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Abstract
Purpose of Review To review recent data about the study of the immune response in sporotrichosis and recent progress in the
development of an effective human and feline vaccine.
Recent Finding The cell wall of Sporothrix is an important source of antigens with the potential to develop vaccines. A major
candidate is a 70-kDa glycoprotein (gp70). Our group developed a model of sporotrichosis treatment using the monoclonal
against gp70 (mAbP6E7) with good results. We also recently developed a humanized antibody, mAbP6E7, that increased
phagocytosis in human monocytes and reduced the fungal burden in a murine model of sporotrichosis. The other importance
the study demonstrated is the protective capacity of an enolase-based vaccine and Montanide™ Pet Gel A (PGA) as an adjuvant
against S. schenckii. The use of an immunoproteomic approach demonstrated the efficacy of three peptides as a vaccine to
promote a protective immune response against sporotrichosis that aid the development of novel therapeutic approaches against
fungal infections.
Summary Several diseases have been eradicated with the use of vaccines, but the development of vaccines against fungal
infections in humans and animals remains a challenge, in part due to a lack of knowledge about the mechanisms of protective
immunity against fungal infections and the genetic complexity of fungi. In this review, we discuss recent advances in vaccine
development against sporotrichosis.
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Sporotrichosis: the Current Situation

Human Sporotrichosis

Sporotrichosis is a chronic subcutaneous mycosis affecting
humans and animals that, in some cases, may disseminate [1].
Sporotrichosis is caused by the thermodymorphic fungus
Sporothrix spp., which presents as a mycelial form
(saprophytic) at 25 °C and a yeast form (parasitic) at 37 °C [2].
This transition, which is induced by temperature, is an important

morphological adaptation to infection in mammals. The trans-
mission of the disease is associated with the inoculation of co-
nidia or yeasts in the subcutaneous tissue by means of a trauma
involving decaying plants or scratches from diseased or contam-
inated cats [3]. For a long time, transmission of the disease was
thought to be strictly related to a trauma in the subcutaneous
tissue, but there have been reports of airborne transmission [4].
Antifungals are the main choices for the treatment of fungal
infections in immunosuppressed and immunocompetent pa-
tients. However, recurring resistance to almost all antifungal
drugs has been reported [5]. Sporotrichosis is the most common
subcutaneous mycosis in Latin America [1].

For more than 100 years, S. schenckii was described as
the only species responsible for sporotrichosis. However,
in 2006, through phylogenetic analyses of the sequences of
calmodulin genes, a new species of Sporothrix spp. was
determined [6••]. According to de Beer et al., to facilitate
future studies, clinically relevant species were separated
into a pathogenic clade (pathogenic agents in humans) in-
cluding S. brasiliensis, S. schenckii, S. globosa, and
S. luriei [7].
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Although disease occurs worldwide, most cases are reported
in tropical and subtropical zones in Latin America, Africa, and
Asia. In endemic regions, this disease is mainly associated with
plant transmission, with the main etiologic agents being
S. schenckii and S. globosa [8].

Cat Sporotrichosis and Zoonotic Transmission

The zoonotic transmission of sporotrichosis has gained great
importance after cases were reported in Brazil, which differs
from other outbreaks that occurred in other parts of the world,
where the source of the infection was soil and decomposing
plant matter [9•, 10]. Some cases of sporotrichosis transmis-
sion by animals have been described in other countries, in-
volving accidents with snakes, birds, and squirrels and the
hunting of armadillos [11]. In Brazil, the transmission of the
disease by cats caused a large epidemic in Rio de Janeiro [9•].
For example, the largest zoonotic outbreak of sporotrichosis
occurred in the state of Rio de Janeiro [1]. According to the
Evandro Chagas Clinical Research Institute, Fiocruz, between
1998 and 2009, more than 2000 cases were in humans and
3000 cases in cats were registered [12]. In another study, be-
tween 1998 and 2001, approximately 86% of sporotrichosis
cases were reported in patients who had professional or do-
mestic contact with contaminated cats [9•]. Because of this,
the disease became endemic in the state of Rio de Janeiro.
Currently, the situation regarding sporotrichosis in the state
of Rio de Janeiro is alarming. There was a 400% increase in
the number of cases of feline sporotrichosis in 2016 when
compared to those in 2015, revealing the significant expansion
of the disease. In 2016, approximately “13,500” cases of spo-
rotrichosis were reported, which is 10,000 more than in the
previous year [9•]. Since 2013, the notification of sporotricho-
sis is mandatory in the state of Rio de Janeiro but not in other
Brazilian states. Another serious problem is an effective feline
treatment. In feline sporotrichosis, treatment involves the use
of different drug protocols that include potassium iodide and
itraconazole [13]. Treatment may take several months and is
challenging due to the difficulty of providing medical care to
stressed cats that can scratch and infect their owners and care-
givers. Therefore, it is imperative to develop a vaccine to
prevent or treat cats and humans infected with Sporothrix spp.

In this review, we discuss some recent information about
the development of an effective human and feline vaccine.

Immune Response Against Sporothrix spp.

The immune response can be divided into innate and acquired
immune responses. The innate immune response is the host’s
first line of defense, in which PRRs recognize pathogen-
associated molecular patterns (PAMPs), inducing a rapid and

essential response in the initial hours of infection. In the ac-
quired immune response, the participation of CD4 T cells is
fundamental in the control of the disease. Current available
data on the immune response to Sporothrix spp. is predomi-
nantly based on in vitro studies and mouse experimental
models, and data gathered directly from human patients are
scarce. However, there is a consensus that the host immune
response is essential in the control of sporotrichosis [14] [15]
[16].

Macrophages play an essential role in the innate response
to sporotrichosis. The activation of macrophages induces
phagocytosis and promotes the production of proinflammato-
ry cytokines, such as IL-6, TNF-α, and IL-1β, increasing the
microbicidal activity of macrophages by ROS (reactive oxy-
gen species) such as NO (nitric oxide), which is highly cyto-
toxic to S. schenckii [17]. The conidia of S. schenckii induce
low ROS production, favoring the dimorphic transition from
conidia to yeasts [18]. Mannose receptors play a role in the
recognition of S. schenckii, promoting a response from Th1
cells during the disease [19]. The mannose receptor is also
related to the Th1 response to other diseases caused by fungi
[20]. The role of dectin-1 has also been investigated in sporo-
trichosis, and β-1-3-glucan recognition induces an increase in
the production of cytokines such as IL-1β and IL-18 [21]. An
increase in IL-1β and IL-18 in sporotrichosis is related to the
activation of caspase-1, suggesting the participation of inflam-
matory and NOD (nucleotide oligomerized domain) receptors
[22].

The TLRs (toll-like receptors) are part of a conserved trans-
membrane receptor family that contains an external mem-
brane domain with particular leucine-rich sequences in each
TLR. Recent studies have demonstrated that lipid extracts
from S. schenckii yeast bind to TLR-4, which leads to ROS
induction [23]. Macrophages from TLR-4 knockout animals
were unable to produce high levels of cytokines such as IL-1,
IL-12, and TNF-α [24]. Kajiwara et al. argued that TLR-4 is
the main receptor against S. schenckii in its localized cutane-
ous form because it is capable of inducing a Th1 response with
the production of proinflammatory cytokines [25]. Recently,
our laboratory showed that TLR-4 is required for optimal host
responses to S. brasiliensis. A lack of TLR-4 signaling impairs
phagocytosis and the release of cytokines and antimicrobial
mediators by macrophages, confirming the role of the TLR-4
signaling pathway in S. brasiliensis infection [26].

Negrini et al. investigated the role of TLR-2 during
S. schenckii infection over a period of 10 weeks; they ob-
served the influence of TLR-2 overproduction on IL-1β, IL-
12, and TNF-α levels in macrophages in spleen cells, as mea-
sured by NO release and the production of IFN-γ, IL-6, IL-17,
and TGF-β [27]. In our lab, we evaluated the importance of
TLR-2 during S. brasiliensis infection. In vitro assays using
bone marrow-derived macrophages (BMDMs) from both
wild-type (C57BL/6) and TLR-2 knockout (−/−) mice showed
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that the absence of TLR-2 resulted in impaired phagocytosis
and microbicide mechanisms that utilize NO. However, this
did not affect in vitro cytokine production. In vivo assays
demonstrated that the absence of TLR-2 during experimental
S. brasiliensis infection promoted the increased dissemination
of S. brasiliensis after 14 and 28 days and polarized the Th17
response to control infection [28].

Several studies reported the importance of the cellular im-
mune response in sporotrichosis. Patients deficient in this type
of response have more severe forms of the disease [2]. The
absence of an adaptive immune response increases mortality
from experimental sporotrichosis [14]. CD4+ T lymphocytes
secrete several cytokines, such as IFN-γ, TNF-α, and IL-17A,
that determine host resistance against fungal infections, such
as aspergillosis and candidiasis [29] [30]. The Th1 response is
characterized by the release of IFN-γ, a strong macrophage
activator that is fundamental in the control of sporotrichosis
[31].Th17 cells play a role in the defense against extracellular
bacteria and fungi and have both protective and deleterious
effects [32]. The Th17 response promotes the secretion of IL-
17, which has pro-inflammatory activities including neutro-
phil recruitment and the production of pro-inflammatory cy-
tokines by epithelial cells. Using a murine experimental model
of S. schenckii infection, it was confirmed that the absence of
the Th17 response is related to higher lethality during infec-
tion [33]. Th17 cells eliminate S. schenckii in mice during
systemic infection, and IL-23 depletion leads to an increase
in fungal load. In vitro studies showed that dendritic cells
(DCs) recognize S. schenckii antigens, which leads to the de-
velopment of a mixed Th1/Th17 pattern [31]. The S. schenckii
exoantigen increases the levels of inflammatory cytokines
produced by macrophages and DCs. Therefore, the
coincubation of T cells with exoantigen-activated DCs pro-
voked the secretion of Th1/Th17 cytokines (IFN-γ/Th17,
IL-23, and TGF-β). CD4+ Th1 and Th17 cells are fundamen-
tal elements in the immune response against S. schenckii [33].

Vaccine and Immunotherapy

Several diseases have been eradicated with the use of vac-
cines, such as smallpox in humans and rinderpest on animals,
along with the near eradication or successful prevention of
other viral or bacterial infections [34, 35]. However, the de-
velopment of vaccines against fungal infections remains a
challenge, in part due to a lack of knowledge about the mech-
anisms of protective immunity against fungal infections and
the genetic complexity of fungi [5]. Currently, only 2 antigens
are in clinical trials for the creation of a new vaccine against
fungal infections, both of which are for candidiasis [36] [37]
[38]. Fungal infections are an emerging group of infectious
diseases. Chronic conditions, such as AIDS, the increased use
of chemotherapy in cancer treatment, and other factors that

decrease the host immune response, along with invasive hos-
pital procedures, such as catheter use, significantly increase
the number of cases of disseminated fungal infection [39]
[40]. Antifungal drugs that treat mycosis are most often used
in immunocompetent and immunosuppressed patients.
However, drug resistance in fungal infections has been report-
ed for almost all antifungal drugs [41]. A vaccine that induces
a protective immune response against fungi with or without an
antifungal drug could promote resistance in the host and be a
better approach to treat fungal infection.

The cell wall of Sporothrix is an important source of anti-
gens with the potential to develop vaccines. Amajor candidate
is a 70-kDa glycoprotein (gp70). We showed that mice infect-
ed with S. schenckii were able to produce a high level of
antibodies against gp70 and decrease the number of CFUs,
indicating its participation in infection control [42]. A similar
glycoprotein of 70 kDa with a pI (isoelectric point) of 4.1 and
approximately 5.7% of its molecular mass composed of N-
glycans was identified and purified by Ruiz-Baca et al. [43].

The use of antibodies to neutralize infection without induc-
ing an active memory immune response by the host is another
way to combat pathogens. Some antibodies have shown anti-
fungal activity and synergy with antifungals with good results.
Our group developed a model of sporotrichosis treatment
using the monoclonal antibody P6E7, a monoclonal antibody
against gp70 [44••]. MAbP6E7 is effective against sporotri-
chosis in prophylactic and therapeutic models of infection by
S. schenckii and S. brasiliensis [45]. We also recently devel-
oped a humanized antibody, mAbP6E7, that increased phago-
cytosis in human monocytes and reduced the fungal burden in
a murine model of sporotrichosis [46], demonstrating that
gp70 is an important therapeutic target for the treatment of
sporotrichosis.

Portuondo et al., in a study of the immunogenicity of cell
wall proteins from S. schenckii (ssCWP), showed that the
passive transference of anti-ssCWP serum from high-dose
aluminum hydroxide-adjuvanted formulatin afforded in vivo
protection against subsequent challenge with S. schenckii,
making it a viable vaccine candidate for further testing [47].
Similarly, Chen et al. developed a potential candidate
S. globosa vaccine using a recombinant phage with a gp70
peptide. This recombinant phage enhanced Th1 cells and in-
duced a strong humoral response that decreased the fungal
load in disseminated sporotrichosis caused by S. globosa
[48••].

The comparative efficacy and toxicity of two vaccine can-
didates against S. schenckii using either Montanide™ Pet Gel
A (PGA) or aluminum hydroxide adjuvants in mice has been
also evaluated. The PGA adjuvant induced an efficient im-
mune response and was safe for use as a future sporotrichosis
vaccine [49]. Recently, the same group showed the protective
capacity of an enolase-based vaccine and PGA as an adjuvant
against S. schenckii with increased virulence following
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exposure to toluene. The adjuvanted vaccine induced a strong,
specific Th1 response and protective immunity against chal-
lenge with either wild-type or toluene-adapted S. schenckii in
Balb/c mice. These studies highlight the role of the adjuvant
PGA in driving the increasing of anti-Sporothrix immunity
and as the key component in vaccine efficacy [50].

Chen et al. extracted an antibody against hybrid phage
nanofibers (phage-KR) from immunized mice and passively
inoculated Sporothrix globosa (S. globosa)-infected mice.
The antibody efficiently inhibited S. globosa infection, re-
duced the progression of fungal colonization, increased the
animal survival rate, and relieved organ inflammation in the
mice. The results indicate that antibodies against phage-KR
may be a potential strategy for the safe and efficient treatment
of S. globosa infections [48••].

Using an immunoproteomic approach, our group identified
antigenic proteins from S. brasiliensis and classified peptides
that can couple to MHC class II molecules to develop an
effective immune response [51••]. We showed that some an-
tigenic peptides, such as ZR3, ZR4, and ZR8, induced prolif-
eration in T cells sensitized by S. brasiliensis. We also dem-
onstrated that treatment with these peptides decreased the di-
ameter of the lesions in subcutaneous sporotrichosis. The ZR8
peptide promoted increased levels of cytokines (IFN-γ, IL-
17A, and IL-1β) in lesions and increased CD4+ T cells in
the lymph nodes and spleen. Together, these data demonstrat-
ed the efficacy of these peptides as a vaccine to promote a
protective immune response against sporotrichosis that aid
the development of novel therapeutic approaches against fun-
gal infections [51••].

Concluding Remarks

Fungal diseases became a major medical problem in the second
half of the twentieth century when advances in modern medi-
cine together with the HIVepidemic resulted in large numbers
of individuals with impaired immunity. Fungal diseases are
difficult to manage because they tend to be chronic, difficult
to diagnose, and difficult to eradicate with antifungal drugs.
However, the development of effective vaccines against fungi
is very difficult. Their genetic complexity, limited knowledge of
the mechanisms of anti-fungal drugs, and the lack of a defined
antigen are some of the constrains for not having an effective
antifungal vaccine. For an effective vaccine, a protective im-
mune response is essential [52]. Currently, endemic sporotri-
chosis is affecting cats in Brazil and may progress to zoonotic
transmission in humans. Unfortunately, there is no an effective
vaccine available to control this infection in cats. Therefore, it
makes sense to invest in a vaccine for sporotrichosis, especially
for cats. Several studies are under way, and we hope that, in the
near future, we will produce an effective vaccine to combat
sporotrichosis.
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