, however, estimates of prairie 
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dog densities before European settlement and the invasion 
of Y. pestis are incomplete [113].

Prairie dogs are classified into two subgenera, each 
ecologically unique [114, 115]. Neither subgenus exhibits 
functional resistance to Y. pestis [36, 116]. Opportunities 
for Y. pestis transmission might be reduced in colonies of 
prairie dogs from the “white-tail” subgenus Leucocrossuro-
mys (Cynomys gunnisoni, Cynomys leucurus, and Cynomys 
parvidens) which typically occur at lower densities, and in 
more fragmented distributions within colonies, than prairie 
dogs in the “black-tail” subgenus Cynomys (in particular, 
black-tailed prairie dogs [117]). If a host species maintains 
low densities and patches of hosts are spatially isolated, Y. 
pestis may spread more slowly [117], suggesting Leucocros-
suromys prairie dogs would experience plague epizootics 
less frequently or at different scales. Similar arguments have 
been proposed for rodents on other continents [118, 119].

Nevertheless, members of the white-tail subgenus of prai-
rie dogs are substantially affected by Y. pestis. For example, 
between 1984 and 1997, plague nearly extirpated Gunnison’s 
prairie dogs (C. gunnisoni) from the Moreno Valley, New 
Mexico [117], and between 1941 and 1977 plague elimi-
nated them from South Park, Colorado [120]. Yersinia pestis 
has persisted in white-tailed prairie dogs (C. leucurus) near 
Meeteetse, Wyoming, since at least 1984 or 1985 [36]. Yers-
inia pestis is repeatedly detected (during targeted studies) 
in colonies of Utah prairie dogs (C. parvidens) throughout 
much of their range and is considered one of the primary 
threats to this listed species [18, 54].

If prairie dogs or other mammals persist on landscapes 
under the influence of Y. pestis, their colonies (or subpopu-
lations) often become smaller and more isolated and may 
exist as “metapopulations” [121, 122]. Occupancy patterns 
may include extinctions followed by recolonization of some, 
but not all sites in a manner consistent with plague [123, 
124]. The white-tailed subgenus of prairie dogs is often 
characterized as having patchy distributions of populations 
at low densities compared to black-tailed prairie dogs, but 
we cannot assess whether this phenomenon was historically 
normal, or a result of decades of persistent plague. Before Y. 
pestis’ arrival, both Leucocrossuromys and Cynomys, while 
ecologically different, might have occurred at similar den-
sities and distributions in regions with comparable rates of 
primary production and predation [125].

The historic structure and functioning of plague-affected 
ecosystems can be partially restored if the disease is effec-
tively and operationally managed for conservation purposes 
[125]. However, shifting baseline syndrome and the result-
ing moving target, sometimes of reduced expectations [108], 
may stimulate proposals for management actions that main-
tain an altered state. In some cases, it has been argued that 
mammals of the Western US, including prairie dogs, should 
be managed in a manner that promotes metapopulation 

structure, because metapopulations sometimes persist under 
plague pressure (depending on specific details of those meta-
populations [121]). For instance, focus areas of mammal 
conservation might be identified as areas with sufficient 
numbers and distributions of colonies to be considered a 
metapopulation. At least two points are important to the 
application of such an approach:

1. Metapopulation approaches in this context assume that 
the underlying subpopulations operate independently 
[126]. As discussed in the next section, climatic patterns 
create spatial synchrony in the occurrence of plague epi-
zootics, sometimes over broad landscapes in the Western 
US [40, 127], thereby forcing multiple mammal subpop-
ulations or populations into plague outbreaks during the 
same general timeframe [61, 128–130]. This synchrony 
limits the applicability of the metapopulation concept 
when used in the context of plague mitigation. The fates 
of mammals in neighboring areas are often correlated 
[129, 131, 132].

2. Even if mammals can sustain metapopulations under 
pressure from Y. pestis, their densities can be chroni-
cally reduced by plague [36, 54, 133]. Repeated bouts 
of extinction and recolonization may allow for contin-
ued taxonomic representation of such mammal species, 
but the corresponding habitat fragmentation, continued 
oscillations in abundance, and chronically struggling 
subpopulations subjected to enzootic plague can inhibit 
them from serving their ecologic functions, sometimes 
as keystone species or ecosystem engineers [18, 134].

There are also flaws inherent to implied (or unintentional) 
arguments for the creation of fragmented metapopulations 
of mammals at low densities. These arguments fail to recog-
nize that in many cases, spatial isolation does not necessar-
ily reduce the vulnerability of mammalian hosts to Y. pestis 
[120, 121, 128, 135] nor do low host densities [58]. In fact, 
with prairie dogs, evidence suggests Y. pestis persists on 
or very near their colonies, perhaps eliminating any spatial 
isolation. Indeed, once Y. pestis invades an area, it appears 
to locally persist in many cases [44, 46] but can remain 
undetected. It is also likely that the inter-colony habitats are 
occupied by other rodent species that may maintain plague. 
Moreover, habitat constraints reduce connectivity among 
subpopulations, thereby reducing the rate at which mam-
mals recolonize extirpated sites, especially in the case of 
smaller and relatively sedentary species of limited dispersal 
capabilities [126]. There is evidence to suggest some rodent 
subpopulations may evolve some, or perhaps locally strong, 
resistance to Y. pestis [136–138], but opportunities for such 
adaptive responses are reduced for less dense and more 
genetically isolated subpopulations [116]. Furthermore, iso-
lated populations are more vulnerable to extirpation due to 
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additional threats such as unusual weather patterns, fire, and 
high predation pressure, which are occurring with increasing 
frequency and intensity as the climate changes [126].

The metapopulation and isolation strategies illustrate 
contradictions and trade-offs. Plague converts some mam-
mal populations (e.g., of some rodents) into fragmented 
metapopulations, thereby creating smaller, more isolated 
subpopulations that are chronically affected, and in some 
cases, extirpated by Y. pestis [47, 54, 123, 124, 132]. In fact, 
patchy distributions of highly Y. pestis-susceptible territorial 
hosts might even favor long-term Y. pestis maintenance [45, 
70, 124, 139].

Integrated Plague Mitigation Toolbox

Generally speaking, plague might be managed under an Inte-
grated Pest Management strategy, with Y. pestis defined as 
the pest [140]. Ecological disruptions caused by Y. pestis 
and the complexity of interactions make simple silver-bullet 
solutions mostly unattainable. Available methods and tools 
for plague mitigation are numerous, and their efficacy varies 
by context, sometimes widely. In any given system, plague 
mitigation is facilitated by an increased understanding of the 
particular hosts and fleas involved [141–147].

The goals of plague mitigation vary widely. From a public 
health perspective, the primary objectives are to recognize 
epizootics prior to the onset of human cases, or to under-
stand where humans were exposed to Y. pestis to prevent 
subsequent infections, primarily through a combination of 
education, habitat manipulation, and limited use of insecti-
cides for flea control [41]. In Uganda, for instance, where 
human health is of primary interest, the goal typically is not 
to eradicate Y. pestis or even to prevent epizootics, but rather 
to disrupt transmission to humans [147]. In the Western 
US, Y. pestis has a vast geographic range and surveillance 
is commonly focused on areas where human contact with 
infected fleas and rodents is elevated (e.g., popular camp-
grounds [43, 148]).

Following the recognition of increased transmission, an 
epizootic among rodents, or human plague cases, public 
education assists in increasing awareness of Y. pestis, trans-
mission pathways, rodent die-offs, and effective mitigation 
strategies that prompt people to alter their behavior in ways 
to reduce exposure [147, 149, 150]. Community education 
also helps to emphasize the importance of seeking care rap-
idly if plague symptoms occur [151, 152]. Including One 
Health messages can improve public health outcomes and 
conservation ethic [153]. Vector control is implemented on 
a limited basis when the potential for human contact with 
infectious fleas justifies use [149, 154]; for instance, in Cal-
ifornia, flea control is typically conducted when Y. pestis 
has been detected in areas with increased human risk (e.g., 

campgrounds) and flea densities are greater than one flea per 
rodent. Effective antibiotics are available for human treat-
ment, notwithstanding the importance of quick diagnosis, 
response, and treatment [7, 155]. Improvements in spatial 
and climate modeling and mapping of potential exposure 
sites aid in targeting limited public health resources dedi-
cated to plague prevention [156].

Rodent control is not commonly implemented as a means 
of plague control. As discussed previously, thinning of 
native rodent populations is unlikely to be effective in plague 
mitigation. In fact, this sort of approach has proven ineffec-
tive many times [155]. However, thinning of rodent popula-
tions might be deemed an appropriate means of preventing 
human exposure to infected rodents and fleas, particularly 
in domestic or peridomestic settings where invasive rodent 
species pose multiple risks to human health (e.g., Rattus 
spp.: [157, 158]) or at recreational sites (e.g., campgrounds). 
Even so, multiple trap types may be required to capture and 
remove (or kill) rodents [147, 158] and connectedness of the 
landscape might prove to be an impediment [159]. Moreo-
ver, rodent control without prior or concurrent flea control 
encourages infectious fleas to quest from carcasses to sus-
ceptible hosts and, discouragingly, thinning of rat densities 
may lead to increased host movement, facilitating Y. pestis 
spread and higher disease prevalence [7]. Habitat modi-
fication, including reducing food or refuge for rodents in 
and around human habitations and public use areas (e.g., 
campgrounds and trails), is often recommended as a pre-
vention strategy [28]. Judicious application of insecticides 
(e.g., limiting application to areas when and where epizo-
otics have been confirmed) can limit costs and potentially 
slow the evolution of insecticide resistance in fleas; targeting 
such response activities may be guided by monitoring rodent 
populations for epizootics [150].

In the context of wildlife conservation, the goal of plague 
mitigation is to prevent epizootics and dampen or eliminate 
enzootic transmission [47]. Effective mitigation necessitates 
targeted intervention with insecticides or vaccines for indi-
vidual and/or population protection. Injectable F1 or F1-V 
(Y. pestis antigen) vaccines have shown good efficacy in 
target species [42, 57, 70]. Unfortunately, such applications 
remain time and labor intensive for large-scale use and rea-
gents are limited in supply. Hence, these vaccines have been 
mostly limited to experimental uses, such as proof-of-con-
cept studies [160], but also were very effective for targeted 
investigations of plague effects on host populations [42, 57, 
70]. F1-V fusion protein, however, has been used widely 
to protect black-footed ferrets [42, 161] and requires trap-
ping and injection which can be effectively completed, for 
instance as demonstrated by annual trapping and vaccination 
efforts at a ferret reintroduction site in South Dakota [162].

A new raccoonpox-vectored oral bait vaccine that stim-
ulates production of similar antigens has thus far shown 
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limited promise in protecting prairie dogs from plague [47, 
67, 69, 163]. Seasonality in the timing of oral baiting and 
other factors may have partially influenced the results [164]. 
Also, attaining sufficient overall immunity in the field may 
be unlikely in some systems, because the vaccine is ineffec-
tive with plague-susceptible deer mice (Peromyscus man-
iculatus), which are largely ubiquitous [165] but with poten-
tially varying roles in plague ecology across the Western US 
[166]. In addition, only a portion of target rodent populations 
become vaccinated due to imperfect bait uptake and other 
factors [167]. Finally, new additions of nonvaccinated juve-
niles occur in years with successful reproduction [69].

When using host plague vaccines, protection relies on 
hosts developing functionally protective antibodies against 
Y. pestis antigen(s). Assuming the vaccine has no effect on 
flea populations (as found, for instance, with prairie dogs 
and the oral vaccine noted above [69, 168]), flea popula-
tions may remain unrestrained, which may allow for con-
tinued Y. pestis transmission to unvaccinated hosts (which 
could remain abundant). To illustrate this point, consider 
the oral vaccine experiment noted above. Over 5000 flea 
pools combed from live-trapped prairie dogs were tested for 
Y. pestis via PCR assays (pla and F1 genes). In total, 39 of 
64 (61%) Y. pestis-positive flea pools were collected from 
sites treated with the vaccine [168]; overall, Y. pestis was 
more prevalent among flea pools on plots treated with the 
vaccine than on plots treated with placebo baits (chi-square 
P = 0.0782), an interesting trend given inherent difficulties 
with Y. pestis detection noted previously.

Investigating a wide range of potential plague control 
methods could support the goal of meeting unique applica-
tions and challenges, with economic, social, public health, 
and ecological sustainability as important considerations. 
Arguably, the most effective approach to plague mitigation 
may involve flea vector control. Even small decreases in 
vector survival and abundance can cause large reductions 
in transmission [169]. Chemical insecticides have been 
employed for flea control with varying success in varied 
applications historically [24, 170–172]. In some cases, these 
insecticides are mainstays of public health and conservation 
action plans [28, 162, 173]. For applications in wildlife habi-
tat over large areas, the timing [174], dose [175], and dura-
tion of efficacy [176] can affect costs and remain important 
considerations. Adding to these concerns is recent evidence 
demonstrating that repeated applications of insecticides 
can lead to resistance in fleas, manifested as shorter periods 
of efficacy, leading to increased costs and, in some cases, 
mammal population losses or limitations on the compounds 
that can be used effectively to prevent human plague cases 
[177–179].

Insecticide application methods for rodents historically 
have included baited insecticide dusting boxes and dispens-
ing tubes, and infusing (“dusting”) insecticide directly into 

burrows [171, 180–183]. Agents proven effective in some 
contexts include synthetic pyrethroids, organochlorines, and 
carbamates [54, 154, 184, 185]. Chitin-inhibiting insecti-
cides (fluazuron, pyriproxyfen, and lufenuron) have also 
been tested on fleas with good initial effect in some cases 
[186–188] but had little residual action. Recently, fipronil, a 
GABA receptor antagonist, has gained some favor for field 
applications in edible bait form [176, 189–193]. Compared 
to other agents tested, fipronil allows higher initial  (1st hour) 
flea engorgement rates after application, facilitating uptake 
by, and suppression of, blood feeding adult fleas [194]. 
Fipronil resistance has not yet been identified in the field 
(though Ctenocephalides felis cat fleas may exhibit some 
cross-resistance to dieldrin and fipronil [195]). Data sug-
gest fipronil and metabolites excreted in host feces may have 
prolonged effects on larval flea life stages [176]. In addition 
to potential mammal toxicity from over-exposure to insec-
ticides, secondary effects to the local biota remain a poten-
tial downside of burrow and host applications of chemical 
insecticides (label specifications and other use limitations 
help to reduce non-target effects). Additional means of flea 
control, such as insect pathogenic fungi, may be of value 
but require further study [140]. With any tool, the scale, 
scope, and targeted species may dictate the effectiveness of 
mitigation measures.

Summary and Conclusions

The host range of Y. pestis is impressive. A recent (albeit 
under) estimate included 354 mammal species worldwide, 
279 of which are rodents [196]. Epizootics have been docu-
mented in many rodent taxa of the Western US (e.g., prai-
rie dogs, chipmunks, woodrats, and ground squirrels [55]). 
More than half the rodents of conservation concern in North 
America have ranges overlapping the invasive range of Y. 
pestis [36]. Persistent enzootic mortality is expected for 
many species (including and in addition to rodents) and has 
been detected in multiple published experiments (e.g., three 
prairie dog species [54]; black-footed ferrets [42]; Mexican 
woodrats, Neotoma mexicana [56, 70]; yellow-pine chip-
munks, Neotamias amoenus; northern Idaho ground squir-
rels, Urocitellus brunneus; and Columbian ground squir-
rels, Urocitellus columbianus [57]). Significantly, there are 
multiple reasons to believe the effects of enzootic plague 
were underestimated in these controlled field experiments 
[57, 70]. In certain areas (e.g., California) where detection 
of enzootic/epizootic mortality is often cryptic, long-term 
serological surveillance of rodents and carnivores is an 
important tool used by public health agencies to evaluate 
local/regional changes in Y. pestis activity.

The implications of plague could be profound for a 
variety of host species that play critical roles in Y. pestis 
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maintenance and spread, but also susceptible spillover hosts 
that play less critical roles. For example, spillover hosts 
might include lagomorphs (e.g., Sylvilagus rabbits and 
Ochotona pikas). Ostensibly, the phrase spillover host might 
seem to suggest the effects of plague are minimal, or even 
entirely fortuitous for such species. However, persistence 
of Y. pestis in some hosts is not only costly for those hosts 
but also associated spillover species that are susceptible but 
perhaps inconsequential to disease maintenance [70]. Low 
or moderate rates of mortality, even due to enzootic plague 
as defined herein, may substantially alter ecosystem function 
and structure over the long term [70].

From a top-down trophic level perspective, Y. pestis is 
a tertiary “predator” [197] that reduces prey biomass for 
other predators. The bacterium also directly kills a variety 
of carnivores, with unknown population effects in most 
cases (e.g., Canadian lynx, Lynx canadensis [198]) but with 
known significant effects in others (e.g., black-footed ferrets 
[42]). Widespread detection of Y. pestis among carnivores is 
commonly used by state and local public health agencies to 
inform or direct targeted surveillance activities. Bevins et al. 
[38] documented Y. pestis exposure in 18 wildlife species of 
the Western US from 2015 to 2018 (44,857 samples), includ-
ing coyotes (Canis latrans), bobcats (Lynx rufus), and black 
bears (Ursus americanus), with Y. pestis detections in every 
state of the contiguous Western US.

Y. pestis is an invasive killer of a variety of mammals, and 
an ecosystem transformer throughout much of the Western 
US and abroad, with attendant One Health implications [33, 
149, 199, 200]. Expanded research is needed to identify and 
quantify the effects of Y. pestis on a variety of host species 
and populations, to identify the roles of different flea species 
in plague cycles, and to determine how plague perturba-
tions may cascade or “vortex” through ecosystems [201], 
causing widespread, unrelenting conservation challenges. 
In this context, scientists might be considered “detectives” 
(sensu [202]) and partial “justice” may involve increased 
recognition and awareness of Y. pestis and the devastation 
and perturbations it causes. Increased awareness may lead 
to more informative research and effective mitigation meas-
ures, favoring a beneficial feedback cycle that counters the 
destructive, pernicious positive feedback cycles Y. pestis 
imposes on wildlife. Eradication of plague is difficult to 
impossible, but effective mitigation is achievable. Identifi-
cation of species and ecosystems negatively impacted by Y. 
pestis, and their unique ecologies, can allow for strategic 
mitigation and risk reduction approaches aimed at improv-
ing the resilience of these populations to this and other pop-
ulation-level stressors. This treatise functions to stimulate 
thinking and innovation on this front, for the enhancement 
of individuals, subpopulations, metapopulations, and popu-
lations of all species involved, and humans, wildlife com-
munities, and ecosystems broadly.
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